
Abstract Interpretation
patrick cousot

DMI, École Normale Supérieure, Paris 〈cousot@dmi.ens.fr〉 〈http://www.ens.fr/~cousot〉

Abstract interpretation [Cousot and
Cousot 1977, 1979] is a general theory for
approximating the semantics of discrete
dynamic systems, e.g. computations of
programs. In particular program anal-
ysis algorithms can be constructively de-
rived from these abstract semantics.

PRINCIPLES OF ABSTRACT
INTERPRETATION

A semantics S of a programming lan-
guage L associates a semantic value
S[[p]] ∈ D in the semantic domain D to
each program p of L. The semantic do-
main D can be transition systems (for
small-step operational semantics), pom-
sets, traces, relations (for big-step opera-
tional semantics), higher-order functions
(for denotational semantics), and so on.
D is usually defined compositionally by
induction on the structure of run-time
objects (computations, data, etc.). S is
defined compositionally by induction on
the syntactical structure of programs, us-
ing e.g. fixpoint definitions to handle it-
eration, recursion, and the like.
An empirical approach to abstract in-

terpretation consists in a priori choos-
ing a problem-specific abstract seman-
tics domain D� and an abstract seman-
tics S� ∈ L �→ D� which is designed in-
tuitively for a specific language L. Then
safety, correctness or soundness is estab-
lished by proving that a soundness rela-
tion σ satisfies

∀p ∈ L : σ(S[[p]], S�[[p]]).

Permission to make digital/hard copy of part or all of this work for personnal or classroom use is
granted without fee provided that the copies are not mage or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or fee.
c© ACM 0360-0300/96/0600-0324 $03.50

ACM Computing Surveys, Vol. 28, No. 2, June 1996

If the abstract semantics is computable
(D� is usually assumed to be finite), we
can infer that the abstract interpretation
is sound in the sense that:

S[[p]] ∈ {S | σ(S, S�[[p]])},
which may be sufficient to prove program
properties e.g. that some “programs can-
not go wrong”. However, the choice of D�

and σ offers no guideline for the design
of the abstract semantics S� with respect
to the concrete semantics S.
The approach propounded in [Cousot

and Cousot 1977, 1979] is constructive in
the sense that once the standard seman-
tics S and an approximation α are cho-
sen, one can derive the best choice for
the corresponding abstract semantics S�.
More precisely let us call elements of the
powerset

DColl

def= ℘(D)

program (concrete) properties. Define
SColl ∈ L �→ DColl to be the collecting se-
mantics:

SColl[[p]]
def= {S[[p]]}.

(This is a conceptual step, since no other
detailed specification of SColl is needed,
but for the design of formal proof meth-
ods). SColl[[p]] is the strongest program
property. We have seen that an abstract
property P , such as {S | σ(S, S�[[p]])}
above, is weaker in that SColl[[p]] ⊆ P . We
call ⊆ the approximation ordering. Now
the abstraction function is a map α ∈
DColl �→ DColl. We call α[D] def=

Abstract Interpretation • 325

{α(S) | S ∈ D} the abstract domain.
We often use an isomorphic representa-
tion D� for α[D] and directly define α ∈
DColl �→ D�. An example would be the
approximation of a trace-based seman-
tics by a relational/denotational seman-
tics:

α(P) def= {〈s0, sn〉 | s0s1 . . . sn ∈ P}
∪ {〈s0,⊥〉 | s0s1 . . . ∈ P is

an infinite trace}.
Another approximation, ignoring dis-
tinction between finite and infinite com-
putations, would be the approximation
of traces by sets of states:

α(P) def= {si | ∃s0s1 . . . si . . . ∈ P},
which is adequate for safety/invariance
properties.
Once such abstract domain D� and ab-

straction function α have been chosen,
it remains to derive the abstract seman-
tics S�[[p]], p ∈ L. We proceed compo-
sitionally, by induction on the syntactic
structure of program p. The price to pay
is that in general the ideal α(SColl[[p]])
has to be approximated by S�[[p]] ⊇
α(SColl[[p]]). For example, consider a fix-
point definition (for some syntactic con-
struct p(p1, . . . , pn) with components p1,
. . . , pn):

S[[p(p1, . . . , pn)]]
def= lfp� Fp

· [S[[p1]], . . . , S[[pn]]].

For simplicity, we consider the simple
case when the computational ordering �
coincide with the approximation order-
ing ⊆. Assuming, by induction hypoth-
esis, that we know a sound abstract se-
mantics for the program components p1,
. . . , pn:

α(SColl[[pi]]) ⊆ S�[[pi]], i = 1, . . . , n ,

then we look, by algebraic formula ma-
nipulation, for F �

p satisfying for all C1,
. . . , Cn ∈ DColl:
α({Fp[S1, . . . , Sn]|∀i = 1, . . . , n:Si∈Ci})

⊆ F �
p [α(C1), . . . , α(Cn)]

in order to conclude (under suitable hy-
potheses, see Cousot and Cousot [1979])
that

α(lfp� Fp[C1, . . . , Cn]) ⊆ lfp��
F �

p

· [α(C1), . . . , α(Cn)].

This leads to the definition of the ab-
stract semantics:

S�[[p(p1, . . . , pn)]]
def= lfp��

F �
p

· [S�[[p1]], . . . , S�[[pn]]],

which is sound, by construction, so that
no a posteriori verification is necessary.
When equality holds, we have a com-
pleteness property which is useful to de-
sign hierarchies of semantics. By identi-
fying useful abstract algebras consisting
of an abstract domain D� and abstract
operations F � corresponding to common
primitive operations F used in the se-
mantic definition of programming lan-
guages, one can design abstraction li-
braries of general scope. Finally, the
abstraction can be parameterized with
other abstractions in order to obtain
generic semantic definitions and abstract
interpreters. Contrary to e.g. type infer-
ence, soundness (and relative complete-
ness) can be established once for all (may
be parameterized by basic abstractions
for generic implementations) and not for
each particular instance of the program
analysis problem.
The abstract interpretation framework

sketched above is based on an abstrac-
tion function α. The existence of a best
(most precise) approximation among all
the possible sound ones is ensured by
choosing α as the upper-adjoint of a
Galois connection. Other equivalent
formulations using Moore families, clo-
sure operators, ideals, . . .where intro-
duced in Cousot and Cousot [1979].
The case when the computational order-
ing � does not coincide with the ap-
proximation ordering ⊆ in their con-
crete or abstract versions is considered
in Cousot and Cousot [1994]. Other

ACM Computing Surveys, Vol. 28, No. 2, June 1996

326 • P. Cousot

alternatives are studied in Cousot and
Cousot [1992] (using a soundness rela-
tion σ, a concretization γ, an abstrac-
tion/concretization pair 〈α, γ〉 or widen-
ings, which allows for the degree of ap-
proximation to evolve during program
analysis, so that the abstract domain D�

is not fixed once and for all but evolves
during the analysis) .
Under the influence of Mycroft’s early

application of abstract interpretation to
strictness analysis of lazy functional lan-
guages, the standard semantics S is of-
ten chosen to be a denotational seman-
tics (see Jones and Nielson [1995] for a
survey taking this point of view) which
is mainly adequate for functional lan-
guages. The original operational-based
abstract interpretation [Cousot 1981]
turned out to be much more adequate
for imperative, logic [Debray 1994] and
more recently concurrent, distributed
and object-oriented languages. A general
framework unifies both point of views
[Cousot and Cousot 1994], by lifting op-
erational semantics to handle infinite be-
haviors, considering the equivalence be-
tween rule-based and fixpoint presen-
tations of semantics specifications and
viewing denotational semantics as part of
a hierarchy of abstractions of operational
semantics.

APPLICATION OF ABSTRACT
INTERPRETATION

The most widespread use of abstract
semantics S� is for the specification of
program analyzers as used for highly-
performant compilers, program transfor-
mation (e.g. program vectorization and
parallelization), partial evaluation, test
generation for program debugging, ab-
stract debugging (involving abstract val-
ues/properties instead of concrete ones),
polymorphic type inference, effect sys-
tems, model checking, verification of hy-
brid systems, and the like.
An important aspect of research of ab-

stract interpretation is concerned with
the composable design of abstractions α
by induction on the mathematical struc-
ture of the semantic domain D (which,
for typed languages, often coincide with
the type structure of the language) for
all possible data and control structures
encountered in programming languages.
Let us consider a small range of samples
of data abstractions:
– For attribute-independent abstractions
of sets of vectors of numbers, one can
consider signs, intervals, parity, simple
congruences. For relational abstrac-
tions, one can consider linear equal-
ities, linear inequalities, congruences,
congruencial trapezoids, and so on.

– For the context-free abstraction of for-
mal languages, one can consider regu-
lar expressions, grammars (thus mak-
ing the link with set-based analy-
sis). Unitary-prefix monomial decom-
positions of rational subsets of a free
monoid (such as {X.tlm.hd.tln.hd.tlp |
m = n = p}) provide an example of
context-sensitive abstraction [Deutsch
1995]. These abstractions can be used
for pointer analysis based on location-
free/storeless models of computation.

– For the abstraction of sets of graphs, as
used e.g. in store-based pointer analy-
sis, one can refer to Deutsch [1995].
To remain succint on control struc-

tures, let us consider the example of
program loops which involve solving an
equation X = F �

� (X) originating from
the fixpoint definition lfp��

F �
� of the

abstract semantics S�[[�]] of a program
�. This is one of the typical algorith-
mic problems involved in abstract inter-
pretation. One classical solution, when
F �

� is a monotonic operator on a poset
〈D�,��〉 with infimum ⊥, is iteration:
X0 def= ⊥, Xn+1 def= F �

� (X
n) until conver-

gence. Widenings [Cousot and Cousot
1977] can be used to accelerate conver-
gence (in large or infinite domains) and

ACM Computing Surveys, Vol. 28, No. 2, June 1996

Abstract Interpretation • 327

cope with the lack of least upper bounds
during fixpoint iteration. Widenings can
be understood as local dynamic change
of abstract semantic domain during the
analysis [Cousot and Cousot 1992].
The complexity issues in abstract in-

terpretation have only been touched
upon. A common error is that abstract
interpretation is thought to be inherently
exponential (as opposed to polynomial
dataflow analysis). This can be exactly
the contrary! It can be polynomial or
polynomial on the average but exponen-
tial in pathological cases which are rare
enough to be cut off by widening (e.g.
polymorphic type inference à la Hindley-
Milner). In general, exponential costs
can be avoided by using widenings intro-
ducing further approximation as analy-
sis time elapses. The common idea that
program analyzers should be as fast as
compilers does not necessarily take the
cost/benefit trade-off into account. Is it
better to spend 8 (night) hours of CPU
time or 8 (day) hours of man-power for
finding a crucial programming error?

CONCLUSION AND RESEARCH
PERSPECTIVES

Although the designer of program an-
alyzers may prefer empirical approaches,
abstract interpretation is often an indis-
pensable guideline to avoid conceptual
errors since it provides a methodology
to design a formal specification. It pro-
vides a synthetic understanding of the
abundant literature on semantics, type
systems, logics of computations, pro-
gram verification, program analysis, par-
tial evaluation, and the like, all involving
more or less refined or abstract semantics
of computations.
A number of problems remains to be

considered or more thoroughly studied,
e.g.:
Semantics
– general frameworks formalizing the no-
tion of semantic approximation;

– models of computations (e.g. true con-
currency) to be used in concrete seman-
tics;

– design of hierarchies of parameterized
semantics for programming languages
(such as concurrent and object-oriented
languages);

Domains
– abstract domains for non-numerical ob-
jects,

– design of abstraction functions speci-
fying different program analysis meth-
ods in order to compare their relative
power,

– decomposition/combination of existing
program analyses;

Algorithms
– equation resolution and convergence
acceleration methods,

– compositional design of widenings;
Abstract interpreters
– design and implementation of general-
purpose libraries of abstract domains
and their associated operations;

– design of language-specific generic ab-
stract interpreters; and

– formal or experimental study of the
complexity/benefit tradeoff of program
analyses.

REFERENCES

Cousot, P. 1981. Semantic foundations of
program analysis. In Program Flow Anal-
ysis: Theory and Applications. S.S. Much-
nick and N. Jones Eds., Prentice-Hall, En-
glewood Cliffs, NJ, Ch. 10, 303–342.

Cousot, P. and Cousot, R. 1994. Higher-
order abstract interpretation (and appli-
cation to comportment analysis generaliz-
ing strictness, termination, projection and
PER analysis of functional languages), in-
vited paper. In Proceedings of 1994 ICCL,
Toulouse, France (May 16–19), IEEE, Los
Alamitos, CA, 95–112.

Cousot, P. and Cousot, R. 1992. Ab-
stract interpretation frameworks. J. of
Logic and Comput. 2, 4 (Aug.), 511–547.

Cousot, P. and Cousot, R. 1979. System-
atic design of program analysis frameworks.
In Proceedings of the 6th POPL (San Anto-
nio, TX), ACM Press, New York, 269–282.

ACM Computing Surveys, Vol. 28, No. 2, June 1996

328 • P. Cousot

Cousot, P. and Cousot, R. 1977. Ab-
stract interpretation: a unified lattice model
for static analysis of programs by construc-
tion or approximation of fixpoints. In Pro-
ceedings of the 4th POPL (Los Angeles,
CA), ACM Press, New York, 238–252.

Debray, S. K. 1994. Formal bases for
dataflow analysis of logic programs. In Ad-
vances in Logic Programming Theory , In-
ternational Schools for Computer Scientists,
G. Levi, Ed., Clarendon Press, New York,
Sect. 3, 115–182.

Deutsch, A. 1995. Semantic models and
abstract interpretation techniques for in-
ductive data structures and pointers. In-
vited paper. In Proceedings of PEPM’95
(La Jolla, CA, June 21-23), ACM Press,
New York, 226–229.

Jones, N. and Nielson, F. 1995. Ab-
stract interpretation: a semantic-based tool
for program analysis. In Semantic mod-
elling , S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, Eds., number 4 in Hand-
book of Logic in Computer Science. Claren-
don Press, New York.

ACM Computing Surveys, Vol. 28, No. 2, June 1996

