Dramatic Reduction of Dimensionality in Large Biochemical Networks Due to Strong Pair Correlations

Jayajit Das

Battelle Center for Mathematical Medicine The Research Institute at Nationwide Children's Hospital and Ohio State University

Workshop on Systems Biology and Formal Methods, NYU, March 30, 2012

High-throughput Methods Reveal Cellular Complexity

Janes et al. J. Comp. Biol. (2004)

High-throughput Methods Reveal Cellular Complexity

Success of Multivariate Statistical Methods

effective variables (principal components)

 \equiv Linear sum of variables in the high-dimensional dataset

use pair-correlations

Large reduction of dimensionality (hundreds to few ~5)

Janes and Yaffe, Nat. Rev. MCB (2006)

Success of Multivariate Statistical Methods

effective variables (principal components)

≡ linear sum of variables in the high-dimensional dataset

use pair-correlations

Large reduction of dir

Issues not understood

Dramatic reduction in dimensionality - Accidental or Generic?

Can this reduction be used to extract mechanisms and construct coarse grained variables for mechanistic models?

$$X_1 \xrightarrow[k_{1r}]{k_{1r}} X_2 \xrightarrow[k_{2r}]{k_{2r}} X_3$$

$$X_1 \xrightarrow[k_{1r}]{k_{1r}} X_2 \xrightarrow[k_{2r}]{k_{2r}} X_3$$

deterministic mass-action kinetics $\frac{dc_1}{dt} = -k_{1f}c_1 + k_{1r}c_2$ $\frac{dc_2}{dt} = -(k_{2f} + k_{1r})c_2$ $+ k_{1f}c_1 + k_{2r}c_2$ $c_1 + c_2 + c_3 = c_0$

percent explained = $\lambda_a / tr(C) \times 100\%$

~ 90% variance explained (1 PC is sufficient)

~ 50% variance explained (needs 2 PCs)

contains information about the variation of the phase trajectory

percent explained = $\lambda_a / tr(C) \times 100\%$

~ 50% variance explained (needs 2 PCs)

Rule Based Modeling

Hlavacek et al. Sci. Sig. (2006) BioNetGen (bionetgen.org)

Linear Network with Linear Kinetics

N=64
$$X_1 \xrightarrow{k_1} X_2 \xrightarrow{k_2} X_3 \xrightarrow{k_3} X_4 \xrightarrow{k_4} X_5 \xrightarrow{k_5} X_6 \xrightarrow{k_6} \cdots$$

Linear Network with Linear Kinetics

$$N=64 \qquad X_1 \underbrace{\xrightarrow{k_1}}_{k_{-1}} X_2 \underbrace{\xrightarrow{k_2}}_{k_{-2}} X_3 \underbrace{\xrightarrow{k_3}}_{k_{-3}} X_4 \underbrace{\xrightarrow{k_4}}_{k_{-4}} X_5 \underbrace{\xrightarrow{k_5}}_{k_{-5}} X_6 \underbrace{\xrightarrow{k_6}}_{k_{-6}} \cdots$$

percent explained decreases in short time intervals

Linear Network with Linear Kinetics

N=64
$$X_1 \xrightarrow{k_1} X_2 \xrightarrow{k_2} X_3 \xrightarrow{k_3} X_4 \xrightarrow{k_4} X_5 \xrightarrow{k_5} X_6 \xrightarrow{k_6} \cdots$$

percent explained decreases in short time intervals

Branched Linear Network with Non-Linear Kinetics

~90% variance captured by 4 components for all N's for 80% of the trials

Ras Activation Network

Das et al. Cell (2009)

Ras Activation Network

decrease of % explained in small time intervals as linear networks

Das et al. Oeli (2003)

Ras Activation Network

Das et al. Cell (2009)

EGFR Signaling Network

smaller network (19 species) Kholodenko et al. JBC (1999)

responsible for cell growth, differentiation

Blinov et al. Biosys. (2006)

EGFR Signaling Network

EGFR Signaling Network

26 species, 38 kinetic rates

Hoffmann et al. Science (2002)

Hoffmann et al. Science (2002)

Gram Determinant

Gram Determinant

Largest eigenvalue kinetics displays time scale of Ras activation

Mechanistic Insights

Mechanistic Insights

Data from Gaudet et al (2004)

Summary

strong correlations between species in a biochemical reaction networks produce dramatic reduction in dimensionality that is *insensitive* to

-rate constants and initial concentrations-nonlinearities in the kinetics-network topology

Time-scales associated with significant changes in the kinetics is reflected in the percent explained by the principal components

Results are published in Dworkin et al. *J. R. Soc. Interface* (2012) <u>Contact</u>: <u>das.70@osu.edu</u> and http://www.mathmed.org/#Jayajit_Das

Summary

Mechanistic Models?

Summary

Mechanistic Models?

Acknowledgements

Michael Dworkin

Sayak Mukherjee

Ciriyam Jayaprakash Physics, OSU Funding

Ohio Supercomputer Center Empower. Partner. Lead.