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Hairballs aren’t unique to biology 
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Wikipedia RHIC event image!
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My prejudices 

•  Large hairballs of interaction networks are scary and hard 
to interprete 

•  Need coarse-grained models – but need rigorous 
methods to decide what matters and what doesn’t 

•  There is no reason to solve an approximate problem 
exactly 

•  Need approximate methods for coarse-graining – need to 
find small parameters with the most bang for the buck 
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Goals 

•  Is functionally equivalent coarse-graining possible on long 
temporal/spatial scales? 

•  Can we build faster simulation tools based on coarse-
grained systems? 

•  Do interesting phenomena emerge due to coarse-
graining? 
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Small parameter in biochemical networks 
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FcεRI (trimer) 
2954 states 

FcεRI (dimer) 
354 states 

EGFR 
356 states 

Time (seconds) Faeder et al.!

Relaxation time scales  
of different species 
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Example of time scales separation: 
Kinetic proofreading 
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Examples of time scales separation: 
Random netowkrs  

Slide 7 

end 

start 

α – relative strength of “shortcuts” 
Similar to ligand dissociation 

Bel, Munsky, PB, JCP, 2009-10!

c.
v 
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The simplest coarse-grainable  
system with time scale separation 

•  A Michaelis-Menten enzyme 

•  How do we coarse-grain these systems? 

•  Separation of relaxation time scales = different 
concentration scales 
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Substrate+Enzyme k1 (t )

k−1 (t )
   Substrate*Enzyme k2 (t )

k−2 (t )
   Product+Enzyme

 
L k1 (t )

k−1 (t )
   bin, pore k2 (t )

k−2 (t )
   R

 

  L Q   R
P Q|T ,


k t( )⎡⎣ ⎤⎦ = ?

Left-Right 
particle flux	

  

kµ 
d log kµ
dt
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Some notes 

•  Need to get rid of internal degrees of freedom, not simulate 
them with a different protocol 

•  Approximation needs to work at the knee of MM curve, not 
only at the (easier) linear and the saturated limits 

•  Approximation needs to work when rates change with time 

•  Want a substantial speed-up in terms of Langevin or tau-
leaping like approach, not simulate reaction by reaction. But 
nonetheless want to have arbitrary moments of reactions 
approximately correct. 

•  What are the long-time, large-current probabilities? 
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Adiabaticity in the deterministic case 

•  Adiabatic approximation 
–  Many enzyme turnovers for small (fractional) change in 

[P], [S] 

•  How to do the same with fluctuations? 
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S k1
k−1
   SE k2⎯ →⎯ P

d SE[ ]
dt

= k1 E[ ]− k−1 + k2( ) SE[ ] = 0
dP
dt

=
k1k2

k2 + k−1 + k1
= Jcl

Slow modulation	
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Let’s do the algebra: 
MGF approach 
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dPn
E

dt
= −(k1s + k−2 p)Pn

E + k−1Pn
ES + k2Pn−1

ES

dPn
ES

dt
= −(k−1 + k2 )Pn

ES + k1sPn
E + k−2 pPn+1

ES

G = GE ,GES{ } = eiχn
n
∑ Pn

E ,Pn
ES{ }

G = 1 |G = GE +GES

d G
dt

= H G =
k1 + k−2 −k−1 − k2e

iχ

−k1 − k−2e
− iχ k−1 + k2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
G

∂ logG
∂(iχ) χ=0

= J

∂2 logG
∂(iχ)2 χ=0

= σ 2

... A simple form: introduce counting fields 
de Ronde et al, 2009!
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Results: can find the coarse-grained CGF 
•  For large t, solving this system of linear ODEs is equivalent to finding 

the largest real part eigenvalue. 

•  Treating χ  as small, can use perturbation theory; e.g., two orders give 
first two cumulants. Sometimes can find S=log G completely. 

•  Easy to do for more complex reactions, e.g., allowing to disambiguate 
some reaction schemes from mesoscopic fluctuations data. 
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Fast simuluations of coarse-grained reactions 
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dp(L,R,N )
dt

= ki,  other→p p(other)
i
∑ − ki,  p→other p

i
∑ Chemical master equation	



1-reaction coarse “Langevin” dR
dt

=
k1k2 − k−1k−2

k∑
+ geom +η

η(0)η(t) = correct × δ (t)    [or use more cumulants]

Monte-Carlo 4-reaction Gillespie SSA algorithm	

R→ R ±1 at random time t

Large copy number	



Sinitsyn et al., 2009 

Simulating near-Gaussian η with 
known higher cumulants is doable  
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Generating non-Gaussian noises 

•  Assumptions needed when using higher order cumulants 

•  Gram-Charlier expansion 

•  Higher order terms progressvely smaller since  

•  Importance or rejection sampling from this near-gaussian 
distribution 
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P(J | c1,c2 ,c3,...) = N (J | c1,c2 ) 1+
c3 y3 − y( )
6c2

3/2 +
c4 y4 − 6y2 + 3( )

24c2
2 +

c3
2 y6 −15y4 + 45y2 −15( )

72c2
3 + ...

⎛

⎝
⎜

⎞

⎠
⎟

y = J − c1
c2

 cn  dt 1
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Examples of simulations 
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∅ k0 (t )

q
   ATP k1

k−1
   ATPase k2⎯ →⎯ ADP ∅ complex reaction

class+geom⎯ →⎯⎯⎯⎯ ADP

104 speed-up compared to Gillespie 
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How to deal with larger networks? 
Stochastic path integral 

•  Probability of δni particles created at node i over time 
δt is conditional all on nj, which are also probabilistic, 
Pnj

  

•  If δt is small, each ni is almost constant over δt. 

•  Overall future state probability is convolution of 
conditional probabilities with current state 
probabilities. 

•  Convolution of probabilities – addition of CGFs 
(integration in the limit of small ni) 

•  Conservation laws couple ni at different times, and 
overall CGF is 
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Pn1
Pn2

Pn3

 
S(χ,T ) = logG = dt iχµ

Nµ +
µ
∑ Hµν

µ<ν
∑⎡

⎣
⎢

⎤

⎦
⎥ +O

fast
slow

⎛
⎝⎜

⎞
⎠⎟
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Cont’d 

•  Extra adiabaticity enforced by saddle point equations 

•  But what to do if ni~1 and small δt cannot be chosen? 
–  Solve for the CGF of entire pathway involving this node as for MM 

before 
–  Small n ensures that the perturbation theory is solvable 
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∂
∂χµ

S(χ,T ) = 0;       ∂
∂χµ

Hµν
ν
∑ = −i Nµ ≈ 0
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Concluding thoughts 

•  Approximate rigorous coarse-graining is possible in 
adidabatic limit using MGF techniques 

•  Simulations in coarse-grained models are many orders of 
magnitude faster 

•  Universal properties may emerge 

Slide 18 



Ilya Nemenman 
Systems Biology and Formal Methods, 3/12 

Hopes for the future 
(Any takers?) 

•  Simulations 
–  Build the ability to simulate non-Poisson nearly-Langevin 

variables into software packages 
–  Build a library of coarse-grained models of various network motifs 
–  Build tools to automatically coarse-grain models using the library 

•  Explore possible dynamics with RBMs 
–  What is the set of all possible dynamics that appear with high 

probability in (semi-)random RBMs? 
–  Which rules affect dynamics on long time scales and which don’t? 
–  For large rule sets, how likely are the dynamics to simplify or 

become universal? (see, e.g., proofreading or sloppy models) 
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The q-bio conference 

•  Bridging together quantitative experiments, theory, 
modeling 

•  Santa Fe, NM, Aug 8-12, 2012 
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