Let \mathcal{X} be a set and $\mathcal{L} \subseteq \wp(\mathcal{X})$ be a set of subsets of \mathcal{X} (i.e. $\mathcal{L} \in \wp(\wp(\mathcal{X}))$) where $\wp(\mathcal{X}) \triangleq \{ Y \mid Y \subseteq \mathcal{X} \}$ and $(X \subseteq Y) \triangleq (\forall x \in X : x \in Y)$.

Question 1 Consider the English sentence “\mathcal{L} equipped with the partial order \subseteq is a complete lattice (i.e. arbitrary least upper bounds do exist)”.

Formalize that English sentence in first order logic with equality (using symbols such as \forall, \exists, \subseteq, \Rightarrow, \cup, \subseteq, etc.).

Question 2 According to your answer to Question 1, is the empty set \emptyset a complete lattice?

Question 3 Let C be a set and $S \subseteq C$ be a non-empty subset of C (i.e. $S \neq \emptyset$). Prove that $X \cap S \subseteq Y$ if and only if $X \subseteq Y \cup \neg S$ where $\neg S \triangleq C \setminus S$.

Question 4 Let C and A be sets and $S \subseteq C$ be a non-empty subset of C (i.e. $S \neq \emptyset$). Prove that $\alpha(X) \triangleq X \cap S$ is the lower adjoint of a Galois connection $(\wp(C), \subseteq) \xrightarrow{\gamma} (\wp(A), \subseteq)$.

In the following questions, we let $\langle L, \subseteq, \bot, \top, \cup, \cap \rangle$ be a complete lattice and $f \in L \mapsto L$ be an increasing function of L into L. A bounded widening on L is $\forall \in L \mapsto (L \times L) \mapsto L$ such that for all $S \in L$ (writing $x \searrow_S y$ for $\forall(S)(x, y)$ when $x, y, S \in L$):

- $\forall x, y \in L : (x \subseteq y \subseteq S) \Rightarrow (y \subseteq x \searrow_S y \subseteq S)$, and
- For any sequence $\langle y_n, n \in \mathbb{N} \rangle$, the sequence $x_0 \triangleq \bot, \ldots, x_{n+1} \triangleq x_n \searrow_S y_n, \ldots$ is ultimately stationary (that is $\exists \ell : \forall n \geq \ell : x_n = x_\ell$)

Define the iteration for f and S with bounded widening \forall_S to be the sequence $\langle f^n, n \in \mathbb{N} \rangle$ such that $f^0 = \bot$ and $\forall n \in \mathbb{N} : f^{n+1} = f^n \searrow_S f(f^n)$ when $f^n \subseteq f(f^n) \subseteq S$ while $f^{n+1} = f^n$ otherwise.

Question 5 Prove that the iteration $\langle f^n, n \in \mathbb{N} \rangle$ for f with bounded widening \forall_S is bounded by S and increasing (i.e. $\forall n \in \mathbb{N} : f^n \subseteq f^{n+1} \subseteq S$).

Question 6 Prove that the iteration for f with bounded widening \forall_S is ultimately stationary.

Question 7 Let the iteration for f with bounded widening \forall_S be ultimately stationary at rank $\ell \in \mathbb{N}$. Prove that if $f(f^\ell) \subseteq f^\ell$ then $\text{lfp} \subseteq f \subseteq S$.

\[1/1\]