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Abstract

We propose a new method for clustering based on finding maximum mar-
gin hyperplanes through data. By reformulating the problem in terms
of the implied equivalence relation matrix, we can pose the problem as
a convex integer program. Although this still yields a difficult com-
putational problem, the hard-clustering constraints can be relaxed to a
soft-clustering formulation which can be feasibly solved with a semidef-
inite program. Since our clustering technique only depends on the data
through the kernel matrix, we can easily achieve nonlinear clusterings in
the same manner as spectral clustering. Experimental results show that
our maximum margin clustering technique often obtains more accurate
results than conventional clustering methods. The real benefit of our ap-
proach, however, is that it leads naturally to a semi-supervised training
method for support vector machines. By maximizing the margin simul-
taneously on labeled and unlabeled training data, we achieve state of the
art performance by using a single, integrated learning principle.

1 Introduction

Clustering is one of the oldest forms of machine learning. Nevertheless, it has received a
significant amount of renewed attention with the advent of nonlinear clustering methods
based on kernels. Kernel based clustering methods continue to have a significant impact on
recent work in machine learning [14, 13], computer vision [16], and bioinformatics [9].

Although many variations of kernel based clustering has been proposed in the literature,
most of these techniques share a common “spectral clustering” framework that follows a
generic recipe: one first builds the kernel (“affinity”) matrix, normalizes the kernel, per-
forms dimensionality reduction, and finally clusters (partitions) the data based on the re-
sulting representation [17].

In this paper, our primary focus will be on the final partitioning step where the actual
clustering occurs. Once the data has been preprocessed and a kernel matrix has been con-
structed (and its rank possibly reduced), many variants have been suggested in the literature
for determining the final partitioning of the data. The predominant strategies include using
k-means clustering [14], minimizing various forms of graph cut cost [13] (relaxations of
which amount to clustering based on eigenvectors [17]), and finding strongly connected
components in a Markov chain defined by the normalized kernel [4]. Some other recent
alternatives are correlation clustering [12] and support vector clustering [1].

What we believe is missing from this previous work however, is a simple connection to



other types of machine learning, such as semisupervised and supervised learning. In fact,
one of our motivations is to seek unifying machine learning principles that can be used
to combine different types of learning problems in a common framework. For example, a
useful goal for any clustering technique would be to find a way to integrate it seamlessly
with a supervised learning technique, to obtain a principled form of semisupervised learn-
ing. A good example of this is [18], which proposes a general random field model based
on a given kernel matrix. They then find a soft cluster assignment on unlabeled data that
minimizes a joint loss with observed labels on supervised training data. Unfortunately, this
technique actually requires labeled data to cluster the unlabeled data. Nevertheless, it is a
useful approach.

Our goal in this paper is to investigate another standard machine learning principle—
maximum margin classification—and modify it for clustering, with the goal of achieving a
simple, unified way of solving a variety of problems, including clustering and semisuper-
vised learning.

Although one might be skeptical that clustering based on large margin discriminants can
perform well, we will see below that, combined with kernels, this strategy can often be
more effective than conventional spectral clustering. Perhaps more significantly, it also im-
mediately suggests a simple semisupervised training technique for support vector machines
(SVMs) that appears to improve the state of the art.

The remainder of this paper is organized as follows. After establishing the preliminary
ideas and notation in Section 2, we tackle the problem of computing a maximum margin
clustering for a given kernel matrix in Section 3. Although it is not obvious that this prob-
lem can be solved efficiently, we show that the optimal clustering problem can in fact be
formulated as a convex integer program. We then propose a relaxation of this problem
which yields a semidefinite program that can be used to efficiently compute a soft cluster-
ing. Section 4 gives our experimental results for clustering. Then, in Section 5 we extend
our approach to semisupervised learning by incorporating additional labeled training data
in a seamless way. We then present experimental results for semisupervised learning in
Section 6 and conclude.

2 Preliminaries

Since our main clustering idea is based on finding maximum margin separating hyper-
planes, we first need to establish the background ideas from SVMs as well as establish the
notation we will use.

For SVM training, we assume we are given labeled training examples
(x1, y1), ..., (xN , yN ), where each example is assigned to one of two classes
yi ∈ {−1,+1}. The goal of an SVM of course is to find the linear discriminant
fw,b(x) = w

>φ(x) + b that maximizes the minimum misclassification margin

γ∗ = max
w,b,γ

γ subject to yi(w>φ(xi) + b) ≥ γ,∀N
i=1, ‖w‖2 = 1 (1)

Here the Euclidean normalization constraint on w ensures that the Euclidean distance be-
tween the data and the separating hyperplane (in φ(x) space) determined by w

∗, b∗ is
maximized. It is easy to show that this same w

∗, b∗ is a solution to the quadratic program

γ∗−2 = min
w,b

‖w‖2 subject to yi(w>φ(xi) + b) ≥ 1,∀N
i=1 (2)

Importantly, the minimum value of this quadratic program, γ∗−2, is just the inverse square
of the optimal solution value γ∗ to (1) [10].

To cope with potentially inseparable data, one normally introduces slack variables to reduce
the dependence on noisy examples. This leads to the so called soft margin SVM (and its



dual) which is controlled by a tradeoff parameter C

γ∗−2 = min
w,b,ε

‖w‖2 + Cε>e subject to yi(w>φ(xi) + b) ≥ 1 − εi,∀N
i=1, ε ≥ 0

= max
λ

2λ>
e − 〈K ◦ λλ>,yy

>〉 subject to 0 ≤ λ ≤ C, λ>y = 0 (3)

The notation we use in this dual formulation requires some explanation, since we will use it
below: Here K denotes the N ×N kernel matrix formed from the inner products of feature
vectors Φ = [φ(x1), ...,φ(xN )] such that K = Φ>Φ. Thus kij = φ(xi)>φ(xj). The
vector e denotes the vector of all 1 entries. We let A ◦ B denote componentwise matrix
multiplication, and let 〈A,B〉 =

∑

ij aijbij . Note that (3) is derived from the standard dual

SVM by using the fact that λ>(K ◦ yy
>)λ = 〈K ◦ yy

>,λλ>〉 = 〈K ◦ λλ>,yy
>〉.

To summarize: for supervised maximum margin training, one takes a given set of labeled
training data (x1, y1), ..., (xN , yN ), forms the kernel matrix K on data inputs, forms the
kernel matrix yy

> on target outputs, sets the slack parameter C, and solves the quadratic
program (3) to obtain the dual solution λ∗ and the inverse square maximum margin value
γ∗−2. Once these are obtained, one can then recover a classifier directly from λ∗ [15].

Of course, our main interest initially is not to find a large margin classifier given labels on
the data, but instead to find a labeling that results in a large margin classifier.

3 Maximum margin clustering

The clustering principle we investigate is to find a labeling so that if one were to sub-
sequently run an SVM, the margin obtained would be maximal over all possible la-
bellings. That is, given data x

1, ..,xN , we wish to assign the data points to two classes
yi ∈ {−1,+1} so that the separation between the two classes is as wide as possible.

Unsurprisingly, this is a hard computational problem. However, with some reformulation
we can express it as a convex integer program, which suggests that there might be some
hope of obtaining practical solutions. However, more usefully, we can relax the integer
constraint to obtain a semidefinite program that yields soft cluster assignments which ap-
proximately maximize the margin. Therefore, one can obtain soft clusterings efficiently
using widely available software. However, before proceeding with the main development,
there are some preliminary issues we need to address.

First, we clearly need to impose some sort of constraint on the class balance, since other-
wise one could simply assign all the data points to the same class and obtain an unbounded
margin. A related issue is that we would also like to avoid the problem of separating a sin-
gle outlier (or very small group of outliers) from the rest of the data. Thus, to mitigate these
effects we will impose a constraint that the difference in class sizes be bounded. This will
turn out to be a natural constraint for semisupervised learning and is very easy to enforce.
Second, we would like the clustering to behave gracefully on noisy data where the classes
may in fact overlap, so we adopt the soft margin formulation of the maximum margin cri-
terion. Third, although it is indeed possible to extend our approach to the multiclass case
[5], the extension is not simple and for ease of presentation we focus on simple two class
clustering in this paper. Finally, there is a small technical complication that arises with one
of the SVM parameters: It turns out that an unfortunate nonconvexity problem arises when
we include the use of the offset b in the underlying large margin classifier. We currently
do not have a way to avoid this nonconvexity, and therefore we currently set b = 0 and
therefore only consider homogeneous linear classifiers. The consequence of this restriction
is that the constraint λ>y = 0 is removed from the dual SVM quadratic program (3). Al-
though it would seem like this is a harsh restriction, the negative effects are mitigated by
centering the data at the origin, which can always be imposed. Nevertheless, dropping this



restriction remains an important question for future research. With these caveats in mind,
we proceed to the main development.

We wish to solve for a labeling y ∈ {−1,+1}N that leads to a maximum (soft) mar-
gin. Straightforwardly, one could attempt to tackle this optimization problem by directly
formulating

min
y∈{−1,+1}N

γ∗−2(y) subject to − ` ≤ e
>
y ≤ ` where

γ∗−2(y) = max
λ

2λ>
e − 〈K ◦ λλ>,yy

>〉 subject to 0 ≤ λ ≤ C

Unfortunately, γ∗−2(y) is not a convex function of y, and this formulation does not lead to
an effective algorithmic approach. In fact, to obtain an efficient technique for solving this
problem we need two key insights.

The first key step is to re-express this optimization, not directly in terms of the cluster labels
y, but instead in terms of the label kernel matrix M = yy

>. The main advantage of doing
so is that the inverse soft margin γ∗−2 is in fact a convex function of M

γ∗−2(M) = max
λ

2λ>
e − 〈K ◦ λλ>,M〉 subject to 0 ≤ λ ≤ C (4)

The convexity of γ∗−2 with respect to M is easy to establish since this quantity is just a
maximum over linear functions of M [3]. This observation parallels one of the key insights
of [10], here applied to M instead of K.

Unfortunately, even though we can pose a convex objective, it does not allow us to imme-
diately solve our problem because we still have to relate M to y, and M = yy

> is not
a convex constraint. Thus, the main challenge is to find a way to constrain M to ensure
M = yy

> while respecting the class balance constraints −` ≤ e
>
y ≤ `. One obvious

way to enforce M = yy
> would be to impose the constraint that rank(M) = 1, since

combined with M ∈ {−1,+1}N×N this forces M to have a decomposition yy
> for some

y ∈ {−1,+1}N . Unfortunately, rank(M) = 1 is not a convex constraint on M [7].

Our second key idea is to realize that one can indirectly enforce the desired relationship
M = yy

> by imposing a different set of linear constraints on M . To do so, notice that any
such M must encode an equivalence relation over the training points. That is, if M = yy

>

for some y ∈ {−1,+1}N then we must have

mij =

{

1 if yi = yj

−1 if yi 6= yj

Therefore to enforce the constraint M = yy
> for y ∈ {−1,+1}N it suffices to impose

the set of constraints: (1) M encodes an equivalence relation, namely that it is transitive,
reflexive and symmetric; (2) M has at most two equivalence classes; and (3) M has at
least two equivalence classes. Fortunately we can enforce each of these requirements by
imposing a set of linear constraints on M ∈ {−1,+1}N×N respectively:

L1: mii = 1; mij = mji; mik ≥ mij + mjk − 1; ∀ijk

L2: mjk ≥ −mij − mik − 1; ∀ijk

L3:
∑

i mij ≤ N − 2; ∀j

The result is that with only linear constraints on M we can enforce the condition M =
yy

>.1 Finally, we can enforce the class balance constraint −` ≤ e
>
y ≤ ` by imposing the

additional set of linear constraints:
1Interestingly, for M ∈ {−1, +1}N×N the first two sets of linear constraints can be replaced by

the compact set of convex constraints diag(M) = e, M � 0 [7, 11]. However, when we relax the
integer constraint below, this equivalence is no longer true and we realize some benefit in keeping the
linear equivalence relation constraints.



L4: −` ≤ ∑

i mij ≤ `; ∀j

which obviates L3.

The combination of these two steps leads to our first main result: One can solve for a
hard clustering y that maximizes the soft margin by solving a convex integer program. To
accomplish this, one first solves for the equivalence relation matrix M in

min
M∈{−1,+1}N×N

max
λ

2λ>
e − 〈K ◦ λλ>,M〉 subject to 0≤λ≤C,L1,L2,L4 (5)

Then, from the solution M∗ recover the optimal cluster assignment y
∗ simply by setting

y
∗ to any column vector in M∗.

Unfortunately, the formulation (5) is still not practical because convex integer programming
is still a hard computational problem. Therefore, we are compelled to take one further step
and relax the integer constraint on M to obtain a convex optimization problem over a
continuous parameter space

min
M∈[−1,+1]N×N

max
λ

2λ>
e − 〈K ◦ λλ>,M〉 subject to 0≤λ≤C,L1,L2,L4,M �0 (6)

This can be turned into an equivalent semidefinite program using essentially the same
derivation as in [10], yielding

min
M,δ,µ,ν

δ subject to L1,L2,L4,µ ≥ 0,ν ≥ 0,M � 0
[

M ◦ K e + µ − ν

(e + µ − ν)> δ − 2Cν>
e

]

� 0

(7)

This gives us our second main result: To solve for a soft clustering y that approximately
maximizes the soft margin, first solve the semidefinite program (7), and then from the
solution matrix M∗ recover the soft cluster assignment y by setting y =

√
λ1v1, where

λ1,v1 are the maximum eigenvalue and corresponding eigenvector of M ∗.2

4 Experimental results

We implemented the maximum margin clustering algorithm based on the semidefinite pro-
gramming formulation (7), using the SeDuMi library, and tested it on various data sets.

In these experiments we compared the performance of our maximum margin clustering
technique to the spectral clustering method of [14] as well as straightforward k-means
clustering. Both maximum margin clustering and spectral clustering were run with the
same radial basis function kernel and matching width parameters. In fact, in each case, we
chose the best width parameter for spectral clustering by searching over a small set of five
widths related to the scale of the problem. In addition, the slack parameter for maximum
margin clustering was simply set to an arbitrary value.3

To assess clustering performance we first took a set of labeled data, removed the labels,
ran the clustering algorithms, labeled each of the resulting clusters with the majority class
according to the original training labels, and finally measured the number of misclassifica-
tions made by each clustering.

Our first experiments were conducted on the synthetic data sets depicted in Figure 1. Ta-
ble 1 shows that for the first three sets of data (Gaussians, Circles, AI) maximum margin
and spectral clustering obtained identical small error rates, which were in turn significantly

2One could also employ randomized rounding to choose a hard class assignment y.
3It turns out that the slack parameter C did not have a significant effect on any of our preliminary

investigations, so we just set it to C = 100 for all of the experiments reported here.



smaller than those obtained by k-means. However, maximum margin clustering demon-
strates a substantial advantage on the fourth data set (Joined Circles) over both spectral and
k-means clustering.

We also conducted clustering experiments on the real data sets, two of which are depicted
in Figures 2 and 3: a database of images of handwritten digits of twos and threes (Figure 2),
and a database of face images of two people (Figure 3). The last two columns of Table 1
show that maximum margin clustering obtains a slight advantage on the handwritten digits
data, and a significant advantage on the faces data.

5 Semi-supervised learning

Although the clustering results are reasonable, we have an additional goal of adapting
the maximum margin approach to semisupervised learning. In this case, we assume we
are given a labeled training set (x1, y1), ..., (xn, yn) as well as an unlabeled training set
x

n+1, ...,xN , and the goal is to combine the information in these two data sets to produce
a more accurate classifier.

In the context of large margin classifiers, many techniques have been proposed for incorpo-
rating unlabeled data in an SVM, most of which are intuitively based on ensuring that large
margins are also preserved on the unlabeled training data [8, 2], just as in our case. How-
ever, none of these previous proposals have formulated a convex optimization procedure
that was guaranteed to directly maximize the margin, as we propose in Section 3.

For our procedure, extending the maximum margin clustering approach of Section 3 to
semisupervised training is easy: We simply add constraints on the matrix M to force it
to respect the observed equivalence relations among the labeled training data. In addition,
we impose the constraint that each unlabeled example belongs to the same class as at least
one labeled training example. These conditions can be enforced with the simple set of
additional linear constraints

S1: mij = yiyj for labeled examples i, j ∈ {1, ..., n}
S2:

∑n
i=1 mij ≥ 2 − n for unlabeled examples j ∈ {n + 1, ..., N}

Note that the observed training labels yi for i ∈ {1, ..., n} are constants, and therefore the
new constraints are still linear in the parameters of M that are being optimized.

The resulting training procedure is similar to that of [6], with the addition of the constraints
L1–L4,S2 which enforce two classes and facilitate the ability to perform clustering on the
unlabeled examples.

6 Experimental results

We tested our approach to semisupervised learning on various two class data sets from
the UCI repository. We compared the performance of our technique to the semisupervised
SVM technique of [8]. In each case, we evaluated the techniques transductively. That is,
we split the data into a labeled and unlabeled part, held out the labels of the unlabeled
portion, trained the semisupervised techniques, reclassified the unlabeled examples using
the learned results, and measured the misclassification error on the held out labels.

Here we see that the maximum margin approach based on semidefinite programming can
often outperform the approach of [8]. Table 2 shows that our maximum margin method
is effective at exploiting unlabeled data to improve the prediction of held out labels. In
every case, it significantly reduces the error of plain SVM, and obtains the best overall
performance of the semisupervised learning techniques we have investigated.
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Figure 1: Four artificial data sets used in the clustering experiments. Each data set consists
of eighty two-dimensional points. The points and stars show the two classes discovered by
maximum margin clustering.

Figure 2: A sampling of the handwritten digits (twos and threes). Each row shows a random
sampling of images from a cluster discovered by maximum margin clustering. Maximum
margin made very few misclassifications on this data set, as shown in Table 1.

Figure 3: A sampling of the face data (two people). Each row shows a random sampling of
images from a cluster discovered by maximum margin clustering. Maximum margin made
no misclassifications on this data set, as shown in Table 1.

Gaussians Circles A I Joined Circles Digits Faces
Maximum Margin 1.25 0 0 1 3 0
Spectral Clustering 1.25 0 0 24 6 16.7
K-means 5 50 38.5 50 7 24.4

Table 1: Percentage misclassification errors of the various clustering algorithms on the
various data sets.

HWD 1-7 HWD 2-3 UCI Austra. UCI Flare UCI Vote UCI Diabet.
Max Marg 3.3 4.7 32 34 14 35.55
Spec Clust 4.2 6.4 48.7 40.7 13.8 44.67
TSVM 4.6 5.4 38.7 33.3 17.5 35.89
SVM 4.5 10.9 37.5 37 20.4 39.44

Table 2: Percentage misclassification errors of the various semisupervised learning algo-
rithms on the various data sets. SVM uses no unlabeled data. TSVM is due to [8].



7 Conclusion
We have proposed a simple, unified principle for clustering and semisupervised learning
based on the maximum margin principle popularized by supervised SVMs. Interestingly,
this criterion can be approximately optimized using an efficient semidefinite programming
formulation. The results on both clustering and semisupervised learning are competitive
with, and sometimes exceed the state of the art. Overall, margin maximization appears to
be an effective way to achieve a unified approach to these different learning problems.

For future work we plan to address the restrictions of the current method, including the
ommission of an offset b and the restriction to two class problems. We note that a multiclass
extension to our approach is possible, but it is complicated by the fact that it cannot be
conveniently based on the standard multiclass SVM formulation of [5]
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