

Coarse-graining stochastic biochemical reaction networks in the adiabatic limit

Ilya Nemenman

Physics and Biology

Computational and Life Sciences University Initiative
Emory University

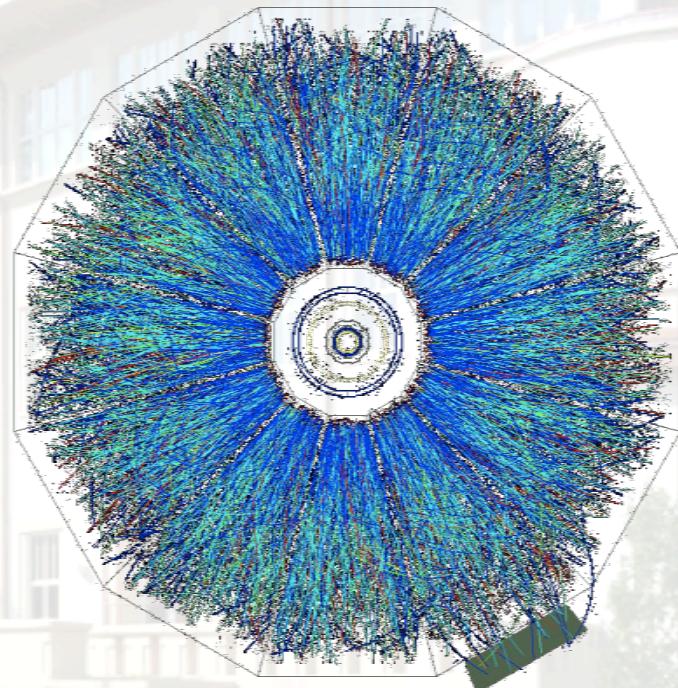
menem.com/~ilya

EMORY
UNIVERSITY

Thanks

- LANL
 - Nikolai Sinitsyn
 - Brian Munsky
 - Golan Bel (Ben Gurion)
 - Nicolas Hengartner
 - Andrew Mugler (Columbia/AMOLF)
 - Bryan Daniels (Cornell/Wisconsin)
 - Wiet de Ronde (AMOLF)
- Emory
 - Sorin Tanase Nicola (Uppsala)
 - Xiang Cheng
 - Lina Merchan
- NIH, NSF, DOE
- LANL, Emory

Hairballs aren't unique to biology



Wikipedia RHIC event image

EMORY
UNIVERSITY

Ilya Nemenman
Systems Biology and Formal Methods, 3/12

Slide 2

My prejudices

- Large hairballs of interaction networks are scary and hard to interpret
- Need coarse-grained models – but need rigorous methods to decide what matters and what doesn't
- There is no reason to solve an approximate problem exactly
- Need approximate methods for coarse-graining – need to find small parameters with the most bang for the buck

Goals

- Is functionally equivalent coarse-graining possible on long temporal/spatial scales?
- Can we build faster simulation tools based on coarse-grained systems?
- Do interesting phenomena emerge due to coarse-graining?

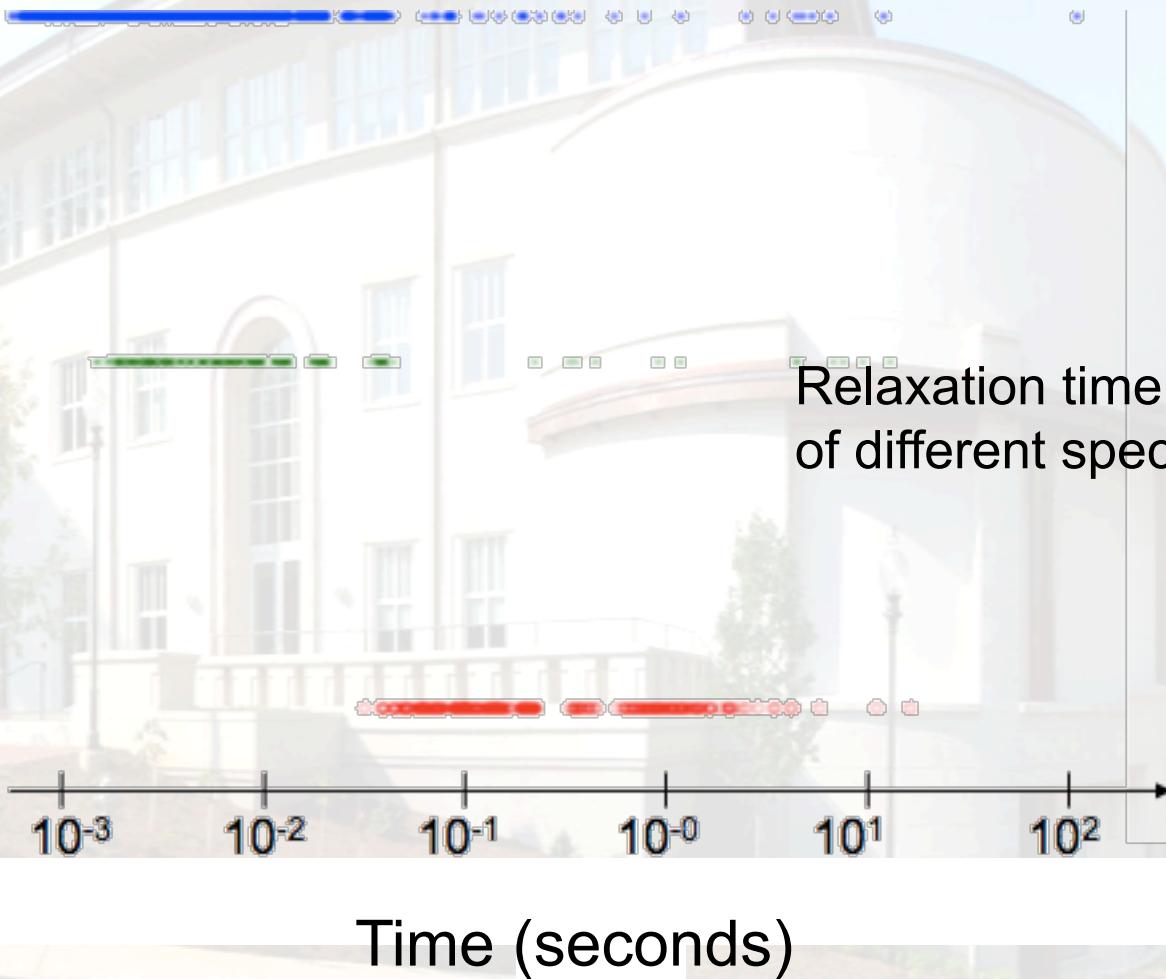
Small parameter in biochemical networks

Fc ϵ RI (trimer)
2954 states

Fc ϵ RI (dimer)
354 states

EGFR
356 states

Relaxation time scales
of different species



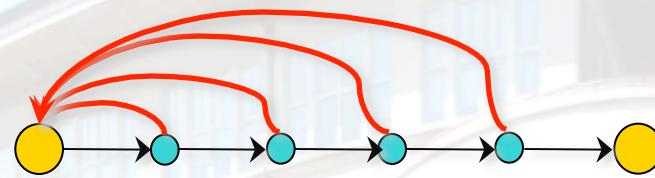
Faeder et al.

EMORY
UNIVERSITY

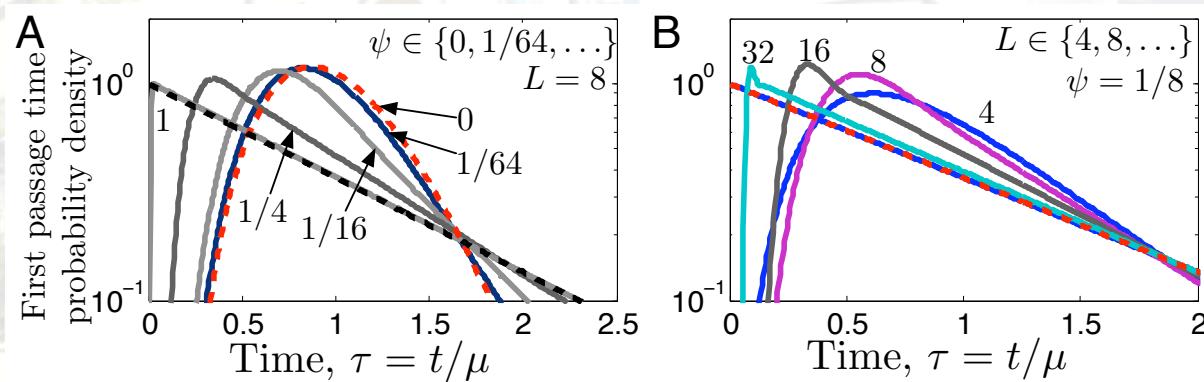
Ilya Nemenman
Systems Biology and Formal Methods, 3/12

Slide 5

Example of time scales separation: Kinetic proofreading



k forward
 γ proofreading
 $\psi = \gamma/k$



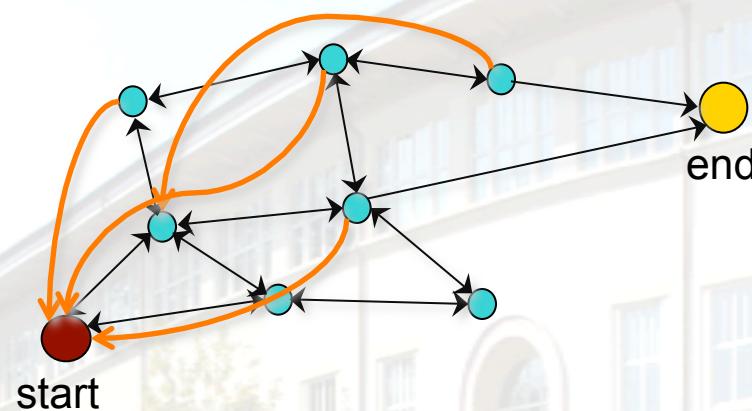
Bel, Munsky, 2009-10

EMORY
UNIVERSITY

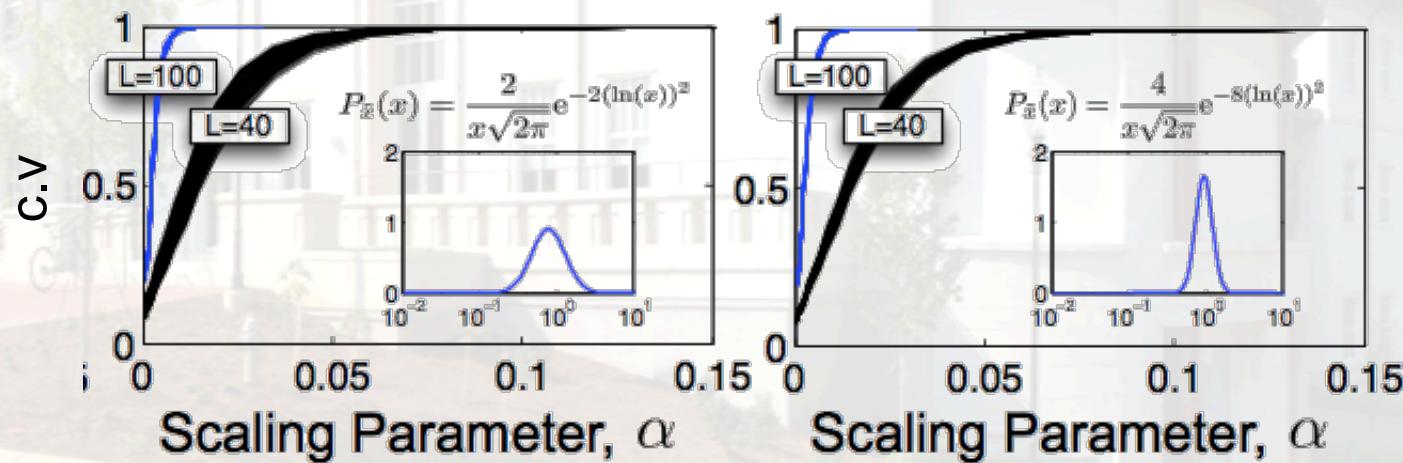
Ilya Nemenman
Systems Biology and Formal Methods, 3/12

Slide 6

Examples of time scales separation: Random networks



α – relative strength of “shortcuts”
Similar to ligand dissociation



Bel, Munsky, *PB, JCP*, 2009-10

EMORY
UNIVERSITY

Ilya Nemenman
Systems Biology and Formal Methods, 3/12

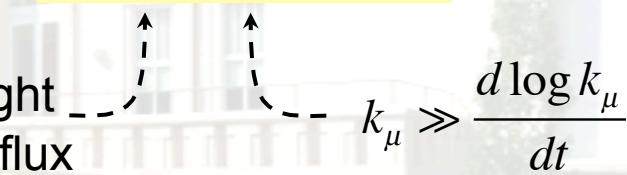
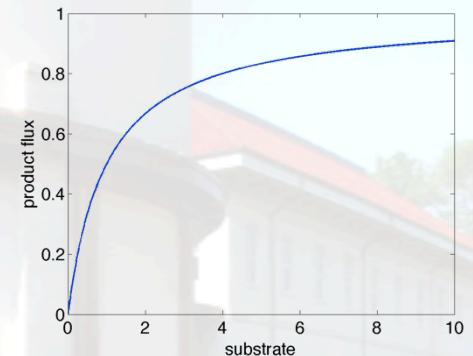
Slide 7

The simplest coarse-grainable system with time scale separation

- A Michaelis-Menten enzyme

$$L \xrightleftharpoons{Q} R$$
$$P[Q|T, \vec{k}(t)] = ?$$

Left-Right particle flux

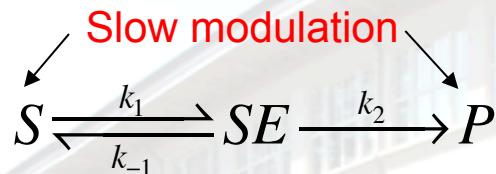

$$k_\mu \gg \frac{d \log k_\mu}{dt}$$


- How do we coarse-grain these systems?
- Separation of relaxation time scales = different concentration scales

Some notes

- Need to get rid of internal degrees of freedom, not simulate them with a different protocol
- Approximation needs to work at the knee of MM curve, not only at the (easier) linear and the saturated limits
- Approximation needs to work when rates change with time
- Want a substantial speed-up in terms of Langevin or tau-leaping like approach, not simulate reaction by reaction. But nonetheless want to have arbitrary moments of reactions approximately correct.
- **What are the long-time, large-current probabilities?**

Adiabaticity in the deterministic case

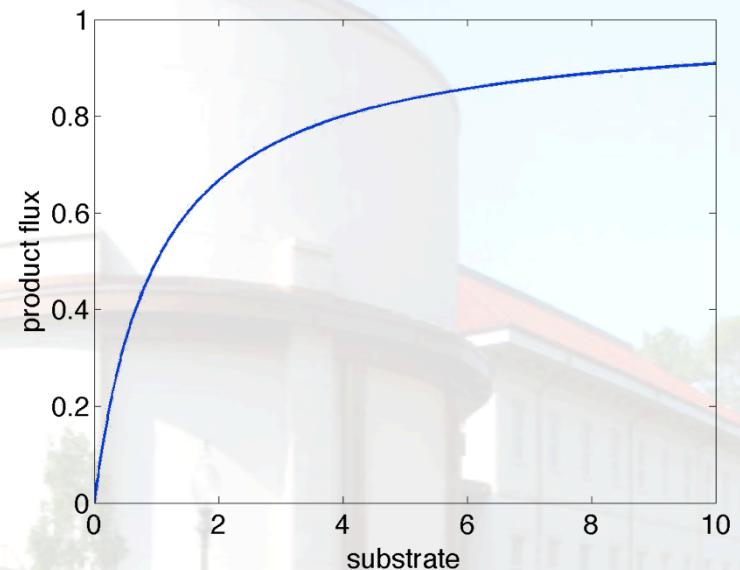


Slow modulation

$$\frac{d[SE]}{dt} = k_1 [E] - (k_{-1} + k_2)[SE] = 0$$

$$\frac{dP}{dt} = \frac{k_1 k_2}{k_2 + k_{-1} + k_1} = J_{cl}$$

- Adiabatic approximation
 - Many enzyme turnovers for small (fractional) change in $[P]$, $[S]$
- How to do the same with fluctuations?



Let's do the algebra: MGF approach

$$\frac{dP_n^E}{dt} = -(k_1 s + k_{-2} p)P_n^E + k_{-1}P_n^{ES} + k_2 P_{n-1}^{ES}$$

$$\frac{dP_n^{ES}}{dt} = -(k_{-1} + k_2)P_n^{ES} + k_1 s P_n^E + k_{-2} p P_{n+1}^{ES}$$

$$|G\rangle = \{G^E, G^{ES}\} = \sum_n e^{i\chi n} \{P_n^E, P_n^{ES}\}$$

$$G = \langle \mathbf{1} | G \rangle = G^E + G^{ES}$$

$$\left. \frac{\partial \log G}{\partial (i\chi)} \right|_{\chi=0} = \bar{J}$$

$$\left. \frac{\partial^2 \log G}{\partial (i\chi)^2} \right|_{\chi=0} = \sigma^2$$

$$\frac{d|G\rangle}{dt} = H|G\rangle = \begin{bmatrix} k_1 + k_{-2} & -k_{-1} - k_2 e^{i\chi} \\ -k_1 - k_{-2} e^{-i\chi} & k_{-1} + k_2 \end{bmatrix} |G\rangle$$

A simple form: introduce counting fields

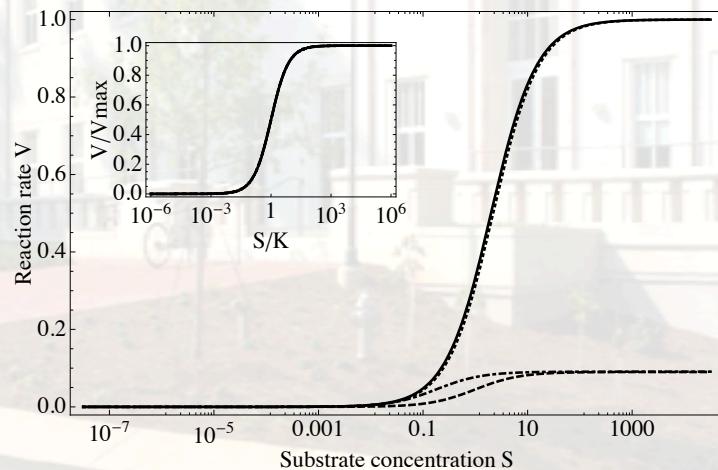
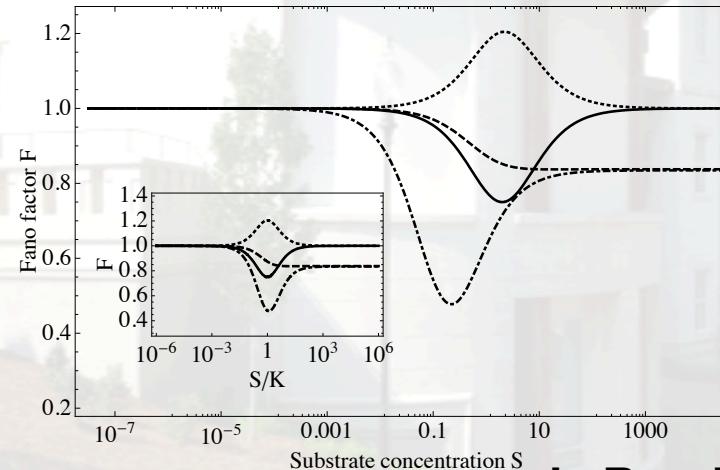
...

de Ronde et al, 2009

EMORY
UNIVERSITY

Results: can find the coarse-grained CGF

- For large t , solving this system of linear ODEs is equivalent to finding the largest real part eigenvalue.
- Treating χ as small, can use perturbation theory; e.g., two orders give first two cumulants. Sometimes can find $S = \log G$ completely.
- Easy to do for more complex reactions, e.g., allowing to disambiguate some reaction schemes from mesoscopic fluctuations data.



de Ronde et al, 2009

EMORY
UNIVERSITY

Ilya Nemenman
Systems Biology and Formal Methods, 3/12

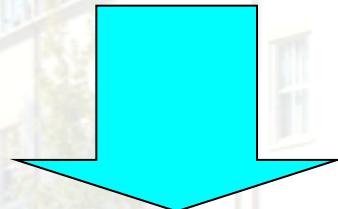
Slide 12

Fast simulations of coarse-grained reactions

$$\frac{dp(L, R, N)}{dt} = \sum_i k_{i, \text{other} \rightarrow p} p(\text{other}) - \sum_i k_{i, p \rightarrow \text{other}} p \quad \text{Chemical master equation}$$

$R \rightarrow R \pm 1$ at random time t

Monte-Carlo 4-reaction Gillespie SSA algorithm



Large copy number

$$\frac{dR}{dt} = \frac{k_1 k_2 - k_{-1} k_{-2}}{\sum k} + \text{geom} + \eta$$

$$\langle \eta(0)\eta(t) \rangle = \text{correct} \times \delta(t) \quad [\text{or use more cumulants}]$$

1-reaction coarse “Langevin”

Simulating near-Gaussian η with known higher cumulants is doable

Sinitsyn et al., 2009

EMORY
UNIVERSITY

Ilya Nemenman
Systems Biology and Formal Methods, 3/12

Slide 13

Generating non-Gaussian noises

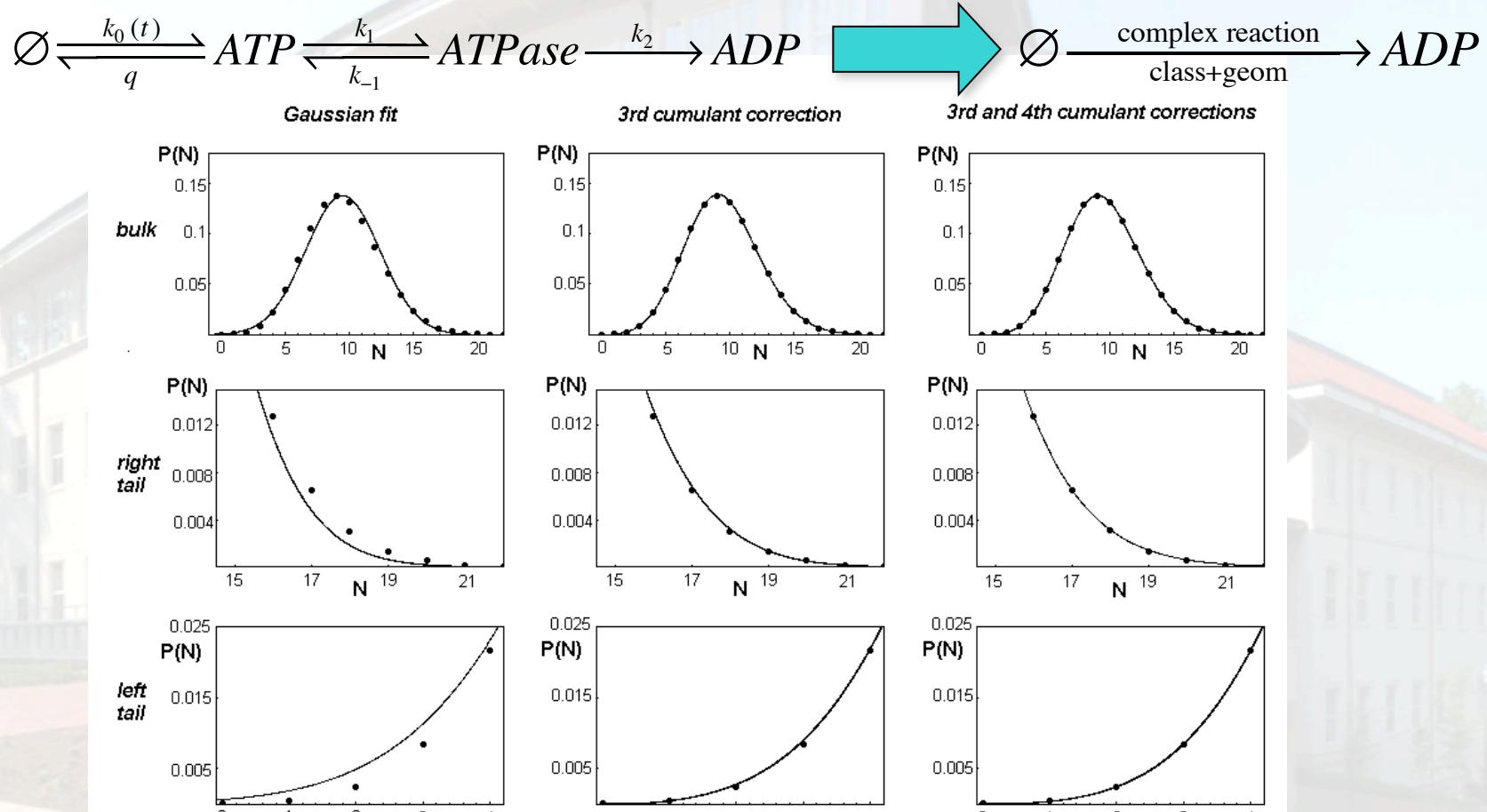
- Assumptions needed when using higher order cumulants
- Gram-Charlier expansion

$$P(J|c_1, c_2, c_3, \dots) = N(J|c_1, c_2) \left(1 + \frac{c_3(y^3 - y)}{6c_2^{3/2}} + \frac{c_4(y^4 - 6y^2 + 3)}{24c_2^2} + \frac{c_3^2(y^6 - 15y^4 + 45y^2 - 15)}{72c_2^3} + \dots \right)$$

$$y = \frac{J - c_1}{\sqrt{c_2}}$$

- Higher order terms progressively smaller since $c_n \sim dt \gg 1$
- Importance or rejection sampling from this near-gaussian distribution

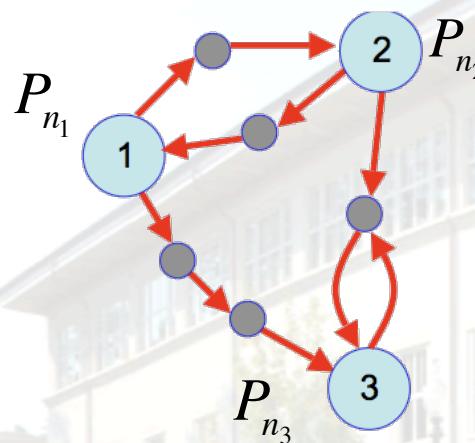
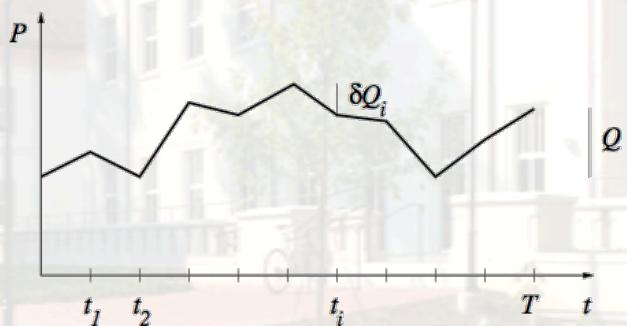
Examples of simulations



10^4 speed-up compared to Gillespie

How to deal with larger networks?

Stochastic path integral



- Probability of δn_i particles created at node i over time δt is conditional all on n_j , which are also probabilistic, P_{n_j}
- If δt is small, each n_i is almost constant over δt .
- Overall future state probability is convolution of conditional probabilities with current state probabilities.
- Convolution of probabilities – addition of CGFs (integration in the limit of small n_i)
- Conservation laws couple n_i at different times, and overall CGF is

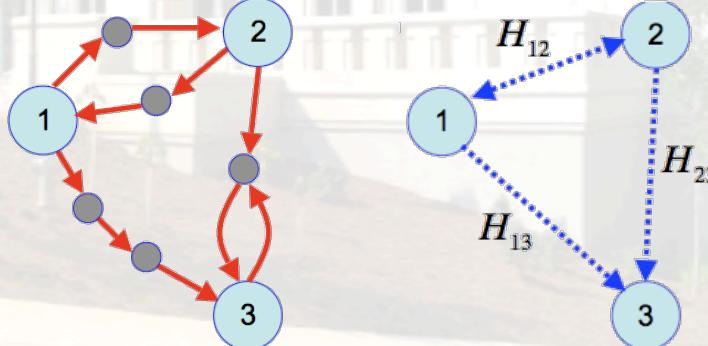
$$S(\chi, T) = \log G = \int_0^T dt \left[\sum_{\mu} i \chi_{\mu} \dot{N}_{\mu} + \sum_{\mu < \nu} H_{\mu\nu} \right] + O\left(\frac{\text{fast}}{\text{slow}}\right)$$

Cont'd

- Extra adiabaticity enforced by saddle point equations

$$\frac{\partial}{\partial \chi_\mu} S(\chi, T) = 0; \quad \frac{\partial}{\partial \chi_\mu} \sum_v H_{\mu v} = -i \dot{N}_\mu \approx 0$$

- But what to do if $n_i \sim 1$ and small δt cannot be chosen?
 - Solve for the CGF of entire pathway involving this node as for MM before
 - Small n ensures that the perturbation theory is solvable



Concluding thoughts

- Approximate rigorous coarse-graining is possible in adiabatic limit using MGF techniques
- Simulations in coarse-grained models are many orders of magnitude faster
- Universal properties may emerge

Hopes for the future (Any takers?)

- Simulations
 - Build the ability to simulate non-Poisson nearly-Langevin variables into software packages
 - Build a library of coarse-grained models of various network motifs
 - Build tools to automatically coarse-grain models using the library
- Explore possible dynamics with RBMs
 - What is the set of all possible dynamics that appear with high probability in (semi-)random RBMs?
 - Which rules affect dynamics on long time scales and which don't?
 - For large rule sets, how likely are the dynamics to simplify or become universal? (see, e.g., proofreading or sloppy models)

The q-bio conference

- Bridging together quantitative experiments, theory, modeling
- Santa Fe, NM, Aug 8-12, 2012

EMORY
UNIVERSITY

Ilya Nemenman
Systems Biology and Formal Methods, 3/12

Slide 21