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Abstract

We present a comprehensive study of surrogate loss functions for learning to defer.
We introduce a broad family of surrogate losses, parameterized by a non-increasing
function Ψ, and establish their realizable H-consistency under mild conditions. For
cost functions based on classification error, we further show that these loss functions
admit H-consistency bounds when the hypothesis set is symmetric and complete,
a property satisfied by common neural network and linear function hypothesis
sets. Our results also resolve an open question raised in previous work [Mozannar
et al., 2023] by proving the realizable H-consistency and Bayes-consistency of
a specific surrogate loss. Furthermore, we identify choices of Ψ that lead to
H-consistent surrogate losses for any general cost function, thus achieving Bayes-
consistency, realizable H-consistency, and H-consistency bounds simultaneously.
We also investigate the relationship between H-consistency bounds and realizable
H-consistency in learning to defer, highlighting key differences from standard
classification. Finally, we empirically evaluate our proposed surrogate losses and
compare them with existing baselines.

1 Introduction

In many practical scenarios, combining expert insights with established models can yield significant
enhancements. These experts can be human domain specialists or more complex, albeit resource-
intensive, models. For example, modern language and dialogue models are prone to producing
hallucinations or inaccurate information. The quality of their responses can be significantly enhanced
by delegating uncertain predictions to more specialized or advanced pre-trained models. This problem
is particularly crucial for large language models (LLMs), as noted in [Wei et al., 2022, Bubeck et al.,
2023]. The same principle applies to other generative systems, like those for images or videos,
and to learning models in diverse applications such as image classification, annotation, and speech
recognition. Thus, the task of learning to defer (L2D) with experts has become increasingly critical
across a wide array of applications.

Directly optimizing the deferral loss function, which is the target loss in L2D, is computationally
intractable for many choices of the hypothesis set. Therefore, a common approach is to optimize a
surrogate loss that facilitates the optimization of the deferral loss function. Recent work in L2D has
proposed several surrogate losses [Mozannar and Sontag, 2020, Verma and Nalisnick, 2022, Mozannar
et al., 2023, Mao et al., 2024a] and studied their consistency guarantees, including Bayes-consistency,
realizable H-consistency, and H-consistency bounds (see definitions in Section 3.2). In particular,
Mozannar and Sontag [2020] proposed the first Bayes-consistent surrogate loss by generalizing the
cross-entropy loss for L2D. Verma and Nalisnick [2022] proposed an alternative Bayes-consistent
surrogate loss by generalizing the one-versus-all loss for L2D. Mozannar et al. [2023] showed that
these surrogate losses are not realizable H-consistent. They proposed an alternative surrogate loss
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that is realizable H-consistent, but they were unable to prove or disprove whether the proposed
surrogate loss is Bayes-consistent. All the surrogate losses mentioned above and their consistency
guarantees hold only for cost functions based on classification error. Mao et al. [2024a] generalized
the surrogate loss in [Mozannar and Sontag, 2020] to incorporate general cost functions and any
multi-class surrogate losses. They provided H-consistency bounds for the novel family of surrogate
losses, offering a stronger guarantee than Bayes-consistency.

However, none of these surrogate losses satisfies all these guarantees simultaneously. In particular,
a recent AISTATS notable award paper by Mozannar et al. [2023] left open the problem of finding
surrogate losses that are both Bayes-consistent and realizable H-consistent when the cost function for
the expert is its classification error. The problem becomes even more challenging when considering
more general and realistic cost functions.

We present a comprehensive analysis of surrogate loss functions for L2D. Our contributions address
the limitations of previous approaches and provide a unified framework for designing surrogate losses
with strong theoretical guarantees. In Section 4, we first introduce a broad family of surrogate losses
for L2D, derived from first principles (Section 4.1). This family is parameterized by a non-increasing
function Ψ, which provides some flexibility in tailoring the loss function to specific requirements. We
establish that under mild conditions on Ψ, these surrogate losses achieve realizable H-consistency, a
key guarantee for many applications (Section 4.2).

Next, for cost functions based on classification error, we further establish that our surrogate loss func-
tions admit H-consistency bounds when the hypothesis set is symmetric and complete (Section 4.3).
This result holds for commonly used neural network and linear function hypothesis sets, further
strengthening the applicability of our results. Additionally, our results resolve an open question raised
by Mozannar et al. [2023] by proving the realizable H-consistency and Bayes-consistency of their
proposed surrogate loss, which the authors had left as an open question (Section 4.4).

In Section 4.3, we further identify specific choices of Ψ, such as the one corresponding to the mean
absolute error loss, that lead to H-consistent surrogate losses for any general cost function. These
loss functions are adapted to general cost functions and benefit from Bayes-consistency (Section 4.4),
realizable H-consistency, and H-consistency bounds simultaneously.

In Section 5, we also study the relationship between H-consistency bounds and realizable H-
consistency in the context of L2D, highlighting key distinctions from the standard classification
setting. Finally, we further report the results of experiments with our new surrogate losses and their
comparison with the baselines in different settings (Section 6).

We discuss the related work in Section 2 and then begin with the preliminaries in Section 3.

2 Related work

The approach of single-stage learning to defer, where a predictor and a deferral function are trained
together, was pioneered by Cortes, DeSalvo, and Mohri [2016a,b, 2023] and further developed in
subsequent studies on abstention, where the cost is constant [Charoenphakdee et al., 2021, Cao et al.,
2022, Li et al., 2023, Cheng et al., 2023, Mao et al., 2024c,b, Mohri et al., 2024] and on deferral,
where the cost can vary depending on the instance and the label [Mozannar and Sontag, 2020, Verma
and Nalisnick, 2022, Mozannar et al., 2023, Verma et al., 2023, Cao et al., 2023, Mao et al., 2023a,
2024a]. In this approach, the deferral function determines whether to defer to an expert for each input.
This approach has been shown to be superior to confidence-based approaches, where the decision to
abstain or defer is based solely on the magnitude of the predictor’s value [Chow, 1957, 1970, Bartlett
and Wegkamp, 2008, Yuan and Wegkamp, 2010, 2011, Ramaswamy et al., 2018, Ni et al., 2019,
Jitkrittum et al., 2023]; and to selective classification approaches, where the selection rate is fixed and
a cost function modeled by an expert cannot be taken into account [El-Yaniv et al., 2010, El-Yaniv
and Wiener, 2012, Wiener and El-Yaniv, 2011, 2012, 2015, Geifman and El-Yaniv, 2017, 2019, Acar
et al., 2020, Gangrade et al., 2021, Zaoui et al., 2020, Jiang et al., 2020, Shah et al., 2022].

Madras et al. [2018] initiated the learning to defer (L2D) problem scenario, which integrates human
expert decisions into the cost function. This approach has been further explored in subsequent studies
[Raghu et al., 2019, Wilder et al., 2021, Pradier et al., 2021]. Mozannar and Sontag [2020] introduced
the first Bayes-consistent surrogate loss for L2D, which was further refined in [Raman and Yee, 2021,
Liu et al., 2022]. Verma and Nalisnick [2022] proposed an alternative Bayes-consistent surrogate loss,
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the one-versus-all loss, which was later examined within a broader family of loss functions [Charusaie
et al., 2022]. Cao et al. [2023] proposed an asymmetric softmax function, which can induce a valid
probability estimator for learning to defer. Mozannar et al. [2023] showed that the surrogate losses
in [Mozannar and Sontag, 2020, Verma and Nalisnick, 2022] are not realizable H-consistent. They
proposed an alternative surrogate loss that is realizable H-consistent, but they were unable to prove or
disprove whether the proposed surrogate loss is Bayes-consistent. All the surrogate losses mentioned
above and their consistency guarantees hold only for cost functions based on classification error. Mao
et al. [2024a] generalized the surrogate loss in [Mozannar and Sontag, 2020] to incorporate general
cost functions and any multi-class surrogate losses. They provided H-consistency bounds for the
novel family of surrogate losses, offering a stronger guarantee than Bayes-consistency.

Additional studies have focused on post-hoc methods, with Okati et al. [2021] suggesting an alternative
optimization technique between the predictor and rejector, and Narasimhan et al. [2022] offering
corrections for underfitting surrogate losses [Liu et al., 2024], and Charusaie and Samadi [2024]
providing a unifying post-processing framework for multi-objective L2D based on a generalization
of the Neyman-Pearson Lemma [Neyman and Pearson, 1933]. The L2D framework or variations
thereof have found applications in diverse scenarios, spanning regression, reinforcement learning, and
human-in-the-loop systems, among others [De et al., 2020, 2021, Straitouri et al., 2021, Zhao et al.,
2021, Joshi et al., 2021, Gao et al., 2021, Mozannar et al., 2022, Hemmer et al., 2023, Chen et al.,
2024, Palomba et al., 2024]. More recently, the problem of learning to defer with multiple experts
has been analyzed in several publications [Hemmer et al., 2022, Keswani et al., 2021, Kerrigan
et al., 2021, Straitouri et al., 2022, Benz and Rodriguez, 2022, Verma et al., 2023, Mao et al., 2023a,
2024a,g, Tailor et al., 2024]. Meanwhile, Mao et al. [2023a] also proposed a two-stage learning to
defer framework. They introduced two-stage surrogate losses that are both Bayes-consistent and
realizable H-consistent with constant costs. However, realizable H-consistency does not hold for cost
functions based on classification error. As with [Mozannar and Sontag, 2020, Verma and Nalisnick,
2022, Mozannar et al., 2023], our work focuses on the single-stage and single-expert setting, and we
plan to explore a similar approach in a multi-expert/two-stage setting in the future.

3 Preliminaries

We start with the definitions and notations used in the learning-to-defer scenario considered in this
paper. We will then introduce consistency guarantees, including Bayes consistency, Realizable
H-consistency, and H-consistency bounds. Finally, we will review existing consistent surrogate
losses for L2D.

3.1 Learning to defer: problem setup

Let X be an input space and Y = [n] ∶= {1, . . . , n} be the label space in the standard multi-class
classification setting. We study the learning to defer (L2D) scenario, where a learner can either
predict a label from Y or defer to an expert.

To model this, we introduce an augmented label space Y = {1, . . . , n, n + 1}, where the label
n + 1 corresponds to deferral. An expert is a fixed predictor g∶X × Y → R. The goal of L2D
is to select a predictor h out of a hypothesis set H of functions mapping from X × Y to R with
small expected deferral loss. Let h(x) denote the prediction of h on input x ∈ X, defined as
h(x) = argmaxy∈Y h(x, y), that is the label in the augmented label space Y with the highest score,
with an arbitrary but fixed deterministic strategy for breaking ties. Then, the deferral loss function
Ldef is defined as follows:

∀(x, y) ∈ X × Y, Ldef(h,x, y) = 1h(x)≠y1h(x)∈[n] + c(x, y)1h(x)=n+1,

where c(x, y) is the the cost of deferring on input x with true label y. If the deferral option is selected,
that is h(x) = n + 1, the deferral cost c(x, y) is incurred. Otherwise, the prediction of h is within
the standard label space, h(x) ∈ [n], and the loss incurred coincides with the standard zero-one
classification loss, 1h(x)≠y .

The choice of the cost function c is flexible. For example, the cost can be defined as the expert’s
classification error: c(x, y) = 1g(x)≠y , as in previous work [Mozannar and Sontag, 2020, Verma and
Nalisnick, 2022, Mozannar et al., 2023]. Here, g(x) = argmaxy∈[n] g(x, y) is the prediction made by
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the expert g. More generally, it can incorporate the inference cost for the expert [Mao et al., 2024a]:
c(x, y) = α1g(x)≠y +β, with α,β > 0. We assume, without loss of generality, that the cost is bounded
by 1: 0 ≤ c(x, y) ≤ 1, which can be achieved through normalization in practice.

3.2 Consistency guarantees

Directly optimizing the deferral loss function, which is the target loss in L2D, is generally computa-
tionally intractable for complex hypothesis sets H. Therefore, a common approach is to optimize
a surrogate loss that facilitates the optimization of the deferral loss function. A natural learning
guarantee for such surrogate losses is Bayes-consistency [Zhang, 2004a, Bartlett et al., 2006, Zhang,
2004b, Tewari and Bartlett, 2007, Steinwart, 2007]:
Definition 3.1 (Bayes-consistency). A surrogate loss L is Bayes-consistent with respect to Ldef , if
minimizing the surrogate loss over the family of all measurable functions leads to the minimization
of the deferral loss:

lim
n→+∞

EL(hn) − E∗L(Hall) = 0 Ô⇒ lim
n→+∞

ELdef
(hn) − E∗Ldef

(Hall) = 0.

Here, given a distribution D over X × Y and a loss function L∶H ×X × Y→ R, we denote by EL(h)
the generalization error of a hypothesis h ∈ H, EL(h) = E(x,y)∼D[L(h,x, y)], and by E∗L(H) the
best-in-class generalization error, E∗L(H) = infh∈H EL(h). Bayes-consistency assumes that the
optimization occurs over the family of all measurable functions, Hall. However, in practice, the
hypothesis set of interest is typically a restricted one, such as a family of neural networks. Therefore,
a hypothesis-dependent learning guarantee, such as H-consistency bounds [Awasthi et al., 2022a,b]
(see also [Awasthi et al., 2021a,b, 2023, 2024, Mao et al., 2023b,e,f, Zheng et al., 2023, Mao et al.,
2023c,d, 2024h,e,d,f, Cortes et al., 2024]) and realizable H-consistency [Long and Servedio, 2013,
Zhang and Agarwal, 2020], is more informative and relevant. Realizable H-consistency, defined
as follows, requires that a minimizer of the surrogate loss over the given hypothesis set H also
minimizes the target loss, provided that the underlying distribution is realizable.
Definition 3.2 (Realizable H-consistency). A surrogate loss L is realizable H-consistent with respect
to Ldef , if for any distribution over which there exists a predictor h∗ ∈H achieving zero deferral loss,
ELdef

(h∗) = 0, minimizing the surrogate loss also leads to a zero-error solution:

ĥ ∈ argmin
h∈H

EL(h) Ô⇒ ELdef
(ĥ) = 0.

Note that realizable H-consistency does not imply Bayes-consistency, even if we set H = Hall in
Definition 3.2, since Bayes-consistency requires that the relationship holds for all distributions, not
just realizable ones. H-consistency bounds, on the other hand, always imply Bayes-consistency.
Given a hypothesis set H, a surrogate loss L admits an H-consistency bound, if for some non-
decreasing concave function Γ∶R+ → R+ with Γ(0) = 0, a bound of the following form holds for any
hypothesis h ∈H and any distribution:

ELdef
(h) − E∗Ldef

(H) +MLdef
(H) ≤ Γ(EL(h) − E∗L(H) +ML(H)), (1)

where ML(H) is the minimizability gap, defined as the difference between the best-in-class generaliza-
tion error and the expected pointwise infimum loss: ML(H) = E∗L(H)−Ex[infh∈H Ey∣x[L(h,x, y)]].
The minimizability gap can be upper-bounded by the approximation error and vanishes when
H =Hall [Awasthi et al., 2022a,b]. Thus, an H-consistency bound implies Bayes-consistency. The
relationship between the two hypothesis-dependent learning guarantees—realizable H-consistency
and H-consistency bounds—depends on the target loss adopted in the specific learning scenario. In
Section 5, we will demonstrate that in the standard multi-class classification setting, an H-consistency
bound is a stronger notion than realizable H-consistency. However, in L2D, these guarantees do not
imply one another.

3.3 Existing surrogate losses

Here, we will review several consistent surrogate losses used in L2D. For convenience, we use
c̃(x, y) = 1g(x)≠y to denote the cost when it specifically represents the expert’s classification error,
and use c(x, y) when it represents a general cost function.
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Mozannar and Sontag [2020] proposed the first Bayes-consistent surrogate loss by generalizing the
cross-entropy loss for L2D, with cost functions based on classification error, which is defined as

LCE(h,x, y) = − log
⎛
⎝

eh(x,y)

∑y′∈Y eh(x,y
′)
⎞
⎠
− (1 − c̃(x, y)) log

⎛
⎝

eh(x,n+1)

∑y′∈Y eh(x,y
′)
⎞
⎠
.

Verma and Nalisnick [2022] proposed an alternative one-vs-all surrogates loss with cost functions
based on expert’s classification error, that is Bayes-consistent as well:

LOvA(h,x, y) = Φ(h(x, y))+∑
y′∈Y
y′≠y

Φ(−h(x, y′)) + (1 − c̃(x, y))[Φ(h(x,n + 1))−Φ(−h(x,n + 1))],

where Φ is a strictly proper binary composite loss [Reid and Williamson, 2010], such as the logistic
loss t↦ log(1+e−t). LCE and LOvA are not realizable H-consistent. Instead, Mozannar et al. [2023]
proposed the following loss function that is realizable H-consistent when H is closed under scaling:

LRS(h,x, y) = −2 log
⎛
⎝
eh(x,y) + (1 − c̃(x, y))eh(x,n+1)

∑y′∈Y eh(x,y
′)

⎞
⎠
.

However, they were unable to prove or disprove whether the surrogate loss LRS is Bayes-consistent.

All the surrogate losses mentioned above and their consistency guarantees hold only for cost functions
based on the classification error: c̃(x, y) = 1g(x)≠y . Mao et al. [2024a] generalized the surrogate loss
LCE to incorporate general cost functions and any multi-class surrogate losses:

Lgeneral(h,x, y) = `(h,x, y) + (1 − c(x, y))`(h,x,n + 1).
Here, ` is a Bayes-consistent surrogate loss for the multi-class zero-one loss over the augmented
label set Y. In particular, ` can be chosen as a comp-sum loss [Mao et al., 2023f], for example, the
generalized cross entropy loss (see Section 4.1). As shown by Mao et al. [2024a], Lgeneral benefits
from H-consistency bounds, which implies its Bayes-consistency.

4 Novel surrogate losses

In this section, we introduce a new family of surrogate losses for L2D that benefit from Bayes-
consistency, realizable H-consistency and H-consistency bounds, starting from first principles.

4.1 Derivation from first principles

Observe that for any (x, y) ∈ X × Y, we have 1h(x)=n+1 = 1h(x)≠y1h(x)=n+1, since h(x) = n + 1
implies h(x) ≠ y. Thus, using additionally 1h(x)∈[n] = 1h(x)≠n+1, the deferral loss can be rewritten as
follows for all (x, y) ∈ X × Y:

Ldef(h,x, y) = 1h(x)≠y1h(x)∈[n] + c(x, y)1h(x)=n+1

= 1h(x)≠y1h(x)≠n+1 + c(x, y)1h(x)≠y1h(x)=n+1

= 1h(x)≠y1h(x)≠n+1 + c(x, y)1h(x)≠y(1 − 1h(x)≠n+1)
= c(x, y)1h(x)≠y + (1 − c(x, y))1h(x)≠y∧h(x)≠n+1. (2)

Next, we will derive the new surrogate losses for L2D by replacing the indicator functions in (2) with
smooth loss functions. The first indicator function 1h(x)≠y is just the multi-class zero-one loss. Thus,
a natural choice is to replace it with a surrogate loss in standard multi-class classification. We will
specifically consider the family of comp-sum losses [Mao et al., 2023f], defined as follows for any
(h,x, y) ∈H ×X × Y:

`comp(h,x, y) = Ψ
⎛
⎝

eh(x,y)

∑y′∈Y eh(x,y
′)
⎞
⎠
,

where Ψ∶ [0,1]→ R+ ∪ {+∞} is a non-increasing function. For example, by taking Ψ(t) = − log(t),
1
q
(1 − tq) with q ∈ (0,1), 1 − t, we obtain the logistic loss [Verhulst, 1838, 1845, Berkson, 1944,
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Table 1: A new family of surrogate losses LRL2D for L2D.
Ψ(t) LRL2D

− log(t) −c(x, y) log[ eh(x,y)

∑y′∈Y
eh(x,y′) ] − (1 − c(x, y)) log[ eh(x,y)+eh(x,n+1)

∑y′∈Y
eh(x,y′) ]

1
q
(1 − tq) c(x,y)

q
[1 − [ eh(x,y)

∑y′∈Y
eh(x,y′) ]

q

] + (1−c(x,y))
q

[1 − [ eh(x,y)+eh(x,n+1)

∑y′∈Y
eh(x,y′) ]

q

]

1 − t c(x, y)(1 − eh(x,y)

∑y′∈Y
eh(x,y′) ) + (1 − c(x, y))(1 − eh(x,y)+eh(x,n+1)

∑y′∈Y
eh(x,y′) )

1951], the generalized cross entropy loss [Zhang and Sabuncu, 2018], and the mean absolute error
loss [Ghosh et al., 2017], respectively:

Logistic loss: `log(h,x, y) = − log
⎡⎢⎢⎢⎣

eh(x,y)

∑y′∈Y eh(x,y
′)

⎤⎥⎥⎥⎦

Generalized cross entropy loss: `gce(h,x, y) =
1

q

⎡⎢⎢⎢⎣
1 −

⎡⎢⎢⎢⎣
eh(x,y)

∑y′∈Y eh(x,y
′)

⎤⎥⎥⎥⎦

q⎤⎥⎥⎥⎦

Mean absolute error loss: `mae(h,x, y) = 1 − eh(x,y)

∑y′∈Y eh(x,y
′) .

For any (h,x, y) ∈ H × X × Y, the confidence margin ρh(x, y) is defined by ρh(x, y) = h(x, y) −
maxy′∈Y,y′≠y h(x, y′). Thus, the second indicator function 1h(x)≠y∧h(x)≠n+1 can be expressed as
follows in terms of the confidence margin:

1h(x)≠y∧h(x)≠n+1 = 1(h(x,y)≤max
y′∈Y,y′≠y

h(x,y′))∧(h(x,n+1)≤max
y′∈Y,y′≠n+1

h(x,y′))

= 1(ρh(x,y)≤0)∧(ρh(x,n+1)≤0)

= 1max{ρh(x,y),ρh(x,n+1)}≤0.

Note that the first indicator function can also be written in terms of margin: 1h(x)≠y = 1ρh(x,y)≤0.
Unlike the first indicator function, which presses h(x, y) to be the largest score among Y, that is the
margin ρh(x, y) to be positive, the second indicator function only enforces h(x, y) or h(x,n + 1)
to be the largest score among Y, that is the maximum of two margins, max{ρh(x, y), ρh(x,n + 1)},
to be positive. This condition can be further strengthened by requiring the sum of two margins,
ρh(x, y) + ρh(x,n + 1), to be positive. In view of this observation, we adopt the following modified
comp-sum surrogate loss for the second indicator function:

̃̀
comp(h,x, y) = Ψ

⎛
⎝
eh(x,y) + eh(x,n+1)

∑y′∈Y eh(x,y
′)

⎞
⎠
,

where Ψ∶ [0,1]→ R+ ∪ {+∞} is a non-increasing function. In other words, ̃̀comp replaces the term
eh(x,y) in the softmax function in `comp with the sum eh(x,y) + eh(x,n+1). The effect is to encourage
the sum of the two margins, ρh(x, y) + ρh(x,n + 1), to be positive, rather than just the single margin
ρh(x, y). Following this principle, we derive the following expression for a new family of surrogate
losses, LRL2D, dubbed realizable L2D:

LRL2D(h,x, y) = c(x, y)`comp(h,x, y) + (1 − c(x, y))̃̀comp(h,x, y). (3)

For the choices of Ψ(t) = − log(t), 1
q
(1 − tq) with q ∈ (0,1) and 1 − t, we obtain the new surrogate

losses for L2D in Table 1. In the next sections, we will prove both realizable H-consistency guarantees
and H-consistency bounds for this family of surrogate losses, which imply their excess error bounds
and Bayes-consistency as well.

4.2 Realizable H-consistency

Here, we show that LRL2D is realizable H-consistent with respect to Ldef . We say that a hypothesis
set H is closed under scaling if, h ∈H Ô⇒ αh ∈H for any α ∈ R.
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Theorem 4.1. Assume that H is closed under scaling. Suppose that Ψ is non-increasing, Ψ( 2
3
) > 0

and limt→1 Ψ(t) = 0. Then, the surrogate loss LRL2D is realizable H-consistent with respect to Ldef .

The proof, detailed in Appendix A, begins by establishing an upper bound on the deferral loss in
terms of the comp-sum loss: Ldef ≤ LRL2D

Ψ( 2
3
) . Letting ĥ be the minimizer of LRL2D and α be any real

number, we then show that ELdef
(ĥ) ≤ 1

Ψ( 2
3
)ELRL2D

(αh∗). The generalization error is then split by

conditioning on whether h∗(x) is the deferral class (n + 1) or not. Finally, we demonstrate that each
conditional term converges to zero as α tends to +∞, and apply the monotone convergence theorem
to complete the proof.

4.3 H-Consistency bounds

Here, we show that LRL2D admits an H-consistency bound with respect to Ldef , which im-
plies its Bayes-consistency as well. We say that a hypothesis set is symmetric if there exists
a family F of functions f mapping from X to R such that {[h(x,1), . . . , h(x,n + 1)]∶h ∈H} =
{[f1(x), . . . , fn+1(x)]∶ f1, . . . , fn+1 ∈ F}, for any x ∈ X. We say that a hypothesis set H is com-
plete if for any (x, y) ∈ X × Y, the set of scores generated by it spans across the real numbers:
{h(x, y) ∣ h ∈H} = R. Common neural network and linear function hypothesis sets are all symmet-
ric and complete. We first consider the case where the cost is expert’s classification error.
Theorem 4.2. Assume that H is symmetric and complete and that c(x, y) = 1g(x)≠y. Then, for all
h ∈H and any distribution, the following H-consistency bound holds:

ELdef
(h) − ELdef

(H) +MLdef
(H) ≤ Γ(ELRL2D

(h) − ELRL2D
(H) +MLRL2D

(H)),
where Γ(t) =

√
2t when Ψ(t) = − log(t) and Γ(t) =

√
2(n + 1)qt when Ψ(t) = 1

q
(1 − tq) with q ∈

(0,1).

The proof, detailed in Appendix B.3 and B.4, establishes strong consistency guarantees for our new
surrogate loss LRL2D (Theorem 4.2). We first introduce ymax = argmaxy∈Y p(x, y), the label with
the highest conditional probability. We then show that for any hypothesis h and input x, if ymax is
not the predicted label hmax, the conditional error of h is lower bounded by a modified hypothesis
h (obtained by swapping the scores of ymax and hmax). Next, for hypotheses where ymax = hmax,
we lower bound their conditional regret in terms of the conditional regret of the deferral loss using
a new hypothesis hµ. This proof is novel and significantly different from existing approaches for
establishing H-consistency bounds in either the standard or deferral settings [Mao et al., 2023f,
2024a].

The next result further shows that when Ψ(t) = 1− t, our surrogate losses benefit from H-consistency
bounds for any general cost function.
Theorem 4.3. Assume that H is symmetric and complete. Suppose that Ψ(t) = 1 − t. Then, for all
h ∈H and any distribution, the following H-consistency bounds hold:

ELdef
(h) − ELdef

(H) +MLdef
(H) ≤ (n + 1)(ELRL2D

(h) − ELRL2D
(H) +MLRL2D

(H)).

The proof is included in Appendix B.2. Theorem 4.2 provides stronger consistency guarantees for
our new surrogate loss LRL2D with Ψ(t) = 1 − t since it holds for any general cost function. The
proof idea is similar to that of Theorem 4.2, albeit with more cases to analyze due to the general
cost function. This occurs when lower bounding the conditional regret of a hypothesis h, which
satisfies ymax = hmax, in terms of the conditional regret of the deferral loss by introducing a new
hypothesis hµ. The additional cases necessitate a more stringent condition for the guarantee, such
that the functions Ψ(t) = − log(t) and Ψ(t) = 1

q
(1 − tq) do not apply.

4.4 Excess error bounds and Bayes-consistency

For the family of all measurable functions H = Hall, the minimizability gaps vanish. In this case,
Theorems 4.2 and 4.3 imply the following excess error bounds and Bayes-consistency guarantees.
Corollary 4.4. Suppose that c(x, y) = 1g(x)≠y. For all h ∈Hall and any distribution, the following
excess error bounds hold:

ELdef
(h) − ELdef

(Hall) ≤ Γ(ELRL2D
(h) − ELRL2D

(Hall)),

7



Table 2: Consistency properties of existing surrogate losses and ours in the case of c(x, y) = 1g(x)≠y .

Surrogate losses Realizable H-consistency Bayes-consistency H-consistency bounds

LCE no yes yes
LOvA no yes yes
Lgeneral no yes yes
LRS (LRL2D with Ψ(t) = − log(t)) yes yes (proved by us) yes (proved by us)
LRL2D with Ψ(t) = 1

q
(1 − tq), q ∈ (0,1) yes yes yes

LRL2D with Ψ(t) = 1 − t yes yes yes

where Γ(t) =
√

2t when Ψ(t) = − log(t) and Γ(t) =
√

2(n + 1)qt when Ψ(t) = 1
q
(1 − tq) with q ∈

(0,1). Furthermore, the surrogate loss LRL2D is Bayes-consistent with respect to Ldef in these cases.

Corollary 4.5. Suppose that Ψ(t) = 1− t. For all h ∈Hall and any distribution, the following excess
error bounds hold:

ELdef
(h) − ELdef

(Hall) ≤ (n + 1)(ELRL2D
(h) − ELRL2D

(Hall)).

Furthermore, the surrogate loss LRL2D is Bayes-consistent with respect to Ldef in this case.

Therefore, Theorem 4.1 and Corollary 4.4 show that LRL2D is both realizable H-consistent and
Bayes-consistent with respect to Ldef . This solves the open problem raised by Mozannar et al. [2023].

In particular, for cost functions based on classification error, c(x, y) = 1g(x)≠y, our surrogate loss
LRL2D with Ψ(t) = − log(t) coincides with the surrogate loss LRS in [Mozannar et al., 2023], modulo
a constant. This affirmatively answers the question of whether their surrogate loss is Bayes-consistent
when c(x, y) = 1g(x)≠y. However, their surrogate loss cannot be shown to be Bayes-consistent for
a general cost function. In contrast, our surrogate losses LRL2D with Ψ(t) = 1 − t are adaptable to
general cost functions and benefit from both H-consistency bounds and realizable H-consistency
guarantees. We also provide a more general family of comp-sum loss functions with Ψ(t) = 1

q
(1 − tq)

that benefit from both H-consistency bounds and realizable H-consistency when c(x, y) = 1g(x)≠y .

4.5 Summary

Here, we summarize the consistency properties of existing surrogate losses and ours. As mentioned
earlier, most surrogate losses proposed in previous work, except for Lgeneral, are analyzed under
the condition c(x, y) = 1g(x)≠y. This naturally leads to a summary of these surrogate losses in this
context, as presented in Table 1. Additionally, we provide analyses and the consistency properties of
our surrogate loss, LRL2D, with general cost functions.

More specifically, our surrogate losses LRL2D satisfying Theorem 4.1 perform better in realizable
scenarios than the surrogate losses LCE, LOVA, and Lgeneral from prior work, as ours are realizable H-
consistent while theirs are not. This will be illustrated by our experiment results in the realizable case
(Figure 1a). Our surrogate losses LRL2D satisfying Theorem 4.2 and Corollary 4.4 are comparable
to the surrogate losses in prior work in non-realizable scenarios when the cost is the expert’s
classification error, as all of them are Bayes-consistent and supported by H-consistency bounds. This
is demonstrated by our experiment in the non-realizable case with the cost function being the expert’s
classification error (Table 3). Our surrogate losses LRL2D satisfying Theorem 4.3 and Corollary 4.5
are superior to the surrogate loss LRS in non-realizable scenarios with general cost functions, as ours
are supported by H-consistency bounds and Bayes-consistency while theirs are not. This is evidenced
by our experiment in the non-realizable case with general cost functions (Figure 1b).

5 Relationship between H-consistency bounds and realizable H-consistency

Here, we discuss the relationship between H-consistency bounds and realizable H-consistency. First,
realizable H-consistency does not imply H-consistency bounds, since H-consistency bounds require
that the relationship holds for all distributions, not just realizable ones. Moreover, H-consistency
bounds provide non-asymptotic guarantees, while realizable H-consistency provides only asymptotic
guarantees. Second, H-consistency bounds imply realizable H-consistency in the standard multi-class
classification setting. This is because minimizability gaps vanish under the realizable assumption in
standard case. In particular, for comp-sum losses, the following holds (see Appendix C for proof).
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Table 3: Comparison of system accuracy, accepted accuracy and coverage; mean ± standard deviation
over three runs. Realizable L2D outperforms or is comparable to baselines in all the settings.

Method Dataset System Accuracy Accepted Accuracy Coverage

Mozannar and Sontag [2020] (LCE)

HateSpeech

91.60 ± 0.15 94.61 ± 0.67 44.55 ± 1.68
Verma and Nalisnick [2022] (LOvA) 92.18 ± 0.10 95.43 ± 0.36 58.56 ± 3.18
Mozannar et al. [2023] (LRS) 91.83 ± 0.63 95.37 ± 0.72 54.78 ± 3.70
Mao et al. [2024a] (Lgeneral) 92.05 ± 0.04 96.28 ± 0.35 46.74 ± 2.80
Realizable L2D (LRL2D, q = 0.7) 92.20 ± 0.54 96.06 ± 0.39 57.85 ± 0.76
Realizable L2D (LRL2D, q = 1) 91.97 ± 0.29 96.57 ± 0.69 53.25 ± 2.49

Mozannar and Sontag [2020] (LCE)

COMPASS

66.33 ± 0.47 73.65 ± 1.83 55.17 ± 9.51
Verma and Nalisnick [2022] (LOvA) 66.33 ± 1.31 71.03 ± 5.10 53.33 ± 4.73
Mozannar et al. [2023] (LRS) 66.00 ± 2.27 63.20 ± 4.23 69.50 ± 10.8
Mao et al. [2024a] (Lgeneral) 66.67 ± 0.62 76.25 ± 2.42 48.33 ± 5.31
Realizable L2D (LRL2D, q = 0.7) 66.17 ± 2.01 69.33 ± 3.03 55.67 ± 5.95
Realizable L2D (LRL2D, q = 1) 66.83 ± 0.85 69.02 ± 2.42 54.83 ± 0.62

Mozannar and Sontag [2020] (LCE)

CIFAR-10H

96.27 ± 0.51 98.77 ± 0.71 64.33 ± 6.13
Verma and Nalisnick [2022] (LOvA) 96.25 ± 0.45 98.74 ± 0.54 67.88 ± 6.16
Mozannar et al. [2023] (LRS) 96.63 ± 0.18 98.23 ± 0.78 66.63 ± 1.80
Mao et al. [2024a] (Lgeneral) 96.75 ± 0.55 98.65 ± 0.80 65.68 ± 3.36
Realizable L2D (LRL2D, q = 0.7) 96.80 ± 0.25 98.37 ± 0.20 76.77 ± 3.63
Realizable L2D (LRL2D, q = 1) 96.57 ± 0.05 98.34 ± 0.24 77.37 ± 2.43

Theorem 5.1. Assume that there exists a zero error solution h∗ ∈ H with E`0−1(h∗) = 0 and H is
closed under scaling. Assume that limt→1 Ψ(t) = 0. Then, the minimizability gap of comp-sum loss
`comp vanishes: M`comp(H) = 0.

However, in the deferral setting, this relationship no longer holds: H-consistency bounds cannot
imply realizable H-consistency. In particular, Mao et al. [2023f] showed that LCE benefits from H-
consistency bounds, while Mozannar et al. [2023] showed that it is not realizable H-consistent. The
loss function in [Madras et al., 2018] is not Bayes-consistent, and thus does not have H-consistency
bound guarantees, but is actually realizable H-consistent [Mozannar et al., 2023].

6 Experiments

In this section, we empirically evaluate our proposed surrogate losses and compare them with existing
baselines.

Experimental settings. We follow the setting of Mozannar et al. [2023] and conduct experiments
on a synthetic dataset: Mixture-of-Gaussians [Mozannar et al., 2023], and three real-world datasets:
CIFAR-10H [Battleday et al., 2020], HateSpeech [Davidson et al., 2017], and COMPASS [Dressel
and Farid, 2018]. For these three datasets, we adopt the same model class as that in [Mozannar et al.,
2023, Table 1]. Each dataset is randomly split into 70%, 10%, and 20% for training, validation,
and testing, respectively. For the Mixture-of-Gaussians, we adopt the exact realizable setting from
[Mozannar et al., 2023, Section 7.2], which is realizable by linear functions: there exists a linear
hypothesis h∗ ∈H achieving zero deferral loss, ELdef

(h∗) = 0.

As with [Mozannar et al., 2023], we choose the cost function to be the expert’s classification error:
c(x, y) = 1g(x)≠y. We compare our surrogate to four baselines as described in Section 3.3: the
cross-entropy surrogate LCE from [Mozannar and Sontag, 2020], the one-vs-all surrogate LOvA from
[Mozannar and Sontag, 2020], the realizable surrogate LRS from [Mozannar et al., 2023], and the
general surrogate Lgeneral from [Mao et al., 2024a]. For LOvA, we choose Φ as the logistic loss,
following [Verma and Nalisnick, 2022]. For Lgeneral, we choose ` as the generalized cross entropy
loss with q = 0.7, following [Mao et al., 2024a]. For our Realizable L2D surrogate LRL2D, we
consider two choices: ` as the generalized cross entropy loss with q = 0.7, following [Zhang and
Sabuncu, 2018, Mao et al., 2024a], and ` as the mean absolute error loss (q = 1). Among these, LCE,
LOvA and Lgeneral are Bayes-consistent but not realizable H-consistent; LRS, LRL2D with q = 0.7 and
LRL2D with q = 1 are both Bayes-consistent and realizable H-consistent, as shown in Sections 4.2
and 4.4. Note that in this case, LRS is a special case of LRL2D when Ψ is chosen as t↦ − log(t). We
use the same optimizer, learning rate, and number of epochs as chosen in [Mozannar et al., 2023],
and we select the model that achieves the highest system accuracy, that is average [1 − Ldef(h,x, y)],
on a validation set.
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(b) Comparison of system accuracy versus coverage on
the HateSpeech dataset with general cost functions.

Figure 1: Results for the realizable case and the non-realizable case with general cost functions.

Evaluation. For the three real-world datasets, we report the system accuracy, that is average value of
[1 − Ldef(h,x, y)] on the test data. For completeness, we also include the accepted accuracy, that is
the average value of [1h(x)≠y1h(x)∈[n]]. This metric considers only incorrect predictions (h(x) ≠ y)
and measures the fraction of those where the system’s output (h(x)) falls within the valid range of
possible outputs ([n]). We also report the coverage, that is the average value of [1h(x)∈[n]] on the
test set, or the fraction of test instances where the system’s prediction falls within the valid range
([n]). For each metric, we average results over three runs and report the mean accuracy along with
the standard deviation for both our proposed methods and the baseline approaches. For the realizable
Mixture-of-Gaussians, we plot the system accuracy of various methods on a held-out test dataset
consisting of 5,000 points as we increase the size of the training data.

Results. Table 3 shows that for the real-world datasets, LRL2D with q = 0.7, and LRL2D with q = 1
either outperform or are comparable to the best baseline in terms of system accuracy on each dataset.
This performance is supported by our H-consistency bounds and Bayes-consistency results for our
Realizable L2D surrogate with respect to the deferral loss Ldef , as shown in Sections 4.3 and 4.4.
Table 3 also shows that LRL2D achieves reasonable coverage and acceptable accuracy. The system
accuracy, coverage, and standard deviations of the baselines match those in [Mozannar et al., 2023].
Moreover, LRS, LRL2D with q = 0.7, and LRL2D with q = 1 perform differently across various datasets:
LRL2D with q = 0.7 outperforms the others on HateSpeech and CIFAR-10H, while LRL2D with q = 1
outperforms the others on COMPASS. Note that in this case, LRS is a special case of LRL2D when Ψ
is chosen as t↦ − log(t). These results show that Realizable L2D can benefit from the flexibility in
the choice of Ψ.

Figure 1a shows system accuracy versus training samples on the realizable Mixture-of-Gaussians
distribution. Our surrogate loss LRL2D with q = 0.7 and q = 1 are realizable H-consistent, while LCE,
LOVA and Lgeneral are not. This verifies our theory.

Figure 1b shows system accuracy versus coverage on the HateSpeech dataset by varying β in the
general cost functions c(x, y) = 1g(x)≠y + β. As β increases, deferral algorithms yield solutions with
higher coverage and decreased system accuracy. This is because β controls the trade-off between
expert’s inference cost and accuracy. LRL2D with q = 1 performs comparably to the surrogate loss
Lgeneral, as both are supported by H-consistency bounds and Bayes-consistency with general cost
functions. Our surrogate loss LRL2D with q = 1 outperforms LRS because the latter does not benefit
from Bayes-consistency with general cost functions.

7 Conclusion

We introduced a broad family of surrogate losses and algorithms for learning to defer, parameterized
by a non-increasing function. We established their realizable H-consistency properties under mild
conditions and proved that several of these surrogate losses benefit from H-consistency bounds
for cost functions based on classification error and general cost functions, which also imply their
Bayes-consistency. This research not only resolves an open question posed in previous work but also
lays the groundwork for comparing various consistency notions in learning to defer and standard
classification. Looking forward, our approach offers a promising avenue for analyzing multi-expert
and two-stage settings.
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A Proof of realizable H-consistency

Theorem 4.1. Assume that H is closed under scaling. Suppose that Ψ is non-increasing, Ψ( 2
3
) > 0

and limt→1 Ψ(t) = 0. Then, the surrogate loss LRL2D is realizable H-consistent with respect to Ldef .

Proof. We first prove that for every (h,x, y) ∈H ×X × Y, the following inequality holds:

Ldef(h,x, y) ≤
LRL2D(h,x, y)

Ψ( 2
3
)

.

We will analyze case by case.

1. Case I: If h(x) ∈ [n] (deferral does not occur):

(a) If 1h(x)≠y = 1, then we must have

Ldef(h,x, y) = 1,
eh(x,y)

∑y′∈Y eh(x,y
′) ≤

1

2
,

eh(x,y) + eh(x,n+1)

∑y′∈Y eh(x,y
′) ≤ 2

3

Ô⇒ LRL2D(h,x, y) ≥ c(x, y)Ψ(1

2
) + (1 − c(x, y))Ψ(2

3
) ≥ Ψ(2

3
)Ldef(h,x, y).

(b) If 1h(x)≠y = 0, then we must have

LRL2D(h,x, y) ≥ 0 = Ldef(h,x, y).

2. Case II: If h(x) = n + 1 (deferral occurs): then we must have

Ldef(h,x, y) = c(x, y),
eh(x,y)

∑y′∈Y eh(x,y
′) ≤

1

2

Ô⇒ LRL2D(h,x, y) ≥ c(x, y)Ψ(1

2
) ≥ Ψ(2

3
)Ldef(h,x, y).

This concludes that Ldef(h,x, y) ≤ LRL2D(h,x,y)
Ψ( 2

3
) . Next, we prove that LRL2D is realizable H-

consistent under the assumptions. Consider a distribution and an expert under which there exists
a zero error solution h∗ ∈ H with ELdef

(h∗) = 0. Let ĥ be the minimizer of the surrogate loss:
ĥ ∈ argminh∈H ELRL2D

(h). Let α be any real number. Then, the following inequality holds:

ELdef
(ĥ) ≤ 1

Ψ( 2
3
)
ELRL2D

(ĥ) (Ldef ≤ 1
Ψ( 2

3
)LRL2D)

≤ 1

Ψ( 2
3
)
ELRL2D

(αh∗) (ĥ ∈ argminh∈H ELRL2D
(h) and H is closed under scaling)

= 1

Ψ( 2
3
)
E[LRL2D(αh∗, x, y) ∣ h∗(x) = n + 1]P(h∗(x) = n + 1)

+ 1

Ψ( 2
3
)
E[LRL2D(αh∗, x, y) ∣ h∗(x) ∈ [n]]P(h∗(x) ∈ [n]).

For the first term conditional on h∗(x) = n + 1, we must have h∗(x,n + 1) > maxy∈Y h
∗(x, y) and

c(x, y) = 0 since the data is realizable. Therefore,

lim
α→+∞

E[LRL2D(αh∗, x, y) ∣ h∗(x) = n + 1]P(h∗(x) = n + 1)

= lim
α→+∞

E
⎡⎢⎢⎢⎢⎣
Ψ
⎛
⎝
eαh

∗(x,y) + eαh∗(x,n+1)

∑y′∈Y eαh
∗(x,y′)

⎞
⎠
∣ h∗(x) = n + 1

⎤⎥⎥⎥⎥⎦
P(h∗(x) = n + 1)

= E[0 ∣ h∗(x) = n + 1]P(h∗(x) = n + 1) (limt→1 Ψ(t) = 0 and monotone convergence theorem)
= 0.
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For the second term conditional on h∗(x) ∈ [n], we must have h∗(x, y) > maxy′∈Y,y′≠y h(x, y′)
since the data is realizable. Therefore,

lim
α→+∞

E[LRL2D(αh∗, x, y) ∣ h∗(x) ∈ [n]]P(h∗(x) ∈ [n])

= lim
α→+∞

E
⎡⎢⎢⎢⎢⎣
c(x, y)Ψ

⎛
⎝

eαh
∗(x,y)

∑y′∈Y eαh
∗(x,y′)

⎞
⎠

+ (1 − c(x, y))Ψ
⎛
⎝
eαh

∗(x,y) + eαh∗(x,n+1)

∑y′∈Y eαh
∗(x,y′)

⎞
⎠
∣ h∗(x) ∈ [n]

⎤⎥⎥⎥⎥⎦
P(h∗(x) ∈ [n])

= E[0 ∣ h∗(x) ∈ [n]]P(h∗(x) ∈ [n]) (limt→1 Ψ(t) = 0 and monotone convergence theorem)
= 0.

Combining the two analyses, we conclude that ELdef
(ĥ) = 0 and thus LRL2D is realizable H-consistent

with respect to Ldef .

B Proof of H-consistency bounds

Before delving into the proof, we first establish some essential notation and definitions. Let L
represent a deferral surrogate loss and H denote a hypothesis set. We define the conditional error
as CL(h,x) = Ey∣x[L(h,x, y)], the best-in-class conditional error as C∗L(H, x) = infh∈H CL(h,x),
and the conditional regret as ∆CL,H(h,x) = CL(h,x) − C∗L(H, x). We proceed to present a general
theorem demonstrating that, to establish H-consistency bounds (1) with a concave function Γ, it
suffices to lower bound the conditional regret of the surrogate loss by that of the deferral loss, using
the same function Γ.
Theorem B.1. If the following holds for all h ∈H and x ∈ X, for some concave function Γ:

∆CLdef ,H(h,x) ≤ Γ(∆CL,H(h,x)), (4)

then, for all hypotheses h ∈H and for any distribution,

ELdef
(h) − E∗Ldef

(H) +MLdef
(H) ≤ Γ(EL(h) − E∗L(H) +ML(H)).

Proof. We can express the expectations of the conditional regrets for Ldef and L as follows:

E
x
[∆CLdef ,H(h,x)] = ELdef

(h) − E∗Ldef
(H) +MLdef

(H)

E
x
[∆CL,H(h,x)] = EL(h) − E∗L(H) +ML(H).

Then, by using (4) and taking the expectation, we obtain:

ELdef
(h) − E∗Ldef

(H) +MLdef
(H) = E

x
[∆CLdef ,H(h,x)]

≤ E
x
[Γ(∆CL,H(h,x))] (Eq. (4))

≤ Γ(E
x
[∆CL,H(h,x)]) (concavity of Γ)

= Γ(EL(h) − E∗L(H) +ML(H)).
Thus, the proof is complete.

Next, to prove H-consistency bounds using Theorem B.1, we will characterize the conditional regret
of the deferral loss Ldef in the following section.

B.1 Auxiliary lemma

To simplify the presentation, we introduce the following notation. For any y ∈ Y, define p(x, y) =
P(Y = y ∣ X = x) as the conditional probability that Y = y given X = x. For brevity, we will
omit the dependency on x in our notation. We denote by hy = h(x, y) for any y ∈ Y. We also
denote by py = p(x, y) and qy = p(x, y)c(x, y) for any y ∈ Y, and pn+1 = ∑y∈Y p(x, y)(1 − c(x, y)).
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Note that p(x, y)(1 − c(x, y)) = py − qy, ∀y ∈ Y. Let ph = ph(x) = {ph(x) h(x) ∈ [n]
pn+1 h(x) = n + 1.

. Let

ymax = argmaxy∈Y py and hmax = argmaxy∈Y hy. Note that both ymax and hmax are in the label
space Y, while h(x) is in the augmented label space Y. We characterize the conditional regret of the
deferral loss Ldef as follows.

Lemma B.2. Assume that H is symmetric and complete. Then, the conditional regret of the deferral
loss Ldef can be expressed as follows: ∆CLdef ,H(h,x) = max{pymax , pn+1} − ph.

Proof. We can write the conditional error of the deferral loss as follows:

CLdef
(h,x)

= ∑
y∈Y

p(x, y)Ldef(h,x, y)

= ∑
y∈Y

p(x, y)1h(x)≠y1h(x)∈[n] +∑
y∈Y

p(x, y)c(x, y)1h(x)=n+1

= (1 − ph(x))1h(x)∈[n] + (1 − pn+1)1h(x)=n+1

= 1 − ph.

Since H is symmetric and complete, for any x ∈ X, {h(x)∶h ∈H} = Y. Then, the best-in-class
conditional error of Ldef can be expressed as follows:

C∗Ldef
(H, x) = inf

h∈H
CLdef

(h,x) = 1 −max{pn+1, pymax} (5)

Therefore, ∆CLdef ,H(h,x) = CLdef
(h,x) − C∗Ldef

(H, x) = max{pymax , pn+1} − ph.

Next, we will present the proofs separately in the following sections, by lower bounding the condi-
tional regret of the surrogate loss L by that of the deferral loss Ldef using Lemma B.2.

B.2 Ψ(t) = 1 − t

Theorem B.3. Assume that H is symmetric and complete. Then, for all h ∈H and any distribution,
the following H-consistency bound holds:

ELdef
(h) − ELdef

(H) +MLdef
(H) ≤ n(ELRL2D

(h) − ELRL2D
(H) +MLRL2D

(H)).

Proof. We can write the conditional error of the surrogate loss as follows:

CLRL2D
(h,x)

= ∑
y∈Y

p(x, y)LRL2D(h,x, y)

= ∑
y∈Y

p(x, y)c(x, y)
⎛
⎝

1 − eh(x,y)

∑y′∈Y eh(x,y
′)
⎞
⎠
+∑
y∈Y

p(x, y)(1 − c(x, y))
⎛
⎝

1 − e
h(x,y) + eh(x,n+1)

∑y′∈Y eh(x,y
′)

⎞
⎠

= ∑
y∈Y

qy
⎛
⎝

1 − ehy

∑y′∈Y ehy′

⎞
⎠
+∑
y∈Y

(py − qy)
⎛
⎝

1 − e
hy + ehn+1

∑y′∈Y ehy′

⎞
⎠
.

By Lemma B.2, the conditional regret of the deferral loss can be expressed as

∆CLdef ,H(h,x) = max{pymax , pn+1} − ph.

Next, we will show that the conditional regret of the surrogate loss can be lower bounded as follows:

∆CLRL2D,H(h,x) = CLRL2D
(h) − C∗LRL2D

(H) ≥ 1

n + 1
(∆CLdef ,H(h,x)). (6)
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We first prove that for any hypothesis h and x ∈ X, if ymax ≠ hmax, then the conditional error of h

can be lower bounded by that of h, which satisfies that h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hhmax y = ymax

hymax y = hmax

hy otherwise.
. Indeed,

CLRL2D
(h) − CLRL2D

(h) = qymax

⎛
⎝

1 − ehymax

∑y′∈Y ehy′

⎞
⎠
+ (pymax − qymax)

⎛
⎝

1 − e
hymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

+ qhmax

⎛
⎝

1 − ehhmax

∑y′∈Y ehy′

⎞
⎠
+ (phmax − qhmax)

⎛
⎝

1 − e
hhmax + ehn+1

∑y′∈Y ehy′

⎞
⎠

− qymax

⎛
⎝

1 − ehhmax

∑y′∈Y ehy′

⎞
⎠
− (pymax − qymax)

⎛
⎝

1 − e
hhmax + ehn+1

∑y′∈Y ehy′

⎞
⎠

− qhmax

⎛
⎝

1 − ehymax

∑y′∈Y ehy′

⎞
⎠
− (phmax − qhmax)

⎛
⎝

1 − e
hymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

= 1

∑y′∈Y ehy′
(pymax − phmax)(ehhmax − ehymax ) ≥ 0.

Therefore, we only need to lower bound the conditional regret of hypothesis h satisfying ymax = hmax.
Next, we will analyze case by case. Note that when (pymax − pn+1)(hymax − hn+1) > 0, we have
∆CLdef ,H(h,x) = max{pymax , pn+1} − ph = 0.

1. Case I: If pymax − pn+1 ≥ 0 and hymax − hn+1 ≤ 0: we define a new hypothesis hµ such

that hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

log(ehn+1 + µ) y = ymax

log(ehymax − µ) y = n + 1

h(x, y) otherwise.
, where ehymax ≥ µ ≥ 0. Then, we can

lower bound the conditional regret of LRL2D by using ∆CLRL2D,H(h,x) ≥ CLRL2D
(h) −

C∗LRL2D
(hµ) for any ehymax ≥ µ ≥ 0:

∆CLRL2D,H(h,x)
≥ sup
ehymax ≥µ≥0

(CLRL2D
(h) − C∗LRL2D

(hµ))

≥ sup
ehymax ≥µ≥0

⎛
⎝
qymax

⎛
⎝

1 − ehymax

∑y′∈Y ehy′

⎞
⎠
+ (pymax − qymax)

⎛
⎝

1 − e
hymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

+ ∑
y′∈Y,y′≠ymax

(py′ − qy′)
⎛
⎝

1 − e
hy′ + ehn+1

∑y′∈Y ehy′

⎞
⎠

− qymax

⎛
⎝

1 − ehn+1 + µ
∑y′∈Y ehy′

⎞
⎠
− (pymax − qymax)

⎛
⎝

1 − e
hn+1 + ehhmax

∑y′∈Y ehy′

⎞
⎠
⎞
⎠

− ∑
y′∈Y,y′≠ymax

(py′ − qy′)
⎛
⎝

1 − e
hy′ + ehymax − µ
∑y′∈Y ehy′

⎞
⎠

= 1

∑y′∈Y ehy′
sup

ehymax ≥µ≥0

(qymax
(ehn+1 + µ − ehymax ) + (pn+1 − pymax + qymax)(ehymax − µ − ehn+1))

= (pymax − pn+1)
ehn+1

∑y′∈Y ehy′
(µ = ehymax achieves the maximum)

≥ 1

n + 1
(pymax − pn+1) (by the assumption hn+1 ≥ hymax = hhmax )

= 1

n + 1
(∆CLdef ,H(h,x)) (by the assumption pymax ≥ pn+1 and hymax − hn+1 ≤ 0)

21



2. Case II: If pymax − pn+1 ≤ 0 and hymax −hn+1 ≥ 0: we define a new hypothesis hµ such that

hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

log(ehn+1 − µ) y = ymax

log(ehymax + µ) y = n + 1

h(x, y) otherwise.
, where ehn+1 ≥ µ ≥ 0. Then, we can lower bound

the conditional regret of LRL2D by using ∆CLRL2D,H(h,x) ≥ CLRL2D
(h) − C∗LRL2D

(hµ) for
any ehn+1 ≥ µ ≥ 0:

∆CLRL2D,H(h,x)
≥ sup
ehn+1≥µ≥0

(CLRL2D
(h) − C∗LRL2D

(hµ))

≥ sup
ehn+1≥µ≥0

⎛
⎝
qymax

⎛
⎝

1 − ehymax

∑y′∈Y ehy′

⎞
⎠
+ (pymax − qymax)

⎛
⎝

1 − e
hymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

+ ∑
y′∈Y,y′≠ymax

(py′ − qy′)
⎛
⎝

1 − e
hy′ + ehn+1

∑y′∈Y ehy′

⎞
⎠

− qymax

⎛
⎝

1 − ehn+1 − µ
∑y′∈Y ehy′

⎞
⎠
− (pymax − qymax)

⎛
⎝

1 − e
hn+1 + ehhmax

∑y′∈Y ehy′

⎞
⎠
⎞
⎠

− ∑
y′∈Y,y′≠ymax

(py′ − qy′)
⎛
⎝

1 − e
hy′ + ehymax + µ
∑y′∈Y ehy′

⎞
⎠

= 1

∑y′∈Y ehy′
sup

ehn+1≥µ≥0

(qymax
(ehn+1 − µ − ehymax ) + (pn+1 − pymax + qymax)(ehymax + µ − ehn+1))

= (pn+1 − pymax)
ehymax

∑y′∈Y ehy′
(µ = ehn+1 achieves the maximum)

≥ 1

n + 1
(pn+1 − pymax) (by the assumption hhmax = hymax ≥ hn+1)

= 1

n + 1
(∆CLdef ,H(h,x)) (by the assumption pn+1 ≥ pymax and hymax − hn+1 ≥ 0)

This proves the inequality (6). By Theorem B.1, we complete the proof.
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B.3 Ψ(t) = − log(t)

Theorem B.4. Assume that H is symmetric and complete. Assume that c(x, y) = 1g(x)≠y . Then, for
all h ∈H and any distribution, the following H-consistency bound holds:

ELdef
(h) − ELdef

(H) +MLdef
(H) ≤ 2

√
ELRL2D

(h) − ELRL2D
(H) +MLRL2D

(H).

Proof. We can write the conditional error of the surrogate loss as follows:

CLRL2D
(h,x)

= ∑
y∈Y

p(x, y)LRL2D(h,x, y)

= −∑
y∈Y

p(x, y)c(x, y) log
⎛
⎝

eh(x,y)

∑y′∈Y eh(x,y
′)
⎞
⎠
−∑
y∈Y

p(x, y)(1 − c(x, y)) log
⎛
⎝
eh(x,y) + eh(x,n+1)

∑y′∈Y eh(x,y
′)

⎞
⎠

= −∑
y∈Y

qy log
⎛
⎝

ehy

∑y′∈Y ehy′

⎞
⎠
−∑
y∈Y

(py − qy) log
⎛
⎝
ehy + ehn+1

∑y′∈Y ehy′

⎞
⎠
.

By Lemma B.2, the conditional regret of the deferral loss can be expressed as

∆CLdef ,H(h,x) = max{pymax , pn+1} − ph.
Next, we will show that the conditional regret of the surrogate loss can be lower bounded as follows:

∆CLRL2D,H(h,x) = CLRL2D
(h) − C∗LRL2D

(H) ≥ 1

2
(∆CLdef ,H(h,x))2

. (7)

We first consider the case where g(x) ≠ ymax. Otherwise, it would be straightforward to see that
the bound holds. In the case where g(x) ≠ ymax, we have qymax

= pymax
. We first prove that for any

hypothesis h and x ∈ X, if ymax ≠ hmax, then the conditional error of h can be lower bounded by that

of h, which satisfies that h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hhmax y = ymax

hymax y = hmax

hy otherwise.
. Indeed,

CLRL2D
(h) − CLRL2D

(h)

= −qymax
log

⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠
− (pymax

− qymax
) log

⎛
⎝
ehymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

− qhmax log
⎛
⎝

ehhmax

∑y′∈Y ehy′

⎞
⎠
− (phmax − qhmax) log

⎛
⎝
ehhmax + ehn+1

∑y′∈Y ehy′

⎞
⎠

+ qymax log
⎛
⎝

ehhmax

∑y′∈Y ehy′

⎞
⎠
+ (pymax − qymax) log

⎛
⎝
ehhmax + ehn+1

∑y′∈Y ehy′

⎞
⎠

+ qhmax log
⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠
+ (phmax − qhmax) log

⎛
⎝
ehymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

= (qymax − qhmax) log(e
hhmax

ehymax
) + (pymax − qymax − phmax + qhmax) log(e

hhmax + ehn+1

ehymax + ehn+1
)

≥ (pymax − phmax) log(e
hhmax + ehn+1

ehymax + ehn+1
)

≥ 0.

Therefore, we only need to lower bound the conditional regret of hypothesis h satisfying ymax = hmax.
Since c(x, y) = 1g(x)≠y, we have pymax ≥ pn+1 = pg(x). Note that when (pymax − pn+1)(hymax −
hn+1) > 0, we have ∆CLdef ,H(h,x) = max{pymax , pn+1}−ph = 0. When hymax−hn+1 ≤ 0, we define

a new hypothesis hµ such that hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

log(ehn+1 + µ) y = ymax

log(ehymax − µ) y = n + 1

h(x, y) otherwise.
, where ehymax − ehn+1 ≤
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µ ≤ ehymax . Then, we can lower bound the conditional regret of LRL2D by using ∆CLRL2D,H(h,x) ≥
CLRL2D

(h) − C∗LRL2D
(hµ) for any ehymax − ehn+1 ≤ µ ≤ ehymax :

∆CLRL2D,H(h,x)
≥ sup
ehymax ≥µ≥ehymax −ehn+1

(CLRL2D
(h) − C∗LRL2D

(hµ))

≥ sup
ehymax ≥µ≥ehymax −ehn+1

⎛
⎝
−qymax log

⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠
− (pymax − qymax) log

⎛
⎝
ehymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

− ∑
y′∈Y,y′≠ymax

(py′ − qy′) log
⎛
⎝
ehy′ + ehn+1

∑y′∈Y ehy′

⎞
⎠

+ qymax log
⎛
⎝
ehn+1 + µ
∑y′∈Y ehy′

⎞
⎠
+ (pymax − qymax) log

⎛
⎝
ehn+1 + ehymax

∑y′∈Y ehy′

⎞
⎠
⎞
⎠

+ ∑
y′∈Y,y′≠ymax

(py′ − qy′) log
⎛
⎝
ehy′ + ehymax − µ
∑y′∈Y ehy′

⎞
⎠

= sup
ehymax ≥µ≥ehymax −ehn+1

⎛
⎝
qymax log

ehn+1 + µ
ehymax

+ ∑
y′∈Y,y′≠ymax

(py′ − qy′) log
ehy′ + ehymax − µ
ehy′ + ehn+1

⎞
⎠

≥ sup
ehymax ≥µ≥ehymax −ehn+1

⎛
⎝
qymax log

ehn+1 + µ
ehymax

+ ∑
y′∈Y,y′≠ymax

(py′ − qy′) log
ehymax − µ
ehn+1

⎞
⎠

(ehymax − ehn+1 ≤ µ ≤ ehymax )

= sup
ehymax ≥µ≥ehymax −ehn+1

(qymax log
ehn+1 + µ
ehymax

+ (pn+1 − (pymax − qymax)) log
ehymax − µ
ehn+1

).

By differentiating with respect to µ, we obtain that

µ = qymaxe
hymax − (pn+1 − (pymax − qymax))ehn+1

qymax + (pn+1 − (pymax − qymax))

achieves the maximum. Plugging it into the expression, we have

∆CLRL2D,H(h,x)

≥ qymax log
⎡⎢⎢⎢⎣

[ehymax + ehn+1]qymax

ehymax [qymax + (pn+1 − (pymax − qymax))]
⎤⎥⎥⎥⎦

+ (pn+1 − (pymax − qymax)) log
⎡⎢⎢⎢⎣

[ehymax + ehn+1](pn+1 − (pymax − qymax))
ehn+1[qymax + (pn+1 − (pymax − qymax))]

⎤⎥⎥⎥⎦
.

This can be further lower bounded by taking the minimum over h ∈H, where the minimum is attained
when ehymax = ehn+1 Therefore,

∆CLRL2D,H(h,x)

≥ qymax
log[ 2qymax

qymax + (pn+1 − (pymax − qymax))
]

+ (pn+1 − (pymax − qymax)) log[ 2(pn+1 − (pymax
− qymax))

qymax + (pn+1 − (pymax − qymax))
].
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By applying Pinsker’s inequality [Mohri et al., 2018, Proposition E.7], we obtain

∆CLRL2D,H(h,x)
≥ [qymax

+ pn+1 − (pymax − qymax)]

× 1

2
[∣ qymax

qymax + pn+1 − (pymax − qymax)
− 1

2
∣ + ∣ pn+1 − (pymax − qymax)

qymax + pn+1 − (pymax − qymax)
− 1

2
∣]

2

≥ 1

2

(pymax − pn+1)2

qymax + pn+1 − (pymax − qymax)

≥ 1

2
(pymax − pn+1)2 (qymax + pn+1 − (pymax − qymax) ≤ 1)

= 1

2
(∆CLdef ,H(h,x))2 (by the assumption pymax ≥ pn+1 and hymax ≤ hn+1)

This proves the inequality (7). In the case where g(x) = ymax, we have pn+1 = pymax . By Lemma B.2,
the conditional regret of the deferral loss can be expressed as ∆CLdef ,H(h,x) = pn+1 − ph. If h(x) =
n+1, then we have ∆CLdef ,H(h,x) = 0. Otherwise, when h(x) ≠ n+1, we can proceed in the similar

way as above, by defining a new hypothesis hµ such that hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

log(ehn+1 + µ) y = h(x)
log(ehh(x) − µ) y = n + 1

h(x, y) otherwise
.

Then, we can lower bound the conditional regret of LRL2D by using ∆CLRL2D,H(h,x) ≥ CLRL2D
(h)−

C∗LRL2D
(hµ), by applying the same derivation as above, modulo replacing ymax with h(x). This leads

to the inequality (7) as well. By Theorem B.1, we complete the proof.
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B.4 Ψ(t) = 1
q
(1 − tq)

Theorem B.5. Assume that H is symmetric and complete. Assume that c(x, y) = 1g(x)≠y . Then, for
all h ∈H and any distribution, the following H-consistency bound holds:

ELdef
(h) − ELdef

(H) +MLdef
(H) ≤ 2

√
(n + 1)α(ELRL2D

(h) − ELRL2D
(H) +MLRL2D

(H)).

Proof. We can write the conditional error of the surrogate loss as follows:

CLRL2D
(h,x) = ∑

y∈Y
p(x, y)LRL2D(h,x, y)

= 1

q
∑
y∈Y

p(x, y)c(x, y)
⎛
⎝

1 −
⎛
⎝

eh(x,y)

∑y′∈Y eh(x,y
′)
⎞
⎠

q
⎞
⎠

+ 1

q
∑
y∈Y

p(x, y)(1 − c(x, y))
⎛
⎝

1 −
⎛
⎝
eh(x,y) + eh(x,n+1)

∑y′∈Y eh(x,y
′)

⎞
⎠

q
⎞
⎠

= 1

q
∑
y∈Y

qy
⎛
⎝

1 −
⎛
⎝

ehy

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
+ 1

q
∑
y∈Y

(py − qy)
⎛
⎝

1 −
⎛
⎝
ehy + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
.

By Lemma B.2, the conditional regret of the deferral loss can be expressed as

∆CLdef ,H(h,x) = max{pymax , pn+1} − ph.
Next, we will show that the conditional regret of the surrogate loss can be lower bounded as follows:

∆CLRL2D,H(h,x) = CLRL2D
(h) − C∗LRL2D

(H) ≥ 1

2(n + 1)q (∆CLdef ,H(h,x))2
. (8)

We first consider the case where g(x) ≠ ymax. Otherwise, it would be straightforward to see that
the bound holds. In the case where g(x) ≠ ymax, we have qymax = pymax . We first prove that for any
hypothesis h and x ∈ X, if ymax ≠ hmax, then the conditional error of h can be lower bounded by that

of h, which satisfies that h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hhmax y = ymax

hymax y = hmax

hy otherwise.
. Indeed,

q(CLRL2D
(h) − CLRL2D

(h))

= qymax

⎛
⎝

1 −
⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
+ (pymax − qymax)

⎛
⎝

1 −
⎛
⎝
ehymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

+ qhmax

⎛
⎝

1 −
⎛
⎝

ehhmax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
+ (phmax − qhmax)

⎛
⎝

1 −
⎛
⎝
ehhmax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

− qymax

⎛
⎝

1 −
⎛
⎝

ehhmax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
− (pymax − qymax)

⎛
⎝

1 −
⎛
⎝
ehhmax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

− qhmax

⎛
⎝

1 −
⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
+ (phmax − qhmax)

⎛
⎝

1 −
⎛
⎝
ehymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

= (qymax
− qhmax

)
⎡⎢⎢⎢⎢⎣

⎛
⎝

1 −
⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
−
⎛
⎝

1 −
⎛
⎝

ehhmax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

⎤⎥⎥⎥⎥⎦

+ (pymax − qymax − phmax + qhmax)
⎡⎢⎢⎢⎢⎣

⎛
⎝

1 −
⎛
⎝
ehymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
−
⎛
⎝

1 −
⎛
⎝
ehhmax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

⎤⎥⎥⎥⎥⎦

≥ (pymax − phmax)
⎡⎢⎢⎢⎢⎣

⎛
⎝

1 −
⎛
⎝
ehymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
−
⎛
⎝

1 −
⎛
⎝
ehhmax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

⎤⎥⎥⎥⎥⎦
≥ 0.
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Therefore, we only need to lower bound the conditional regret of hypothesis h satisfying ymax = hmax.
Since c(x, y) = 1g(x)≠y, we have pymax ≥ pn+1 = pg(x). Note that when (pymax − pn+1)(hymax −
hn+1) > 0, we have ∆CLdef ,H(h,x) = max{pymax , pn+1} − ph = 0. When hymax − hn+1 ≤ 0, we

define a new hypothesis hµ such that hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

log(ehn+1 + µ) y = ymax

log(ehymax − µ) y = n + 1

h(x, y) otherwise.
, where ehymax −

ehn+1 ≤ µ ≤ ehymax . Then, we can lower bound the conditional regret of hypothesis h by using
∆CLRL2D,H(h,x) ≥ CLRL2D

(h) − C∗LRL2D
(hµ) for any ehymax − ehn+1 ≤ µ ≤ ehymax :

∆CLRL2D,H(h,x)
≥ sup
ehymax ≥µ≥ehymax −ehn+1

(CLRL2D
(h) − C∗LRL2D

(hµ))

≥ 1

q
sup

ehymax ≥µ≥ehymax −ehn+1

⎛
⎝
qymax

⎛
⎝

1 −
⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
+ (pymax − qymax)

⎛
⎝

1 −
⎛
⎝
ehymax + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

+ ∑
y′∈Y,y′≠ymax

(py′ − qy′)
⎛
⎝

1 −
⎛
⎝
ehy′ + ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

− qymax

⎛
⎝

1 −
⎛
⎝
ehn+1 + µ
∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
− (pymax − qymax)

⎛
⎝

1 −
⎛
⎝
ehn+1 + ehymax

∑y′∈Y ehy′

⎞
⎠
⎞
⎠

q

− ∑
y′∈Y,y′≠ymax

(py′ − qy′)
⎛
⎝

1 −
⎛
⎝
ehy′ + ehymax − µ
∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
⎞
⎠

≥ 1

q
sup

ehymax ≥µ≥ehymax −ehn+1

⎛
⎝
qymax

⎛
⎝

1 −
⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
+ ∑
y′∈Y,y′≠ymax

(py′ − qy′)
⎛
⎝

1 −
⎛
⎝

ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

− qymax

⎛
⎝

1 −
⎛
⎝
ehn+1 + µ
∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
− ∑
y′∈Y,y′≠ymax

(py′ − qy′)
⎛
⎝

1 −
⎛
⎝
ehymax − µ
∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
⎞
⎠

(ehymax − ehn+1 ≤ µ ≤ ehymax )

= 1

q
sup

ehymax ≥µ≥ehymax −ehn+1

⎛
⎝
qymax

⎛
⎝

1 −
⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
+ (pn+1 − (pymax − qymax))

⎛
⎝

1 −
⎛
⎝

ehn+1

∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠

− qymax

⎛
⎝

1 −
⎛
⎝
ehn+1 + µ
∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
− (pn+1 − (pymax − qymax))

⎛
⎝

1 −
⎛
⎝
ehymax − µ
∑y′∈Y ehy′

⎞
⎠

q
⎞
⎠
⎞
⎠

By differentiating with respect to µ, we obtain that

µ = (pn+1 − (pymax − qymax))
1

q−1 ehymax − (qymax)
1

q−1 ehn+1

(qymax)
1

q−1 + (pn+1 − (pymax − qymax))
1

q−1

achieves the maximum. Plugging it into the expression, we have

∆CLRL2D,H(h,x)

≥ 1

q

⎛
⎝
−qymax

⎛
⎝

ehymax

∑y′∈Y ehy′

⎞
⎠

q

− (pn+1 − (pymax − qymax))
⎛
⎝

ehn+1

∑y′∈Y ehy′

⎞
⎠

q

+ qymax

⎡⎢⎢⎢⎢⎢⎢⎣

[ehymax + ehn+1](pn+1 − (pymax − qymax))
1

q−1

∑y′∈Y ehy′ [q
1

q−1
ymax + (pn+1 − (pymax − qymax))

1
q−1 ]

⎤⎥⎥⎥⎥⎥⎥⎦

q

+ (pn+1 − (pymax − qymax))

⎡⎢⎢⎢⎢⎢⎢⎣

[ehymax + ehn+1]q
1

q−1
ymax

∑y′∈Y ehy′ [q
1

q−1
ymax + (pn+1 − (pymax − qymax))

1
q−1 ]

⎤⎥⎥⎥⎥⎥⎥⎦

q

⎞
⎠
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This can be further lower bounded by taking the minimum over h ∈H, where the minimum is attained
when ehn+1 = ehymax = ehy for all y ∈ Y. Therefore,

∆CLRL2D,H(h,x) ≥ 2

(n + 1)q
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

q
1

1−q
ymax + (pn+1 − (pymax − qymax))

1
1−q

2

⎤⎥⎥⎥⎥⎦

1−q

− pn+1 − pymax

2

⎞
⎟
⎠

(minimum is attained when ehn+1 = ehymax = ehy ,∀y ∈ Y)

≥ 1

2(n + 1)q (pymax − pn+1)2

(qymax + (pn+1 − (pymax − qymax)) ≤ 1 and by analyzing the Taylor expansion)

= 1

2(n + 1)q (∆CLdef ,H(h,x))2 (pymax ≥ pn+1 and hymax ≤ hn+1)

This proves the inequality (8). In the case where g(x) = ymax, we have pn+1 = pymax . By Lemma B.2,
the conditional regret of the deferral loss can be expressed as ∆CLdef ,H(h,x) = pn+1 − ph. If h(x) =
n+1, then we have ∆CLdef ,H(h,x) = 0. Otherwise, when h(x) ≠ n+1, we can proceed in the similar

way as above, by defining a new hypothesis hµ such that hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

log(ehn+1 + µ) y = h(x)
log(ehh(x) − µ) y = n + 1

h(x, y) otherwise
.

Then, we can lower bound the conditional regret of LRL2D by using ∆CLRL2D,H(h,x) ≥ CLRL2D
(h)−

C∗LRL2D
(hµ), by applying the same derivation as above, modulo replacing ymax with h(x). This leads

to the inequality (8) as well. By Theorem B.1, we complete the proof.

C Proof of Theorem 5.1

Theorem 5.1. Assume that there exists a zero error solution h∗ ∈ H with E`0−1(h∗) = 0 and H is
closed under scaling. Assume that limt→1 Ψ(t) = 0. Then, the minimizability gap of comp-sum loss
`comp vanishes: M`comp(H) = 0.

Proof. By definition and the Lebesgue dominated convergence theorem, we have

M`comp(H) ≤ E∗`comp
(H) ≤ lim

α→+∞
E[Ψ( eαh

∗(x,y)

∑y′∈Y eαh∗(x,y′)
)] = 0.

This completes the proof.

D Future work

While we presented a comprehensive study of surrogate loss functions for learning to defer, our
work focused on the standard single-expert and single-stage setting, aligning with previous work
[Mozannar et al., 2023]. However, an interesting direction is to extend our approach to multi-expert
[Verma et al., 2023] and two-stage settings [Mao et al., 2023a], which we have left for future work.
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