Deep Boosting

Joint work with Corinna Cortes (Google Research) Vitaly Kuznetsov (Courant Institute) Umar Syed (Google Research)

Deep Boosting Essence

Ensemble Methods in ML

- Combining several base classifiers to create a more accurate one.
- Bagging (Breiman 1996).
- AdaBoost (Freund and Schapire 1997).
- Stacking (Smyth and Wolpert 1999).
- Bayesian averaging (MacKay 1996).
- Other averaging schemes e.g., (Freund et al. 2004).
- Often very effective in practice.
- Benefit of favorable learning guarantees.

Convex Combinations

- Base classifier set H.
- boosting stumps.
- decision trees with limited depth or number of leaves.
- Ensemble combinations: convex hull of base classifier set.
$\operatorname{conv}(H)=\left\{\sum_{t=1}^{T} \alpha_{t} h_{t}: \alpha_{t} \geq 0 ; \sum_{t=1}^{T} \alpha_{t} \leq 1 ; \forall t, h_{t} \in H\right\}$.

Ensembles - Margin Bound

(Koltchinskii and Panchencko, 2002)

- Theorem: let H be a family of real-valued functions. Fix $\rho>0$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $f=\sum_{t=1}^{T} \alpha_{t} h_{t} \in \operatorname{conv}(H)$:

$$
R(f) \leq \widehat{R}_{S, \rho}(f)+\frac{2}{\rho} \Re_{m}(H)+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}},
$$

- where $\widehat{R}_{S, \rho}(f)=\frac{1}{m} \sum_{i=1}^{m} 1_{y_{i} f\left(x_{i}\right) \leq \rho}$.

Questions

- Can we use a much richer or deeper base classifier set?
- richer families needed for difficult tasks.
- but generalization bound indicates risk of overfitting.

AdaBoost

(Freund and Schapire, 1997)

- Description: coordinate descent applied to

$$
F(\boldsymbol{\alpha})=\sum_{i=1}^{m} e^{-y_{i} f\left(x_{i}\right)}=\sum_{i=1}^{m} \exp \left(-y_{i} \sum_{t=1}^{T} \alpha_{t} h_{t}\left(x_{i}\right)\right)
$$

- Guarantees: ensemble margin bound.
- but AdaBoost does not maximize the margin!
- some margin maximizing algorithms such as arc-gv are outperformed by AdaBoost! (Reyzin and Schapire, 2006)

Suspicions

- Complexity of hypotheses used:
- arc-gv tends to use deeper decision trees to achieve a larger margin.
- Notion of margin:
- minimal margin perhaps not the appropriate notion.
- margin distribution is key.
can we shed more light on these questions?

Question

- Main question: how can we design ensemble algorithms that can succeed even with very deep decision trees or other complex sets?
- theory.
- algorithms.
- experimental results.
- model selection.

Theory

Base Classifier Set H

- Decomposition in terms of sub-families or their union.

Ensemble Family

- Non-negative linear ensembles $\mathcal{F}=\operatorname{conv}\left(\cup_{k=1}^{p} H_{k}\right)$:

Ideas

- Use hypotheses drawn from $H_{k} s$ with larger $k s$ but allocate more weight to hypotheses drawn from smaller k s.
- how can we determine quantitatively the amounts of mixture weights apportioned to different families?
- can we provide learning guarantees guiding these choices?

Learning Guarantee

(Cortes, MM, and Syed, 2014)

- Theorem: Fix $\rho>0$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $f=\sum_{t=1}^{T} \alpha_{t} h_{t} \in \mathcal{F}$:

$$
R(f) \leq \widehat{R}_{S, \rho}(f)+\frac{4}{\rho} \sum_{t=1}^{T} \alpha_{t} \Re_{m}\left(H_{k_{t}}\right)+\widetilde{O}\left(\sqrt{\frac{\log p}{\rho^{2} m}}\right)
$$

Consequences

- Complexity term with explicit dependency on mixture weights.
- quantitative guide for controlling weights assigned to more complex sub-families.
- bound can be used to inspire, or directly define an ensemble algorithm.

Algorithms

Set-Up

- H_{1}, \ldots, H_{p} : disjoint sub-families of functions taking values in $[-1,+1]$.
- Further assumption (not necessary): symmetric subfamilies, i.e. $h \in H_{k} \Leftrightarrow-h \in H_{k}$.
- Notation:
- $r_{j}=\Re_{m}\left(H_{k_{j}}\right)$ with $h_{j} \in H_{k_{j}}$.

Derivation

- Learning bound suggests seeking $\boldsymbol{\alpha} \geq 0$ with $\sum_{t=1}^{T} \alpha_{t} \leq 1$ to minimize

$$
\frac{1}{m} \sum_{i=1}^{m} 1_{y_{i} \sum_{t=1}^{T} \alpha_{t} h_{t}\left(x_{i}\right) \leq \rho}+\frac{4}{\rho} \sum_{t=1}^{T} \alpha_{t} r_{t}
$$

Convex Surrogates

- Let $u \mapsto \Phi(-u)$ be a decreasing convex function upper bounding $u \mapsto 1_{u \leq 0}$, with Φ differentiable.
- Two principal choices:
- Exponential loss: $\Phi(-u)=\exp (-u)$.
- Logistic loss: $\Phi(-u)=\log _{2}(1+\exp (-u))$.

Optimization Problem

(Cortes, MM, and Syed, 2014)

- Moving the constraint to the objective and using the fact that the sub-families are symmetric leads to:

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{N}} \frac{1}{m} \sum_{i=1}^{m} \Phi\left(1-y_{i} \sum_{j=1}^{N} \alpha_{j} h_{j}\left(x_{i}\right)\right)+\sum_{t=1}^{N}\left(\lambda r_{j}+\beta\right)\left|\alpha_{j}\right|
$$

where $\lambda, \beta \geq 0$, and for each hypothesis, keep either h or $-h$.

DeepBoost Algorithm

- Coordinate descent applied to convex objective.
- non-differentiable function.
- definition of maximum coordinate descent.

Direction \& Step

- Maximum direction: definition based on the error

$$
\epsilon_{t, j}=\frac{1}{2}\left[1-\underset{i \sim \mathcal{D}_{t}}{\mathrm{E}}\left[y_{i} h_{j}\left(x_{i}\right)\right]\right],
$$

where D_{t} is the distribution over sample at iteration t.

- Step:
- closed-form expressions for exponential and logistic losses.
- general case: line search.

Pseudocode

```
\(\operatorname{DeepBoost}\left(S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right)\right)\)
    for \(i \leftarrow 1\) to \(m\) do
    \(D_{1}(i) \leftarrow \frac{1}{m}\)
    for \(t \leftarrow 1\) to \(T\) do
    for \(j \leftarrow 1\) to \(N\) do
        if \(\left(\alpha_{t-1, j} \neq 0\right)\) then
                \(d_{j} \leftarrow\left(\epsilon_{t, j}-\frac{1}{2}\right)+\operatorname{sgn}\left(\alpha_{t-1, j}\right) \frac{\Lambda_{j} m}{2 S_{t}} \quad \quad \Lambda_{j}=\lambda r_{j}+\beta\).
        elseif \(\left(\left|\epsilon_{t, j}-\frac{1}{2}\right| \leq \frac{\Lambda_{j} m}{2 S_{t}}\right)\) then
                \(d_{j} \leftarrow 0\)
        else \(d_{j} \leftarrow\left(\epsilon_{t, j}-\frac{1}{2}\right)-\operatorname{sgn}\left(\epsilon_{t, j}-\frac{1}{2}\right) \frac{\Lambda_{j} m}{2 S_{i}}\)
    \(k \leftarrow \underset{j \in[1, N]}{\operatorname{argmax}}\left|d_{j}\right|\)
    \(\epsilon_{t} \leftarrow \epsilon_{t, k}\)
    if \(\left(\left|\left(1-\epsilon_{t}\right) e^{\alpha_{t-1, k}}-\epsilon_{t} e^{-\alpha_{t-1, k}}\right| \leq \frac{\Lambda_{k} m}{S_{t}}\right)\) then
        \(\eta_{t} \leftarrow-\alpha_{t-1, k}\)
    elseif \(\left(\left(1-\epsilon_{t}\right) e^{\alpha_{t-1, k}}-\epsilon_{t} e^{-\alpha_{t-1, k}}>\frac{\Lambda_{k} m}{S_{t}}\right)\) then
        \(\eta_{t} \leftarrow \log \left[-\frac{\Lambda_{k} m}{2 \epsilon_{t} S_{t}}+\sqrt{\left.\left[\frac{\Lambda_{k} m}{2 \varepsilon_{t} S_{t}}\right]^{2}+\frac{1-\epsilon_{t}}{\epsilon_{t}}\right]}\right.\)
    else \(\eta_{t} \leftarrow \log \left[+\frac{\Lambda_{k} m}{2 \varepsilon_{t} S_{\mathrm{t}}}+\sqrt{\left.\left[\frac{\Lambda_{k} m}{2 \epsilon_{t} S_{t}}\right]^{2}+\frac{1-\epsilon_{t}}{\epsilon_{t}}\right]}\right.\)
    \(\boldsymbol{\alpha}_{t} \leftarrow \boldsymbol{\alpha}_{t-1}+\eta_{t} \mathbf{e}_{k}\)
    \(S_{t+1} \leftarrow \sum_{i=1}^{m} \Phi^{\prime}\left(1-y_{i} \sum_{j=1}^{N} \alpha_{t, j} h_{j}\left(x_{i}\right)\right)\)
    for \(i \leftarrow 1\) to \(m\) do
        \(D_{t+1}(i) \leftarrow \frac{\Phi^{\prime}\left(1-y_{i} \sum_{j=1}^{N} \alpha_{t, j} h_{j}\left(x_{i}\right)\right)}{S_{t+1}}\)
    \(f \leftarrow \sum_{j=1}^{N} \alpha_{t, j} h_{j}\)
    return \(f\)
```


Connections with Previous Work

- For $\lambda=\beta=0$, DeepBoost coincides with
- AdaBoost (Freund and Schapire 1997), run with union of subfamilies, for the exponential loss.
- additive Logistic Regression (Friedman et al., 1998), run with union of sub-families, for the logistic loss.
- For $\lambda=0$ and $\beta \neq 0$, DeepBoost coincides with
- L1-regularized AdaBoost (Raetsch, Mika, and Warmuth 2001), for the exponential loss.
- L1-regularized Logistic Regression (Duchi and Singer 2009), for the logistic loss.

Experiments

Rad. Complexity Estimates

- Benefit of data-dependent analysis:
- empirical estimates of each $\mathfrak{R}_{m}\left(H_{k}\right)$.
- example: for kernel function K_{k},

$$
\widehat{\mathfrak{R}}_{S}\left(H_{k}\right) \leq \frac{\sqrt{\operatorname{Tr}\left[\mathbf{K}_{k}\right]}}{m}
$$

- alternatively, upper bounds in terms of growth functions,

$$
\Re_{m}\left(H_{k}\right) \leq \sqrt{\frac{2 \log \Pi_{H_{k}}(m)}{m}} .
$$

Experiments (1)

- Family of base classifiers defined by boosting stumps:
- boosting stumps $H_{1}^{\text {stumps }}$ (threshold functions).
- in dimension $d, \Pi_{H_{1}^{\text {stumps }}}(m) \leq 2 m d$, thus

$$
\Re_{m}\left(H_{1}^{\text {stumps }}\right) \leq \sqrt{\frac{2 \log (2 m d)}{m}} .
$$

- decision trees of depth $2, H_{2}^{\text {stumps }}$, with the same question at the internal nodes of depth 1 .
- in dimension $d, \Pi_{H_{2}^{\text {stumps }}}(m) \leq(2 m)^{2} \frac{d(d-1)}{2}$, thus

$$
\mathfrak{R}_{m}\left(H_{2}^{\text {stumps }}\right) \leq \sqrt{\frac{2 \log \left(2 m^{2} d(d-1)\right)}{m}} .
$$

Experiments (1)

- Base classifier set: $H_{1}^{\text {stumps }} \cup H_{2}^{\text {stumps }}$.
- Data sets:
- same UCI Irvine data sets as (Breiman 1999) and (Reyzin and Schapire 2006).
- OCR data sets used by (Reyzin and Schapire 2006): ocr17, ocr49.
- MNIST data sets: ocr17-mnist, ocr49-mnist.
- Experiments with exponential loss.
- Comparison with AdaBoost and AdaBoost-L1.

Experiments - Stumps Exp Loss

(Cortes, MM, and Syed, 2014)
Table 1: Results for boosted decision stumps and the exponential loss function.

breastcancer	AdaBoost $H_{1}^{\text {stumps }}$	AdaBoost $H_{2}^{\text {stumps }}$	AdaBoost-L1	DeepBoost
Error	0.0429	0.0437	0.0408	$\mathbf{0 . 0 3 7 3}$
(std dev)	(0.0248)	(0.0214)	(0.0223)	$\mathbf{(0 . 0 2 2 5)}$
Avg tree size	1	2	1.436	1.215
Avg no. of trees	100	100	43.6	21.6

	AdaBoost $H_{1}^{\text {stumps }}$	AdaBoost $H_{2}^{\text {stumps }}$	AdaBoost-L1	DeepBoost
Ocr17	0.0085	0.008	0.0075	$\mathbf{0 . 0 0 7 0}$
Error	0.0072	0.0054	0.0068	$\mathbf{(0 . 0 0 4 8})$
Avg tree size	1	2	1.086	1.369
Avg no. of trees	100	100	37.8	36.9

Aonosphere	AdaBoost $H_{1}^{\text {stumps }}$	AdaBoost $H_{2}^{\text {stumps }}$	AdaBoost-L1	DeepBoost
Error	0.1014	0.075	0.0708	$\mathbf{0 . 0 6 3 8}$
(std dev)	(0.0414)	(0.0413)	(0.0331)	$\mathbf{(0 . 0 3 9 4)}$
Avg tree size	1	2	1.392	1.168
Avg no. of trees	100	100	39.35	17.45

ocr49	$\begin{gathered} \hline \text { AdaBoost } \\ H_{1}^{\text {stumps }} \end{gathered}$	AdaBoost $H_{2}^{\text {stumps }}$	AdaBoost-L1	DeepBoost
Error	0.0555	0.032	0.03	0.0275
(std dev)	0.0167	0.0114	0.0122	(0.0095)
Avg tree size	1	2	1.99	1.96
Avg no. of trees	100	100	99.3	96

german	AdaBoost $H_{1}^{\text {stumps }}$	AdaBoost $H_{2}^{\text {stumps }}$	AdaBoost-L1	DeepBoost
Error	0.243	0.2505	0.2455	$\mathbf{0 . 2 3 9 5}$
(std dev)	(0.0445)	(0.0487)	(0.0438)	$\mathbf{(0 . 0 4 6 2})$
Avg tree size	1	2	1.54	1.76
Avg no. of trees	100	100	54.1	76.5

ocr17-mnist	AdaBoost $H_{1}^{\text {stumps }}$	AdaBoost $H_{2}^{\text {stumps }}$	AdaBoost-L1	DeepBoost
Error	0.0056	0.0048	0.0046	$\mathbf{0 . 0 0 4 0}$
(std dev)	0.0017	0.0014	0.0013	$\mathbf{(0 . 0 0 1 4}$
Avg tree size	1	2	2	1.99
Avg no. of trees	100	100	100	100

	AdaBoost	AdaBoost		
diabetes	$H_{1}^{\text {stumps }}$	$H_{2}^{\text {stumps }}$	AdaBoost-L1	DeepBoost
Error	0.253	0.260	0.254	$\mathbf{0 . 2 5 3}$
(std dev)	(0.0330)	(0.0518)	(0.04868)	$\mathbf{(0 . 0 5 1 0)}$
Avg tree size	1	2	1.9975	1.9975
Avg no. of trees	100	100	100	100

ocr49-mnist	AdaBoost $H_{1}^{\text {stumps }}$	AdaBoost $H_{2}^{\text {stumps }}$	AdaBoost-L1	DeepBoost
Error	0.0414	0.0209	0.0200	$\mathbf{0 . 0 1 7 7}$
(std dev)	0.00539	0.00521	0.00408	$\mathbf{(0 . 0 0 4 3 8})$
Avg tree size	1	2	1.9975	1.9975
Avg no. of trees	100	100	100	100

Experiments (2)

- Family of base classifiers defined by decision trees of depth k. For trees with at most n nodes:

$$
\mathfrak{R}_{m}\left(\mathrm{~T}_{n}\right) \leq \sqrt{\frac{(4 n+2) \log _{2}(d+2) \log (m+1)}{m}} .
$$

- Base classifier set: $\cup_{k=1}^{K} H_{k}^{\text {trees }}$.
- Same data sets as with Experiments (1).
- Both exponential and logistic loss.
- Comparison with AdaBoost and AdaBoost-L1, Logistic Regression and L1-Logistic Regression.

Experiments - Trees Exp Loss

(Cortes, MM, and Syed, 2014)

breastcancer	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.0267	0.0264	$\mathbf{0 . 0 2 4 3}$
(std dev)	(0.00841)	(0.0098)	$\mathbf{(0 . 0 0 7 9 7)}$
Avg tree size	29.1	28.9	20.9
Avg no. of trees	67.1	51.7	55.9

ocr17	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.004	0.003	$\mathbf{0 . 0 0 2}$
(std dev)	(0.00316)	(0.00100)	$\mathbf{(0 . 0 0 1 0 0)}$
Avg tree size	15.0	30.4	26.0
Avg no. of trees	88.3	65.3	61.8

ionosphere	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.0661	0.0657	$\mathbf{0 . 0 5 0 1}$
(std dev)	(0.0315)	(0.0257)	$\mathbf{(0 . 0 3 1 6)}$
Avg tree size	29.8	31.4	26.1
Avg no. of trees	75.0	69.4	50.0

german	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.239	0.239	$\mathbf{0 . 2 3 4}$
(std dev)	(0.0165)	(0.0201)	$\mathbf{(0 . 0 1 4 8)}$
Avg tree size	3	7	16.0
Avg no. of trees	91.3	87.5	14.1

ocr49	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.0180	$\mathbf{0 . 0 1 7 5}$	$\mathbf{0 . 0 1 7 5}$
(std dev)	(0.00555)	(0.00357)	$\mathbf{(0 . 0 0 5 1 0)}$
Avg tree size	30.9	62.1	30.2
Avg no. of trees	92.4	89.0	83.0

ocr17-mnist	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.00471	0.00471	$\mathbf{0 . 0 0 4 0 9}$
(std dev)	(0.0022)	(0.0021)	$\mathbf{(0 . 0 0 2 1)}$
Avg tree size	15	33.4	22.1
Avg no. of trees	88.7	66.8	59.2

diabetes	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.249	0.240	$\mathbf{0 . 2 3 0}$
(std dev)	(0.0272)	(0.0313)	$\mathbf{(0 . 0 3 9 9)}$
Avg tree size	3	3	5.37
Avg no. of trees	45.2	28.0	19.0

ocr49-mnist	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.0198	0.0197	$\mathbf{0 . 0 1 8 2}$
(std dev)	(0.00500)	(0.00512)	$\mathbf{(0 . 0 0 5 5 1)}$
Avg tree size	29.9	66.3	30.1
Avg no. of trees	82.4	81.1	80.9

Experiments - Trees Log Loss

(Cortes, MM, and Syed, 2014)

breastcancer	LogReg	LogReg-L1	DeepBoost
Error	0.0351	0.0264	$\mathbf{0 . 0 2 6 4}$
(std dev)	(0.0101)	(0.0120)	$\mathbf{(0 . 0 0 8 7 6)}$
Avg tree size	15	59.9	14.0
Avg no. of trees	65.3	16.0	23.8

ocr17	LogReg	LogReg-L1	DeepBoost
Error	0.00300	0.00400	$\mathbf{0 . 0 0 2 5 0}$
(std dev)	(0.00100)	(0.00141)	$\mathbf{(0 . 0 0 0 8 6 6)}$
Avg tree size	15.0	7	22.1
Avg no. of trees	75.3	53.8	25.8

ionosphere	LogReg	LogReg-L1	DeepBoost
Error	0.074	0.060	$\mathbf{0 . 0 4 3}$
(std dev)	(0.0236)	(0.0219)	$\mathbf{(0 . 0 1 8 8)}$
Avg tree size	7	30.0	18.4
Avg no. of trees	44.7	25.3	29.5

ocr49	LogReg	LogReg-L1	DeepBoost
Error	0.0205	0.0200	$\mathbf{0 . 0 1 7 0}$
(std dev)	(0.00654)	(0.00245)	$\mathbf{(0 . 0 0 3 6 1)}$
Avg tree size	31.0	31.0	63.2
Avg no. of trees	63.5	54.0	37.0

german	LogReg	LogReg-L1	DeepBoost
Error	0.233	0.232	$\mathbf{0 . 2 2 5}$
(std dev)	(0.0114)	(0.0123)	$\mathbf{(0 . 0 1 0 3)}$
Avg tree size	7	7	14.4
Avg no. of trees	72.8	66.8	67.8

ocr17-mnist	LogReg	LogReg-L1	DeepBoost
Error	0.00422	0.00417	$\mathbf{0 . 0 0 3 9 9}$
(std dev)	(0.00191)	(0.00188)	$\mathbf{(0 . 0 0 2 1 1)}$
Avg tree size	15	15	25.9
Avg no. of trees	71.4	55.6	27.6

diabetes	LogReg	LogReg-L1	DeepBoost
Error	0.250	$\mathbf{0 . 2 4 6}$	$\mathbf{0 . 2 4 6}$
(std dev)	(0.0374)	$\mathbf{(0 . 0 3 5 6)}$	$\mathbf{(0 . 0 3 5 6)}$
Avg tree size	3	3	3
Avg no. of trees	46.0	45.5	45.5

ocr49-mnist	LogReg	LogReg-L1	DeepBoost
Error	0.0211	$\mathbf{0 . 0 2 0 1}$	$\mathbf{0 . 0 2 0 1}$
(std dev)	(0.00412)	$\mathbf{(0 . 0 0 4 3 3)}$	$\mathbf{(0 . 0 0 4 1 1)}$
Avg tree size	28.7	33.5	72.8
Avg no. of trees	79.3	61.7	41.9

Multi-Class Learning Guarantee

(Kuznetsov, MM, and Syed, 2014)

- Theorem: Fix $\rho>0$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $f=\sum_{t=1}^{T} \alpha_{t} h_{t} \in \mathcal{F}$:

$$
R(f) \leq \widehat{R}_{S, \rho}(f)+\frac{8 c}{\rho} \sum_{t=1}^{T} \alpha_{t} \Re_{m}\left(\Pi_{1}\left(H_{k_{t}}\right)\right)+\widetilde{O}\left(\sqrt{\frac{\log p}{\rho^{2} m}}\right)
$$

- with c number of classes.
\square and $\Pi_{1}\left(H_{k}\right)=\left\{x \mapsto h(x, y): y \in \mathcal{Y}, h \in H_{k}\right\}$.

Extension to Multi-Class

- Similar data-dependent learning guarantee proven for the multi-class setting.
- bound depending on mixture weights and complexity of sub-families.
- Deep Boosting algorithm for multi-class:
- similar extension taking into account the complexities of sub-families.
- several variants depending on number of classes.
- different possible loss functions for each variant.

Experiments - Multi-Class

Table 1: Empirical results for MDeepBoostSum, $\Phi=\exp$. AB stands for AdaBoost.

abalone	AB.MR	AB.MR-L1	MDeepBoost
Error	0.713	0.696	$\mathbf{0 . 6 7 7}$
(std dev)	(0.0130)	(0.0132)	(0.0092)
Avg tree size	69.8	31.5	23.8
Avg no. of trees	17.9	13.3	15.3

handwritten	AB.MR	AB.MR-L1	MDeepBoost
Error	0.016	0.011	$\mathbf{0 . 0 0 9}$
(std dev)	(0.0047)	(0.0026)	(0.0012)
Avg tree size	187.3	240.6	203.0
Avg no. of trees	34.2	21.7	24.2

letters	AB.MR	AB.MR-L1	MDeepBoost
Error	0.042	0.036	$\mathbf{0 . 0 3 2}$
(std dev)	(0.0023)	(0.0018)	(0.0016)
Avg tree size	1942.6	1903.8	1914.6
Avg no. of trees	24.2	24.4	23.3

pageblocks	AB.MR	AB.MR-L1	MDeepBoost
Error	0.020	0.017	$\mathbf{0 . 0 1 3}$
(std dev)	(0.0037)	(0.0021)	(0.0027)
Avg tree size	134.8	118.3	124.9
Avg no. of trees	8.5	14.3	6.6

pendigits	AB.MR	AB.MR-L1	MDeepBoost
Error	0.008	0.006	$\mathbf{0 . 0 0 4}$
(std dev)	(0.0015)	(0.0023)	(0.0011)
Avg tree size	272.5	283.3	259.2
Avg no. of trees	23.2	19.8	21.4

statlog	AB.MR	AB.MR-L1	MDeepBoost
Error	0.011	0.006	$\mathbf{0 . 0 0 4}$
(std dev)	(0.0059)	(0.0035)	(0.0030)
Avg tree size	74.8	79.2	61.8
Avg no. of trees	23.2	17.5	17.6

yeast	AB.MR	AB.MR-L1	MDeepBoost
Error	0.388	0.376	$\mathbf{0 . 3 5 2}$
(std dev)	(0.0392)	(0.0431)	(0.0402)
Avg tree size	100.6	111.7	71.4
Avg no. of trees	8.7	6.5	7.7

Experiments - Multi-Class

Table 1: Empirical results for MDeepBoostCompSum, comparison with multinomial logistic regression.

abalone	LogReg	LogReg-L1	MDeepBoost
Error	0.710	0.700	$\mathbf{0 . 6 8 7}$
(std dev)	(0.0170)	(0.0102)	(0.0104)
Avg tree size	162.1	156.5	28.0
Avg no. of trees	22.2	9.8	10.2

handwritten	LogReg	LogReg-L1	MDeepBoost
Error	0.016	0.012	$\mathbf{0 . 0 0 8}$
(std dev)	(0.0031)	(0.0020)	(0.0024)
Avg tree size	237.7	186.5	153.8
Avg no. of trees	32.3	32.8	35.9

letters	LogReg	LogReg-L1	MDeepBoost
Error	0.043	0.038	$\mathbf{0 . 0 3 5}$
(std dev)	(0.0018)	(0.0012)	(0.0012)
Avg tree size	1986.5	1759.5	1807.3
Avg no. of trees	25.5	29.0	27.2

pageblocks	LogReg	LogReg-L1	MDeepBoost
Error	0.019	0.016	$\mathbf{0 . 0 1 2}$
(std dev)	(0.0035)	(0.0025)	(0.0022)
Avg tree size	127.4	151.7	147.9
Avg no. of trees	4.5	6.8	7.4

pendigits	LogReg	LogReg-L1	MDeepBoost
Error	0.009	0.007	$\mathbf{0 . 0 0 5}$
(std dev)	(0.0021)	(0.0014)	(0.0012)
Avg tree size	306.3	277.1	262.7
Avg no. of trees	21.9	20.8	19.7

satimage	LogReg	LogReg-L1	MDeepBoost
Error	0.091	0.082	$\mathbf{0 . 0 7 4}$
(std dev)	(0.0066)	(0.0057)	(0.0056)
Avg tree size	412.6	454.6	439.6
Avg no. of trees	6.0	5.8	5.8

statlog	LogReg	LogReg-L1	MDeepBoost
Error	0.012	0.006	$\mathbf{0 . 0 0 2}$
(std dev)	(0.0054)	(0.0020)	(0.0022)
Avg tree size	74.3	71.6	65.4
Avg no. of trees	22.3	20.6	17.5

yeast	LogReg	LogReg-L1	MDeepBoost
Error	0.381	0.375	$\mathbf{0 . 3 5 4}$
(std dev)	(0.0467)	(0.0458)	(0.0468)
Avg tree size	103.9	83.3	117.2
Avg no. of trees	14.1	9.3	9.3

Other Related Algorithms

- Structural Maxent models (Cortes, Kuznetsov, MM, and Syed, ICML 2015): feature functions chosen from a union of very complex families.
- Deep Cascades (DeSalvo, MM, and Syed, ALT 2015): cascade of predictors with leaf predictors and node questions selected from very rich families.

Model Selection

Model Selection

- Problem: how to select hypothesis set H ?
- H too complex, no gen. bound, overfitting.
- H too simple, gen. bound, but underfitting.
\rightarrow balance between estimation and approx. errors.

Structural Risk Minimization

- SRM: $H=\bigcup_{k=1}^{\infty} H_{k}$ with $H_{1} \subset H_{2} \subset \cdots \subset H_{k} \subset \ldots$
- solution: $f^{*}=\operatorname{argmin} \widehat{R}_{S}(h)+\operatorname{pen}(k, m)$.

Voted Risk Minimization

- Ideas:
- no selection of specific H_{k}.
- instead, use all $H_{k} \mathrm{~s}: h=\sum_{k=1}^{p} \alpha_{k} h_{k}, h_{k} \in H_{k}, \boldsymbol{\alpha} \in \Delta$.
- hypothesis-dependent penalty:

$$
\sum_{k=1}^{p} \alpha_{k} \Re_{m}\left(H_{k}\right)
$$

\rightarrow Deep ensembles.

Conclusion

- Deep Boosting: ensemble learning with increasingly complex families.
- data-dependent theoretical analysis.
- algorithm based on learning bound.
- extension to multi-class.
- ranking and other losses.
- enhancement of many existing algorithms.
- compares favorably to AdaBoost and Logistic Regression or their L1-regularized variants in experiments.

