Question 1 Consider the English sentence "L equipped with the partial order \(\subseteq \) is a lattice". Formalize that English sentence in first order logic with equality (using symbols such as \(\forall \), \(\exists \), \(\subseteq \), \(\Rightarrow \), \(\cup \), etc.).

Answer 1 \((\forall X \in L : X \subseteq X) \land (\forall X, Y \in L : (X \subseteq Y \land Y \subseteq X) \Rightarrow (X = Y)) \land (\forall X, Y, Z \in L : (X \subseteq Y \land Y \subseteq Z) \Rightarrow (X \subseteq Z)) \land (\forall X, Y \in L : X \cup Y \in L) \land (\forall X, Y \in L : X \cap Y \in L) \).

Question 2 According to your answer to Question 1, is the empty set \(\emptyset \) a lattice?

Answer 2 Not clear from the English sentence, but \(\emptyset \) is a lattice since it satisfies the above definition, which is a conjunction of predicates of the form

\[
\forall X, Y, \ldots \in \emptyset : P(X, Y, \ldots)
\]

\[

\Leftrightarrow \forall X, Y, \ldots : (X \in \emptyset \land Y \in \emptyset \land \ldots) \Rightarrow P(X, Y, \ldots)
\]

\[
\Leftrightarrow \forall X, Y, \ldots : \text{false} \Rightarrow P(X, Y, \ldots) \quad \text{(since for all } X, X \in \emptyset \text{ is false)}
\]

\[
\Leftrightarrow \forall X, Y, \ldots : \text{true}
\]

\[
\Leftrightarrow \text{true}
\]

Question 3 Let \(C \) and \(A \) be sets. Let \(f \in C \mapsto \wp(A) \). Prove that \(\alpha(X) \triangleq \bigcup \{ f(x) \mid x \in X \} \) is the lower adjoint of a Galois connection \(\langle \wp(C), \subseteq \rangle \xrightarrow{\gamma} \langle \wp(A), \subseteq \rangle \).
\[\alpha(X) \subseteq Y \]
\[\Leftrightarrow \bigcup \{ f(x) \mid x \in X \} \subseteq Y \quad \text{[def. } \alpha] \]
\[\Leftrightarrow \forall x \in X : f(x) \subseteq Y \quad \text{[def. least upper bound]} \]
\[\Leftrightarrow X \subseteq \{ x \mid f(x) \subseteq Y \} \quad \text{[def. } \subseteq] \]
\[\Leftrightarrow X \subseteq \gamma(Y) \quad \text{[by defining } \gamma(Y) \triangleq \{ x \mid f(x) \subseteq Y \} \} \]

Let \(\langle L, \sqsubseteq, \bot, \sqcup, \sqcap \rangle \) be a complete lattice. Let \(f \in L \mapsto L \) be an increasing function of \(L \) into \(L \). A dual narrowing on \(L \) is \(\Delta \subseteq L \times L \mapsto L \) such that

- \(\forall x, y \in L : (x \sqsubseteq y) \Rightarrow (x \sqsubseteq x \tilde{\Delta} y \sqsubseteq y) \), and \((1) \)
- For any sequence \(\langle y_n, n \in \mathbb{N} \rangle \), \(\forall S \in L : \) the sequence \(x_0 \triangleq \bot, \ldots, \) \((2) \)
 \[x_{n+1} \triangleq y_n \tilde{\Delta} S \) is ultimately stationary (that is \(\exists \ell : \forall n \geq \ell : x_n = x_\ell \))

Define the iteration for \(f \) and \(S \) with dual narrowing \(\tilde{\Delta} \) to be the sequence \(\langle f^n, n \in \mathbb{N} \rangle \) such that \(f^0 = \bot, f^{n+1} = f(f^n) \tilde{\Delta} S \) if \(f(f^n) \sqsubseteq S \) and otherwise \(f^{n+1} = f^n \) when \(f(f^n) \not\sqsubseteq S \).

Question 4 Prove that the iteration for \(f \) and \(S \) with dual narrowing \(\tilde{\Delta} \) is ultimately stationary.

Answer 4 Either \(\exists \ell \in \mathbb{N} : f(f^\ell) \not\sqsubseteq S \) and then, by definition of the iterates and recurrence, \(\forall n \geq \ell : f^n = f^\ell \) so that \(\langle f^n, n \in \mathbb{N} \rangle \) is ultimately stationary.

Else \(\forall \ell \in \mathbb{N} : f(f^\ell) \subseteq S \), and then by choosing \(\forall n \in \mathbb{N} : x_n = f^n \) and \(y_n \triangleq f(f^n) \), the condition (2) in the definition of the dual narrowing implies that \(\langle f^n, n \in \mathbb{N} \rangle \) is ultimately stationary.

Question 5 Let the iteration for \(f \) and \(S \) with dual narrowing \(\tilde{\Delta} \) be ultimately stationary at rank \(\ell \in \mathbb{N} \). Prove that if \(f(f^\ell) \subseteq f^\ell \) then \(\text{lfp}^\bowtie f \subseteq S \).

Answer 5 Observe that \(f^0 = \bot \subseteq S \) for the basis and if \(f^n \subseteq S \) then either \(f(f^n) \not\subseteq S \) in which case \(f^{n+1} = f^n \subseteq S \) or \(f(f^n) \subseteq S \) and \(f(f^n) \subseteq f^{n+1} \) \(\triangleq f(f^n) \subseteq S \) by (1) proving \(\forall n \in \mathbb{N} : f^n \subseteq S \) by recurrence. By Tarski’s theorem, \(\text{lfp}^\bowtie f = \bigcap \{ x \mid f(x) \subseteq x \} \) and so \(\text{lfp}^\bowtie f \subseteq f^\ell \) since \(f^\ell \in \{ x \mid f(x) \subseteq x \} \) and definition of a greatest lower bound. By transitivity, we conclude that \(\text{lfp}^\bowtie f \subseteq S \).