Deep Boosting

Joint work with Corinna Cortes (Google Research) Vitaly Kuznetsov (Courant Institute) Umar Syed (Google Research)

COURANT INSTITUTE & GOOGLE RESEARCH

Deep Boosting Essence

Ensemble Methods in ML

- Combining several base classifiers to create a more accurate one.
 - Bagging (Breiman 1996).
 - AdaBoost (Freund and Schapire 1997).
 - Stacking (Smyth and Wolpert 1999).
 - Bayesian averaging (MacKay 1996).
 - Other averaging schemes e.g., (Freund et al. 2004).
- Often very effective in practice.
- Benefit of favorable learning guarantees.

Convex Combinations

- Base classifier set *H*.
 - boosting stumps.
 - decision trees with limited depth or number of leaves.
- Ensemble combinations: convex hull of base classifier set. $\operatorname{conv}(H) = \left\{ \sum_{t=1}^{T} \alpha_t h_t \colon \alpha_t \ge 0; \sum_{t=1}^{T} \alpha_t \le 1; \forall t, h_t \in H \right\}.$

Ensembles - Margin Bound

(Koltchinskii and Panchencko, 2002)

Theorem: let H be a family of real-valued functions. Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $f = \sum_{t=1}^{T} \alpha_t h_t \in \operatorname{conv}(H)$:

$$R(f) \le \widehat{R}_{S,\rho}(f) + \frac{2}{\rho} \Re_m(H) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

• where
$$\widehat{R}_{S,\rho}(f) = \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{y_i f(x_i) \le \rho}$$
.

- Can we use a much richer or deeper base classifier set?
 - richer families needed for difficult tasks.
 - but generalization bound indicates risk of overfitting.

AdaBoost

(Freund and Schapire, 1997)

Description: coordinate descent applied to

$$F(\alpha) = \sum_{i=1}^{m} e^{-y_i f(x_i)} = \sum_{i=1}^{m} \exp\left(-y_i \sum_{t=1}^{T} \alpha_t h_t(x_i)\right).$$

- Guarantees: ensemble margin bound.
 - but AdaBoost does not maximize the margin!
 - some margin maximizing algorithms such as arc-gv are outperformed by AdaBoost! (Reyzin and Schapire, 2006)

Suspicions

- Complexity of hypotheses used:
 - arc-gv tends to use deeper decision trees to achieve a larger margin.
- Notion of margin:
 - minimal margin perhaps not the appropriate notion.
 - margin distribution is key.

can we shed more light on these questions?

- Main question: how can we design ensemble algorithms that can succeed even with very deep decision trees or other complex sets?
 - theory.
 - algorithms.
 - experimental results.
 - model selection.

Base Classifier Set H

Decomposition in terms of sub-families or their union.

Ensemble Family

Non-negative linear ensembles $\mathcal{F} = \operatorname{conv}(\cup_{k=1}^{p} H_k)$:

Ideas

- Use hypotheses drawn from H_k s with larger ks but allocate more weight to hypotheses drawn from smaller ks.
 - how can we determine quantitatively the amounts of mixture weights apportioned to different families?
 - can we provide learning guarantees guiding these choices?

Learning Guarantee

(Cortes, MM, and Syed, 2014)

Theorem: Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $f = \sum_{t=1}^{T} \alpha_t h_t \in \mathcal{F}$:

$$R(f) \le \widehat{R}_{S,\rho}(f) + \frac{4}{\rho} \sum_{t=1}^{T} \alpha_t \Re_m(H_{k_t}) + \widetilde{O}\left(\sqrt{\frac{\log p}{\rho^2 m}}\right)$$

Consequences

- Complexity term with explicit dependency on mixture weights.
 - quantitative guide for controlling weights assigned to more complex sub-families.
 - bound can be used to inspire, or directly define an ensemble algorithm.

Algorithms

Set-Up

- H_1, \ldots, H_p : disjoint sub-families of functions taking values in [-1, +1].
- Further assumption (not necessary): symmetric subfamilies, i.e. $h \in H_k \Leftrightarrow -h \in H_k$.
- Notation:

•
$$r_j = \mathfrak{R}_m(H_{k_j})$$
 with $h_j \in H_{k_j}$.

Derivation

Learning bound suggests seeking $\alpha \ge 0$ with $\sum_{t=1}^{T} \alpha_t \le 1$ to minimize

$$\frac{1}{m} \sum_{i=1}^{m} 1_{y_i \sum_{t=1}^{T} \alpha_t h_t(x_i) \le \rho} + \frac{4}{\rho} \sum_{t=1}^{T} \alpha_t r_t.$$

Convex Surrogates

- Let $u \mapsto \Phi(-u)$ be a decreasing convex function upper bounding $u \mapsto 1_{u \leq 0}$, with Φ differentiable.
- Two principal choices:
 - Exponential loss: $\Phi(-u) = \exp(-u)$.
 - Logistic loss: $\Phi(-u) = \log_2(1 + \exp(-u))$.

Optimization Problem (Cortes, MM, and Syed, 2014)

Moving the constraint to the objective and using the fact that the sub-families are symmetric leads to:

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^N}\frac{1}{m}\sum_{i=1}^m \Phi\left(1-y_i\sum_{j=1}^N\alpha_jh_j(x_i)\right) + \sum_{t=1}^N(\lambda r_j + \beta)|\alpha_j|,$$

where $\lambda, \beta \geq 0$, and for each hypothesis, keep either *h* or *-h*.

DeepBoost Algorithm

- Coordinate descent applied to convex objective.
 - non-differentiable function.
 - definition of maximum coordinate descent.

Direction & Step

Maximum direction: definition based on the error

$$\epsilon_{t,j} = \frac{1}{2} \Big[1 - \mathop{\mathrm{E}}_{i \sim \mathcal{D}_t} [y_i h_j(x_i)] \Big],$$

where D_t is the distribution over sample at iteration t.

- Step:
 - closed-form expressions for exponential and logistic losses.
 - general case: line search.

Pseudocode

 $DEEPBOOST(S = ((x_1, y_1), ..., (x_m, y_m)))$ for $i \leftarrow 1$ to m do 1 $D_1(i) \leftarrow \frac{1}{m}$ 2 for $t \leftarrow 1$ to T do 3 for $j \leftarrow 1$ to N do 4 5 if $(\alpha_{t-1,j} \neq 0)$ then $d_j \leftarrow \left(\epsilon_{t,j} - \frac{1}{2}\right) + \operatorname{sgn}(\alpha_{t-1,j}) \frac{\Lambda_j m}{2S_t}$ 6 $\Lambda_i = \lambda r_i + \beta.$ elseif $\left(\left|\epsilon_{t,j} - \frac{1}{2}\right| \le \frac{\Lambda_j m}{2S_j}\right)$ then 7 8 $d_i \leftarrow 0$ else $d_j \leftarrow (\epsilon_{t,j} - \frac{1}{2}) - \operatorname{sgn}(\epsilon_{t,j} - \frac{1}{2}) \frac{\Lambda_j m}{2S_t}$ 9 $k \leftarrow \operatorname{argmax} |d_i|$ 10 $i \in [1,N]$ 11 $\epsilon_t \leftarrow \epsilon_{t,k}$ if $\left(|(1 - \epsilon_t)e^{\alpha_{t-1,k}} - \epsilon_t e^{-\alpha_{t-1,k}} | \leq \frac{\Lambda_k m}{S_t} \right)$ then 12 13 $\eta_t \leftarrow -\alpha_{t-1,k}$ elseif $((1-\epsilon_t)e^{\alpha_{t-1,k}}-\epsilon_t e^{-\alpha_{t-1,k}} > \frac{\Lambda_k m}{S_t})$ then 14 $\eta_t \leftarrow \log \left[-\frac{\Lambda_k m}{2\epsilon_t S_t} + \sqrt{\left[\frac{\Lambda_k m}{2\epsilon_t S_t} \right]^2 + \frac{1-\epsilon_t}{\epsilon_t}} \right]$ 15 else $\eta_t \leftarrow \log \left[+ \frac{\Lambda_k m}{2\epsilon_t S_t} + \sqrt{\left[\frac{\Lambda_k m}{2\epsilon_t S_t}\right]^2 + \frac{1-\epsilon_t}{\epsilon_t}} \right]$ 16 17 $\alpha_t \leftarrow \alpha_{t-1} + \eta_t \mathbf{e}_k$ $S_{t+1} \leftarrow \sum_{i=1}^{m} \Phi' \left(1 - y_i \sum_{j=1}^{N} \alpha_{t,j} h_j(x_i) \right)$ 18 19 for $i \leftarrow 1$ to m do $D_{t+1}(i) \leftarrow \frac{\Phi'\left(1-y_i \sum_{j=1}^N \alpha_{t,j} h_j(x_i)\right)}{S_{t+1}}$ 20 $f \leftarrow \sum_{j=1}^{N} \alpha_{t,j} h_j$ 21 22 return f

Connections with Previous Work

- For $\lambda = \beta = 0$, DeepBoost coincides with
 - AdaBoost (Freund and Schapire 1997), run with union of subfamilies, for the exponential loss.
 - additive Logistic Regression (Friedman et al., 1998), run with union of sub-families, for the logistic loss.
- For $\lambda = 0$ and $\beta \neq 0$, DeepBoost coincides with
 - L1-regularized AdaBoost (Raetsch, Mika, and Warmuth 2001), for the exponential loss.
 - L1-regularized Logistic Regression (Duchi and Singer 2009), for the logistic loss.

Experiments

Rad. Complexity Estimates

Benefit of data-dependent analysis:

- empirical estimates of each $\mathfrak{R}_m(H_k)$.
- example: for kernel function K_k ,

$$\widehat{\mathfrak{R}}_{S}(H_{k}) \leq \frac{\sqrt{\operatorname{Tr}[\mathbf{K}_{k}]}}{m}$$

alternatively, upper bounds in terms of growth functions,

$$\Re_m(H_k) \le \sqrt{\frac{2\log \Pi_{H_k}(m)}{m}}$$

Experiments (1)

Family of base classifiers defined by boosting stumps:

- boosting stumps H_1^{stumps} (threshold functions).
 - in dimension d , $\Pi_{H_1^{\mathrm{stumps}}}(m) \leq 2md$, thus

$$\Re_m(H_1^{\text{stumps}}) \le \sqrt{\frac{2\log(2md)}{m}}.$$

- decision trees of depth 2, $H_2^{\rm stumps}$, with the same question at the internal nodes of depth 1.
 - in dimension d , $\Pi_{H_2^{\rm stumps}}(m) \leq (2m)^2 \frac{d(d-1)}{2}$, thus

$$\mathfrak{R}_m(H_2^{\text{stumps}}) \le \sqrt{\frac{2\log(2m^2d(d-1))}{m}}$$

Experiments (1)

- Base classifier set: $H_1^{\text{stumps}} \cup H_2^{\text{stumps}}$.
- Data sets:
 - same UCI Irvine data sets as (Breiman 1999) and (Reyzin and Schapire 2006).
 - OCR data sets used by (Reyzin and Schapire 2006): ocr17, ocr49.
 - MNIST data sets: ocr17-mnist, ocr49-mnist.
- Experiments with exponential loss.
- Comparison with AdaBoost and AdaBoost-L1.

Experiments - Stumps Exp Loss

(Cortes, MM, and Syed, 2014)

2

100

1

100

2

100

Table 1: Results for boosted decision stumps and the exponential loss function.

1.54

54.1

2

100

1

100

	AdaBoost	AdaBoost					AdaBoost	AdaBoost		
breastcancer	H_1^{stumps}	H_2^{stumps}	AdaBoost-L1	DeepBoost		ocr17	H_1^{stumps}	H_2^{stumps}	AdaBoost-L1	DeepBoost
Error	0.0429	0.0437	0.0408	0.0373	1	Error	0.0085	0.008	0.0075	0.0070
(std dev)	(0.0248)	(0.0214)	(0.0223)	(0.0225)		(std dev)	0.0072	0.0054	0.0068	(0.0048)
Avg tree size	1	2	1.436	1.215		Avg tree size	1	2	1.086	1.369
Avg no. of trees	100	100	43.6	21.6		Avg no. of trees	100	100	37.8	36.9
			1	•			•		1	
	AdaBoost	AdaBoost]		AdaBoost	AdaBoost		
ionosphere	H_1^{stumps}	$H_2^{ m stumps}$	AdaBoost-L1	DeepBoost		ocr49	H_1^{stumps}	$H_2^{ m stumps}$	AdaBoost-L1	DeepBoost
Error	0.1014	0.075	0.0708	0.0638		Error	0.0555	0.032	0.03	0.0275
(std dev)	(0.0414)	(0.0413)	(0.0331)	(0.0394)		(std dev)	0.0167	0.0114	0.0122	(0.0095)
Avg tree size	1	2	1.392	1.168		Avg tree size	1	2	1.99	1.96
Avg no. of trees	100	100	39.35	17.45		Avg no. of trees	100	100	99.3	96
				•	<u>,</u>		•	•	•	
	AdaBoost	AdaBoost					AdaBoost	AdaBoost		
german	H_1^{stumps}	$H_2^{ m stumps}$	AdaBoost-L1	DeepBoost		ocr17-mnist	H_1^{stumps}	$H_2^{ m stumps}$	AdaBoost-L1	DeepBoost
Error	0.243	0.2505	0.2455	0.2395	1	Error	0.0056	0.0048	0.0046	0.0040
(std dev)	(0.0445)	(0.0487)	(0.0438)	(0.0462)		(std dev)	0.0017	0.0014	0.0013	(0.0014)

diabetes	$\begin{array}{c} \text{AdaBoost} \\ H_1^{\text{stumps}} \end{array}$	$\begin{array}{c} \text{AdaBoost} \\ H_2^{\text{stumps}} \end{array}$	AdaBoost-L1	DeepBoost	ocr49-mnist	$\begin{array}{c} \text{AdaBoost} \\ H_1^{\text{stumps}} \end{array}$	$\begin{array}{c} \text{AdaBoost} \\ H_2^{\text{stumps}} \end{array}$	AdaBoost-L1	DeepBoost
Error	0.253	0.260	0.254	0.253	Error	0.0414	0.0209	0.0200	0.0177
(std dev)	(0.0330)	(0.0518)	(0.04868)	(0.0510)	(std dev)	0.00539	0.00521	0.00408	(0.00438)
Avg tree size	1	2	1.9975	1.9975	Avg tree size	1	2	1.9975	1.9975
Avg no. of trees	100	100	100	100	Avg no. of trees	100	100	100	100

Avg tree size

Avg no. of trees

1.76

76.5

Avg tree size

Avg no. of trees

1.99

100

Experiments (2)

Family of base classifiers defined by decision trees of depth k. For trees with at most n nodes:

$$\Re_m(\mathsf{T}_n) \le \sqrt{\frac{(4n+2)\log_2(d+2)\log(m+1)}{m}}.$$

- Base classifier set: $\cup_{k=1}^{K} H_k^{\text{trees}}$.
- Same data sets as with Experiments (1).
- Both exponential and logistic loss.
- Comparison with AdaBoost and AdaBoost-L1, Logistic Regression and L1-Logistic Regression.

Experiments - Trees Exp Loss

(Cortes, MM, and Syed, 2014)

DeepBoost

0.002

(0.00100)

26.0

61.8

AdaBoost-L1

0.003

(0.00100)

30.4

65.3

	·	·		
breastcancer	AdaBoost	AdaBoost-L1	DeepBoost	ocr17
Error	0.0267	0.0264	0.0243	Error
(std dev)	(0.00841)	(0.0098)	(0.00797)	(std dev)
Avg tree size	29.1	28.9	20.9	Avg tree size
Avg no. of trees	67.1	51.7	55.9	Avg no. of trees

ionosphere	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.0661	0.0657	0.0501
(std dev)	(0.0315)	(0.0257)	(0.0316)
Avg tree size	29.8	31.4	26.1
Avg no. of trees	75.0	69.4	50.0

ocr49	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.0180	0.0175	0.0175
(std dev)	(0.00555)	(0.00357)	(0.00510)
Avg tree size	30.9	62.1	30.2
Avg no. of trees	92.4	89.0	83.0

AdaBoost

0.004

(0.00316)

15.0

88.3

german	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.239	0.239	0.234
(std dev)	(0.0165)	(0.0201)	(0.0148)
Avg tree size	3	7	16.0
Avg no. of trees	91.3	87.5	14.1

ocr17-mnist	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.00471	0.00471	0.00409
(std dev)	(0.0022)	(0.0021)	(0.0021)
Avg tree size	15	33.4	22.1
Avg no. of trees	88.7	66.8	59.2

diabetes	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.249	0.240	0.230
(std dev)	(0.0272)	(0.0313)	(0.0399)
Avg tree size	3	3	5.37
Avg no. of trees	45.2	28.0	19.0

ocr49-mnist	AdaBoost	AdaBoost-L1	DeepBoost
Error	0.0198	0.0197	0.0182
(std dev)	(0.00500)	(0.00512)	(0.00551)
Avg tree size	29.9	66.3	30.1
Avg no. of trees	82.4	81.1	80.9

Experiments - Trees Log Loss

(Cortes, MM, and Syed, 2014)

breastcancer	LogReg	LogReg-L1	DeepBoost	ocr17	LogReg	LogReg-L1	DeepBoost
Error	0.0351	0.0264	0.0264	Error	0.00300	0.00400	0.00250
(std dev)	(0.0101)	(0.0120)	(0.00876)	(std dev)	(0.00100)	(0.00141)	(0.000866)
Avg tree size	15	59.9	14.0	Avg tree size	15.0	7	22.1
Avg no. of trees	65.3	16.0	23.8	Avg no. of trees	75.3	53.8	25.8
	•						
ionosphere	LogReg	LogReg-L1	DeepBoost	ocr49	LogReg	LogReg-L1	DeepBoost
Error	0.074	0.060	0.043	Error	0.0205	0.0200	0.0170
(std dev)	(0.0236)	(0.0219)	(0.0188)	(std dev)	(0.00654)	(0.00245)	(0.00361)
Avg tree size	7	30.0	18.4	Avg tree size	31.0	31.0	63.2
Avg no. of trees	44.7	25.3	29.5	Avg no. of trees	63.5	54.0	37.0
german	LogReg	LogReg-L1	DeepBoost	ocr17-mnist	LogReg	LogReg-L1	DeepBoost
Error	0.233	0.232	0.225	Error	0.00422	0.00417	0.00399
(std dev)	(0.0114)	(0.0123)	(0.0103)	(std dev)	(0.00191)	(0.00188)	(0.00211)
Avg tree size	7	7	14.4	Avg tree size	15	15	25.9
Avg no. of trees	72.8	66.8	67.8	Avg no. of trees	71.4	55.6	27.6
diabetes	LogReg	LogReg-L1	DeepBoost	ocr49-mnist	LogReg	LogReg-L1	DeepBoost
Error	0.250	0 246	0 246	Error	0.0211	0.0201	0.0201

diabetes	LogReg	LogReg-L1	DeepBoost
Error	0.250	0.246	0.246
(std dev)	(0.0374)	(0.0356)	(0.0356)
Avg tree size	3	3	3
Avg no. of trees	46.0	45.5	45.5

ocr49-mnist	LogReg	LogReg-L1	DeepBoost
Error	0.0211	0.0201	0.0201
(std dev)	(0.00412)	(0.00433)	(0.00411)
Avg tree size	28.7	33.5	72.8
Avg no. of trees	79.3	61.7	41.9

Multi-Class Learning Guarantee

(Kuznetsov, MM, and Syed, 2014)

Theorem: Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $f = \sum_{t=1}^{T} \alpha_t h_t \in \mathcal{F}$:

$$R(f) \le \widehat{R}_{S,\rho}(f) + \frac{8c}{\rho} \sum_{t=1}^{T} \alpha_t \Re_m(\Pi_1(H_{k_t})) + \widetilde{O}\left(\sqrt{\frac{\log p}{\rho^2 m}}\right)$$

with c number of classes.

• and
$$\Pi_1(H_k) = \{x \mapsto h(x,y) \colon y \in \mathcal{Y}, h \in H_k\}.$$

Extension to Multi-Class

- Similar data-dependent learning guarantee proven for the multi-class setting.
 - bound depending on mixture weights and complexity of sub-families.
- Deep Boosting algorithm for multi-class:
 - similar extension taking into account the complexities of sub-families.
 - several variants depending on number of classes.
 - different possible loss functions for each variant.

Experiments - Multi-Class

Table 1: Empirical results for MDeepBoostSum, $\Phi = \exp$. AB stands for AdaBoost.

abalone	AB.MR	AB.MR-L1	MDeepBoost	handwritten	AB.MR	AB.MR-L1	MDeepBoost
Error	0.713	0.696	0.677	Error	0.016	0.011	0.009
(std dev)	(0.0130)	(0.0132)	(0.0092)	(std dev)	(0.0047)	(0.0026)	(0.0012)
Avg tree size	69.8	31.5	23.8	Avg tree size	187.3	240.6	203.0
Avg no. of trees	17.9	13.3	15.3	Avg no. of trees	34.2	21.7	24.2
	·						
letters	AB.MR	AB.MR-L1	MDeepBoost	pageblocks	AB.MR	AB.MR-L1	MDeepBoost
Error	0.042	0.036	0.032	Error	0.020	0.017	0.013
(std dev)	(0.0023)	(0.0018)	(0.0016)	(std dev)	(0.0037)	(0.0021)	(0.0027)
Avg tree size	1942.6	1903.8	1914.6	Avg tree size	134.8	118.3	124.9
Avg no. of trees	24.2	24.4	23.3	Avg no. of trees	8.5	14.3	6.6
	-					-	
pendigits	AB.MR	AB.MR-L1	MDeepBoost	satimage	AB.MR	AB.MR-L1	MDeepBoost
Error	0.008	0.006	0.004	Error	0.089	0.081	0.073
(std dev)	(0.0015)	(0.0023)	(0.0011)	(std dev)	(0.0062)	(0.0040)	(0.0045)
Avg tree size	272.5	283.3	259.2	Avg tree size	557.9	478.8	535.6
Avg no. of trees	23.2	19.8	21.4	Avg no. of trees	7.6	7.3	7.6
statlog	AB.MR	AB.MR-L1	MDeepBoost	yeast	AB.MR	AB.MR-L1	MDeepBoost
Error	0.011	0.006	0.004	Error	0.388	0.376	0.352
(std dev)	(0.0059)	(0.0035)	(0.0030)	(std dev)	(0.0392)	(0.0431)	(0.0402)
Avg tree size	74.8	79.2	61.8	Avg tree size	100.6	111.7	71.4
Avg no. of trees	23.2	17.5	17.6	Avg no. of trees	8.7	6.5	7.7

Experiments - Multi-Class

Table 1: Empirical results for MDeepBoostCompSum, comparison with multinomial logistic regression.

abalone	m LogReg	LogReg-L1	MDeepBoost		handwritten	m LogReg	LogReg-L1	MDeepBoost
Error	0.710	0.700	0.687	ĺ	Error	0.016	0.012	0.008
(std dev)	(0.0170)	(0.0102)	(0.0104)		(std dev)	(0.0031)	(0.0020)	(0.0024)
Avg tree size	162.1	156.5	28.0		Avg tree size	237.7	186.5	153.8
Avg no. of trees	22.2	9.8	10.2		Avg no. of trees	32.3	32.8	35.9
				,				
letters	m LogReg	LogReg-L1	MDeepBoost		pageblocks	m LogReg	LogReg-L1	MDeepBoost
Error	0.043	0.038	0.035		Error	0.019	0.016	0.012
(std dev)	(0.0018)	(0.0012)	(0.0012)		(std dev)	(0.0035)	(0.0025)	(0.0022)
Avg tree size	1986.5	1759.5	1807.3		Avg tree size	127.4	151.7	147.9
Avg no. of trees	25.5	29.0	27.2		Avg no. of trees	4.5	6.8	7.4
pendigits	m LogReg	LogReg-L1	MDeepBoost		satimage	m LogReg	LogReg-L1	MDeepBoost
Error	0.009	0.007	0.005		Error	0.091	0.082	0.074
(std dev)	(0.0021)	(0.0014)	(0.0012)		(std dev)	(0.0066)	(0.0057)	(0.0056)
Avg tree size	306.3	277.1	262.7		Avg tree size	412.6	454.6	439.6
Avg no. of trees	21.9	20.8	19.7		Avg no. of trees	6.0	5.8	5.8
statlog	m LogReg	LogReg-L1	MDeepBoost		yeast	m LogReg	LogReg-L1	MDeepBoost
Error	0.012	0.006	0.002		Error	0.381	0.375	0.354
(std dev)	(0.0054)	(0.0020)	(0.0022)		(std dev)	(0.0467)	(0.0458)	(0.0468)
Avg tree size	74.3	71.6	65.4		Avg tree size	103.9	83.3	117.2
Avg no. of trees	22.3	20.6	17.5		Avg no. of trees	14.1	9.3	9.3

Other Related Algorithms

- Structural Maxent models (Cortes, Kuznetsov, MM, and Syed, ICML 2015): feature functions chosen from a union of very complex families.
- Deep Cascades (DeSalvo, MM, and Syed, ALT 2015): cascade of predictors with leaf predictors and node questions selected from very rich families.

Model Selection

Model Selection

- Problem: how to select hypothesis set H?
 - *H* too complex, no gen. bound, overfitting.
 - H too simple, gen. bound, but underfitting.

balance between estimation and approx. errors.

complexity

Voted Risk Minimization

Ideas:

- no selection of specific H_k .
- instead, use all H_k s: $h = \sum_{k=1}^p \alpha_k h_k$, $h_k \in H_k$, $\boldsymbol{\alpha} \in \Delta$.
- hypothesis-dependent penalty:

$$\sum_{k=1}^{p} \alpha_k \Re_m(H_k).$$

Conclusion

- Deep Boosting: ensemble learning with increasingly complex families.
 - data-dependent theoretical analysis.
 - algorithm based on learning bound.
 - extension to multi-class.
 - ranking and other losses.
 - enhancement of many existing algorithms.
 - compares favorably to AdaBoost and Logistic Regression or their L1-regularized variants in experiments.