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Hairballs aren’t unique to biology

Wikipedia RHIC event image
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My prejudices
e Large hairballs of interaction networks are scary and hard

to interprete

* Need coarse-grained models — but need rigorous
methods to decide what matters and what doesn’t

* There is no reason to solve an approximate problem
exactly

* Need approximate methods for coarse-graining — need to
find small parameters with the most bang for the buck
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Goals

e |s functionally equivalent coarse-graining possible on long
temporal/spatial scales?

e (Can we build faster simulation tools based on coarse-
grained systems?

* Do interesting phenomena emerge due to coarse-
graining?

EMORY I[lya Nemenman Siide 4

UNIVERSITY Systems Biology and Formal Methods, 3/12



Small parameter in biochemical networks

FceRI (trimer)
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354 states of different species
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Example of time scales separation:
Kinetic proofreading
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Bel, Munsky, 2009-10
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Examples of time scales separation:
Random netowkrs

end o, — relative strength of “shortcuts”
Similar to ligand dissociation

start
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Bel, Munsky, PB, JCP, 2009-10
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The simplest coarse-grainable
system with time scale separation

* A Michaelis-Menten enzyme
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e How do we coarse-grain these systems?

e Separation of relaxation time scales = different
concentration scales
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Some notes

Need to get rid of internal degrees of freedom, not simulate
them with a different protocol

Approximation needs to work at the knee of MM curve, not
only at the (easier) linear and the saturated limits

Approximation needs to work when rates change with time

Want a substantial speed-up in terms of Langevin or tau-
leaping like approach, not simulate reaction by reaction. But
nonetheless want to have arbitrary moments of reactions
approximately correct.

What are the long-time, large-current probabilities?
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Adiabaticity in the deterministic case

Slow modulation ]
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e Adiabatic approximation substrate
— Many enzyme turnovers for small (fractional) change in

[P], [S]

e How to do the same with fluctuations?
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Let’s do the algebra:
MGF approach
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A simple form: introduce counting fields
de Ronde et al, 2009
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Results: can find the coarse-grained CGF

* For large t, solving this system of linear ODEs is equivalent to finding
the largest real part eigenvalue.

* Treating y as small, can use perturbation theory; e.g., two orders give
first two cumulants. Sometimes can find S=log G completely.

* Easy to do for more complex reactions, e.g., allowing to disambiguate
some reaction schemes from mesoscopic fluctuations data.
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Fast simuluations of coarse-grained reactions

dp(L,R,N
. dt - Zki,otherp(Other) " Eki,p%otherp Chemical master equation
R — R %1 at random time ¢ Monte-Carlo 4-reaction Gillespie SSA algorithm

Large copy number

dR  kk, —k k

. 1-reaction coarse “Langevin”
+ geom + 1]

dt 2 Simulating near-Gaussian n with
(n(0)n(1)) = correct x 6(t)  [or use more cumulants] known higher cumulants is doable

Sinitsyn et al., 2009
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Generating non-Gaussian noises

* Assumptions needed when using higher order cumulants

* Gram-Charlier expansion
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* Higher order terms progressvely smaller since ¢, ~dr>1

e Importance or rejection sampling from this near-gaussian
distribution
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Examples of simulations

%) ko q(t) ATP kkl ATPase _k2H ADP > @ complex reaction s ADP

class+geom

Gaussian fit

3rd cumuiant correction 3rd and 4th cumulant corrections
P{N) P{N) P{N)
0.15 0.15 0.15
bulk 0.1 0.1 0.1
0.05 0.05 0.05
il 5 10N 15 20 0 5 10N 15 20 0 5 10 N 15 20
P{N) P(N) P{N)
0.012 0.012 0.012
right
taif 0008 0.008 0.008
0.004 0.004 0.004
21 15 7N 21 15 7N 21
0.025 0.025 0.025
P{N) P(N) P{N)
feft s 0.015 0.015
taif
0.005 0.005 0.005
L]
0 1 2N 3 4 0 1 2 N 3 4 0 1 2 N 3 4

104 speed-up compared to Gillespie
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How to deal with larger networks?
Stochastic path integral

Probability of on; particles created at node i over time
/ n2 ot is conditional aII on n;, which are also probabilistic,
P

"j

e If &tis small, each n, is almost constant over 6r.

e Overall future state probability is convolution of
\ / conditional probabilities with current state
probabilities.

e Convolution of probabilities — addition of CGFs

m 0 (integration in the limit of small n,)

* Conservation laws couple n; at different times, and
overall CGF is

S(x.T)=1logG = Jdt{zl%uNu +2H }_0( fast j

3 slow
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Cont’d

e Extra adiabaticity enforced by saddle point equations

d d |
— S(3,T)=0; —YH, =—iN, =0
0, i axu; w =

e But what to do if n~1 and small ot cannot be chosen?
— Solve for the CGF of entire pathway involving this node as for MM
before
— Small n ensures that the perturbation theory is solvable

(2)
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Concluding thoughts

e Approximate rigorous coarse-graining is possible in
adidabatic limit using MGF techniques

e Simulations in coarse-grained models are many orders of
magnitude faster

* Universal properties may emerge
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Hopes for the future
(Any takers?)

e Simulations

— Build the ability to simulate non-Poisson nearly-Langevin
variables into software packages

— Build a library of coarse-grained models of various network motifs
— Build tools to automatically coarse-grain models using the library

e Explore possible dynamics with RBMs

— What is the set of all possible dynamics that appear with high
probability in (semi-)random RBMs?
— Which rules affect dynamics on long time scales and which don’t?

— For large rule sets, how likely are the dynamics to simplify or
become universal? (see, e.g., proofreading or sloppy models)
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The g-bio conference

* Bridging together quantitative experiments, theory,
modeling

e Santa Fe, NM, Aug 8-12, 2012
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