#### **LINKLESS EMBEDDINGS OF GRAPHS IN 3-SPACE**

**Robin Thomas** 

School of Mathematics Georgia Institute of Technology www.math.gatech.edu/~thomas

joint work with N. Robertson and P. D. Seymour Graphs are finite, undirected, may have loops and multiple edges. H is a minor of G if H can be obtained from a subgraph of G by contracting edges.



## **KNOT THEORY**

All embeddings are piecewise linear

## **KNOT THEORY**

All embeddings are piecewise linear

THEOREM (Papakyriakopolous) A simple closed curve in  $\mathbb{R}^3$  is unknotted  $\Leftrightarrow$  its complement has free fundamental group.

#### LINKING NUMBER

lk(C, C') = # times C goes over C' positively - # times C goes over C' negatively

#### LINKING NUMBER

lk(C, C') = # times C goes over C' positively - # times C goes over C' negatively

An embedding of G in 3-space is linkless if lk(C, C') = 0for every two disjoint cycles C, C' of G.

#### LINKING NUMBER

lk(C, C') = # times C goes over C' positively - # times C goes over C' negatively

An embedding of G in 3-space is linkless if lk(C, C') = 0for every two disjoint cycles C, C' of G.

THEOREM (Conway and Gordon, Sachs)  $K_6$  does not have a linkless embedding.

An embedding of G in 3-space is linkless if lk(C, C') = 0for every two disjoint cycles C, C' of G.

THEOREM (Conway and Gordon, Sachs)  $K_6$  does not have a linkless embedding.

An embedding of G in 3-space is linkless if lk(C, C') = 0for every two disjoint cycles C, C' of G.

THEOREM (Conway and Gordon, Sachs)  $K_6$  does not have a linkless embedding.

PROOF Fix embedding of  $K_6$ . Consider  $\sum lk(C, C') \mod 2$ ,

sum over all unordered pairs of disjoint cycles C, C' of G.

An embedding of G in 3-space is linkless if lk(C, C') = 0for every two disjoint cycles C, C' of G.

THEOREM (Conway and Gordon, Sachs)  $K_6$  does not have a linkless embedding.

PROOF Fix embedding of  $K_6$ . Consider  $\sum lk(C, C') \mod 2$ ,

sum over all unordered pairs of disjoint cycles C, C' of G.

Does not depend on the embedding

An embedding of G in 3-space is linkless if lk(C, C') = 0for every two disjoint cycles C, C' of G.

THEOREM (Conway and Gordon, Sachs)  $K_6$  does not have a linkless embedding.

PROOF Fix embedding of  $K_6$ . Consider  $\sum lk(C, C') \mod 2$ ,

sum over all unordered pairs of disjoint cycles C, C' of G.

- Does not depend on the embedding
- $\bullet = 1$  for some embedding

The Petersen family is the set of 7 graphs that can be obtained from  $K_6$  by repeatedly applying  $Y\Delta$ - and  $\Delta Y$ -operations

The Petersen family is the set of 7 graphs that can be obtained from  $K_6$  by repeatedly applying  $Y\Delta$ - and  $\Delta Y$ -operations



An embedding of a graph G in 3-space is flat if every cycle of G bounds a disk disjoint from the rest of G.

An embedding of a graph G in 3-space is flat if every cycle of G bounds a disk disjoint from the rest of G.

#### MAIN THEOREM

THM RST A graph has a flat embedding  $\Leftrightarrow$  it has no minor isomorphic to a member of the Petersen family

An embedding of a graph G in 3-space is flat if every cycle of G bounds a disk disjoint from the rest of G.

#### MAIN THEOREM

THM RST A graph has a flat embedding  $\Leftrightarrow$  it has no minor isomorphic to a member of the Petersen family COR  $\Leftrightarrow$  it has a linkless embedding

THM (Böhme, Saran) Let G be a flatly embedded graph, let  $C_1, C_2, \ldots, C_n$  be cycles with pairwise connected intersection. Then there are disjoint open disks  $D_1, D_2, \ldots, D_n$ , disjoint from the graph and such that  $\partial D_i = C_i$ . THM (Böhme, Saran) Let G be a flatly embedded graph, let  $C_1, C_2, \ldots, C_n$  be cycles with pairwise connected intersection. Then there are disjoint open disks  $D_1, D_2, \ldots, D_n$ , disjoint from the graph and such that  $\partial D_i = C_i$ .

DEF An embedding of a graph in  $\mathbb{R}^3$  is spherical if the graph lies on a surface homeomorphic to  $S^2$ .

THM (Böhme, Saran) Let G be a flatly embedded graph, let  $C_1, C_2, \ldots, C_n$  be cycles with pairwise connected intersection. Then there are disjoint open disks  $D_1, D_2, \ldots, D_n$ , disjoint from the graph and such that  $\partial D_i = C_i$ .

DEF An embedding of a graph in  $\mathbb{R}^3$  is spherical if the graph lies on a surface homeomorphic to  $S^2$ .

**COR** Let G be planar. An embedding of G is flat  $\Leftrightarrow$  it is spherical.

THM (Scharlemann, Thompson) An embedding of a graph G is spherical  $\Leftrightarrow$ (i) G is planar, and (ii)  $\pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G

THM (Scharlemann, Thompson) An embedding of a graph G is spherical  $\Leftrightarrow$ (i) G is planar, and

(ii)  $\pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G

THM RST An embedding of a graph G is flat  $\Leftrightarrow \pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G.

THM (Scharlemann, Thompson) An embedding of a graph G is spherical  $\Leftrightarrow$ (i) G is planar, and

(ii)  $\pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G

THM RST An embedding of a graph G is flat  $\Leftrightarrow \pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G.

COR If G is embedded non-flatly then for every non-loop edge e either  $G \setminus e$  or G/e is not flat.

THM RST An embedding of a graph G is flat  $\Leftrightarrow$  $\pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G.

COR If G is embedded non-flatly then for every non-loop edge e either  $G \setminus e$  or G/e is not flat.

THM RST An embedding of a graph G is flat  $\Leftrightarrow \pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G.

COR If G is embedded non-flatly then for every non-loop edge e either  $G \setminus e$  or G/e is not flat.

PROOF

THM RST An embedding of a graph G is flat  $\Leftrightarrow$  $\pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G.

COR If G is embedded non-flatly then for every non-loop edge e either  $G \setminus e$  or G/e is not flat.

**PROOF** Let  $\pi_1(\mathbb{R}^3 - G')$  be not free.

THM RST An embedding of a graph G is flat  $\Leftrightarrow \pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G.

COR If G is embedded non-flatly then for every non-loop edge e either  $G \setminus e$  or G/e is not flat.

**PROOF** Let  $\pi_1(\mathbb{R}^3 - G')$  be not free. If  $e \notin G'$ , then  $G \setminus e$  is not flat.

THM RST An embedding of a graph G is flat  $\Leftrightarrow \pi_1(\mathbb{R}^3 - G')$  is free for every subgraph G' of G.

COR If G is embedded non-flatly then for every non-loop edge e either  $G \setminus e$  or G/e is not flat.

**PROOF** Let  $\pi_1(\mathbb{R}^3 - G')$  be not free. If  $e \notin G'$ , then  $G \setminus e$  is not flat. Otherwise G/e is not flat.

KURATOWSKI'S THEOREM A graph is planar  $\Leftrightarrow$  it has no  $K_5$  or  $K_{3,3}$  minor.

KURATOWSKI'S THEOREM A graph is planar  $\Leftrightarrow$  it has no  $K_5$  or  $K_{3,3}$  minor. WHITNEY'S THEOREM Any two planar embeddings of the same graph differ (up to ambient isotopy) by 2-switches.

KURATOWSKI'S THEOREM A graph is planar  $\Leftrightarrow$  it has no  $K_5$  or  $K_{3,3}$  minor. WHITNEY'S THEOREM Any two planar embeddings of the same graph differ (up to ambient isotopy) by 2-switches.



KURATOWSKI'S THEOREM A graph is planar  $\Leftrightarrow$  it has no  $K_5$  or  $K_{3,3}$  minor. WHITNEY'S THEOREM Any two planar embeddings of the same graph differ (up to ambient isotopy) by 2-switches.



### FACT Every planar graph has a unique flat embedding.









**COROLLARY** A graph has a unique flat embedding  $\Leftrightarrow$  it is planar.

# THEOREM Two nonisotopic flat embeddings differ on a $K_{3,3}$ or $K_5$ minor.

THEOREM Two nonisotopic flat embeddings differ on a  $K_{3,3}$  or  $K_5$  minor.

LEMMA In a 4-connected graph G, every two  $K_{3,3}$  minors "communicate".

ABOUT THE PROOF WMA G has a  $K_{3,3}$ -minor, call it H.

ABOUT THE PROOF WMA G has a  $K_{3,3}$ -minor, call it H. WMA  $\phi_1 \upharpoonright H \simeq \phi_2 \upharpoonright H$  (by replacing  $\phi_2$  by  $-\phi_2$  if necessary).

ABOUT THE PROOF WMA G has a  $K_{3,3}$ -minor, call it H. WMA  $\phi_1 \upharpoonright H \simeq \phi_2 \upharpoonright H$  (by replacing  $\phi_2$  by  $-\phi_2$  if necessary). By the Lemma,  $\phi_1 \upharpoonright H' \simeq \phi_2 \upharpoonright H'$  for every  $K_{3,3}$ -minor H.

ABOUT THE PROOF WMA G has a  $K_{3,3}$ -minor, call it H. WMA  $\phi_1 \upharpoonright H \simeq \phi_2 \upharpoonright H$  (by replacing  $\phi_2$  by  $-\phi_2$  if necessary). By the Lemma,  $\phi_1 \upharpoonright H' \simeq \phi_2 \upharpoonright H'$  for every  $K_{3,3}$ -minor H. By the previous theorem,  $\phi_1 \simeq \phi_2$ .

## **MAIN THEOREM**

*G* has no minor isomorphic to a member of the Petersen family  $\Rightarrow$  *G* has a flat embedding.

**OUTLINE OF PROOF** Take a minor-minimal counterexample, G, WMA no triangles. It can be shown G is "internally 5-connected." Take edges e = uv, f such that G/f/e, G/f e are "Kuratowski connected." Let  $\phi_1$  be a flat embedding of  $G \setminus e$ . Let  $\phi_2$  be a flat embedding of G/e. Let  $\phi_3$  be a flat embedding of G/f. WMA  $\phi_1/f \simeq \phi_3 \backslash e$  $\phi_2/f \simeq \phi_3/e$ 

It can be shown that the uncontraction of f is the same in both of these embeddings. Let  $\phi$  be obtained from  $\phi_3$ by doing this uncontraction. Then  $\phi \setminus e \simeq \phi_1$ ,  $\phi/e \simeq \phi_2$ , and so  $\phi$  is flat.

• The theorem implies an  $O(n^3)$  recognition algorithm

- The theorem implies an  $O(n^3)$  recognition algorithm
- Not known how to verify if an embedding is linkless

- The theorem implies an  $O(n^3)$  recognition algorithm
- Not known how to verify if an embedding is linkless
- Is there a certifiable structure?

- The theorem implies an  $O(n^3)$  recognition algorithm
- Not known how to verify if an embedding is linkless
- Is there a certifiable structure?
- Structure of graphs with no  $K_6$  minor?

- The theorem implies an  $O(n^3)$  recognition algorithm
- Not known how to verify if an embedding is linkless
- Is there a certifiable structure?
- Structure of graphs with no  $K_6$  minor?

JORGENSEN'S CONJECTURE Every 6-connected graph with no  $K_6$ -minor is apex (=planar + one vertex).

### **COLIN de VERDIERE'S PARAMETER**

Let  $\mu(G)$  be the maximum corank of a matrix M s.t. (i) for  $i \neq j$ ,  $M_{ij} = 0$  if  $ij \notin E$  and  $M_{ij} < 0$  otherwise, (ii) M has exactly one negative eigenvalue, (iii) if X is a symmetric  $n \times n$  matrix such that MX = 0and  $X_{ij} = 0$  whenever i = j or  $ij \in E$ , then X = 0.

## **COLIN de VERDIERE'S PARAMETER**

Let  $\mu(G)$  be the maximum corank of a matrix M s.t. (i) for  $i \neq j$ ,  $M_{ij} = 0$  if  $ij \notin E$  and  $M_{ij} < 0$  otherwise, (ii) M has exactly one negative eigenvalue, (iii) if X is a symmetric  $n \times n$  matrix such that MX = 0and  $X_{ij} = 0$  whenever i = j or  $ij \in E$ , then X = 0. THM  $\mu(G) \leq 3 \Leftrightarrow G$  is planar.

## **COLIN de VERDIERE'S PARAMETER**

Let  $\mu(G)$  be the maximum corank of a matrix M s.t. (i) for  $i \neq j$ ,  $M_{ij} = 0$  if  $ij \notin E$  and  $M_{ij} < 0$  otherwise, (ii) M has exactly one negative eigenvalue, (iii) if X is a symmetric  $n \times n$  matrix such that MX = 0and  $X_{ij} = 0$  whenever i = j or  $ij \in E$ , then X = 0. THM  $\mu(G) \leq 3 \Leftrightarrow G$  is planar.

THM Lovász, Schrijver  $\mu(G) \leq 4 \Leftrightarrow G$  has a flat embedding.

## **KNOTLESS EMBEDDINGS**

THM Conway, Gordon  $K_7$  has no knotless embedding.

THM Conway, Gordon  $K_7$  has no knotless embedding.

THM There exists an  $O(n^3)$  algorithm to test if a graph has a knotless embedding.

THM Conway, Gordon  $K_7$  has no knotless embedding.

THM There exists an  $O(n^3)$  algorithm to test if a graph has a knotless embedding.

**PROOF** Let  $L_1, L_2, \ldots$  be the minor-minimal graphs that do not have knotless embeddings.

THM Conway, Gordon  $K_7$  has no knotless embedding.

THM There exists an  $O(n^3)$  algorithm to test if a graph has a knotless embedding.

**PROOF** Let  $L_1, L_2, \ldots$  be the minor-minimal graphs that do not have knotless embeddings. By the Graph Minor Theorem of Robertson and Seymour the set is finite.

THM Conway, Gordon  $K_7$  has no knotless embedding.

THM There exists an  $O(n^3)$  algorithm to test if a graph has a knotless embedding.

**PROOF** Let  $L_1, L_2, \ldots$  be the minor-minimal graphs that do not have knotless embeddings. By the Graph Minor Theorem of Robertson and Seymour the set is finite. Whether *G* has an  $L_i$  minor can be tested in  $O(n^3)$  time by another result of Robertson and Seymour.

THM Conway, Gordon  $K_7$  has no knotless embedding.

THM There exists an  $O(n^3)$  algorithm to test if a graph has a knotless embedding.

**PROOF** Let  $L_1, L_2, \ldots$  be the minor-minimal graphs that do not have knotless embeddings. By the Graph Minor Theorem of Robertson and Seymour the set is finite. Whether G has an  $L_i$  minor can be tested in  $O(n^3)$  time by another result of Robertson and Seymour.

**NOTE** No explicit algorithm is known.