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Abstract

We present a detailed study of surrogate losses and algorithms for multi-label
learning, supported by H-consistency bounds. We first show that, for the simplest
form of multi-label loss (the popular Hamming loss), the well-known consistent
binary relevance surrogate suffers from a sub-optimal dependency on the number of
labels in terms of H-consistency bounds, when using smooth losses such as logistic
losses. Furthermore, this loss function fails to account for label correlations. To
address these drawbacks, we introduce a novel surrogate loss, multi-label logistic
loss, that accounts for label correlations and benefits from label-independent H-
consistency bounds. We then broaden our analysis to cover a more extensive
family of multi-label losses, including all common ones and a new extension
defined based on linear-fractional functions with respect to the confusion matrix.
We also extend our multi-label logistic losses to more comprehensive multi-label
comp-sum losses, adapting comp-sum losses from standard classification to the
multi-label learning. We prove that this family of surrogate losses benefits from
H-consistency bounds, and thus Bayes-consistency, across any general multi-label
loss. Our work thus proposes a unified surrogate loss framework benefiting from
strong consistency guarantees for any multi-label loss, significantly expanding
upon previous work which only established Bayes-consistency and for specific loss
functions. Additionally, we adapt constrained losses from standard classification
to multi-label constrained losses in a similar way, which also benefit from H-
consistency bounds and thus Bayes-consistency for any multi-label loss. We further
describe efficient gradient computation algorithms for minimizing the multi-label
logistic loss.

1 Introduction

Supervised learning methods often assign a single label to each instance. However, real-world data
exhibits a more complex structure, with objects belonging to multiple categories simultaneously.
Consider a video about sports training, which could be categorized as both ‘health’ and ‘athletics,’ or a
culinary blog post tagged with ‘cooking’ and ‘nutrition’. As a result, multi-label learning [McCallum,
1999, Schapire and Singer, 2000] has become increasingly important, leading to the development of
various interesting and effective approaches, predominantly experimental in nature, in recent years
[Elisseeff and Weston, 2001, Deng et al., 2011, Petterson and Caetano, 2011, Kapoor et al., 2012].

Although there is a rich literature on multi-label learning (see [Zhang and Zhou, 2013] and [Bo-
gatinovski et al., 2022] for detailed surveys), only a few studies focus on the theoretical analysis
of multi-label learning, particularly the study of the Bayes-consistency of surrogate losses [Zhang,
2004a,b, Bartlett et al., 2006, Tewari and Bartlett, 2007, Steinwart, 2007].
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Gao and Zhou [2011] initiated the study of Bayes-consistency in multi-label learning with respect to
Hamming loss and (partial) ranking loss. They provided negative results for ranking loss, demonstrat-
ing that no convex and differentiable pairwise surrogate loss is Bayes-consistent for that multi-label
loss. They also showed that the binary relevance method, which learns an independent binary
classifier for each of the l labels, is Bayes-consistent with respect to the Hamming loss. Dembczynski
et al. [2011] further demonstrated that under the assumption of conditionally independent labels, the
binary relevance method is also Bayes-consistent with respect to the Fβ measure loss. However, they
noted that it can perform arbitrarily poorly when this assumption does not hold. Dembczynski et al.
[2012] provided a positive result for the (partial) ranking loss by showing that the simpler univariate
variants of smooth surrogate losses are Bayes-consistent with respect to it. Additionally, Zhang et al.
[2020] proposed a family of Bayes-consistent surrogate losses for the Fβ measure by reducing the
Fβ learning problem to a set of binary class probability estimation problems. This approach was
motivated by the consistent output coding scheme in [Ramaswamy et al., 2014] for general multiclass
problems. Other works have studied generalization bounds in multi-label learning [Yu et al., 2014,
Wydmuch et al., 2018, Wu and Zhu, 2020, Wu et al., 2021, 2023, Busa-Fekete et al., 2022].

Another related topic is the characterization of the Bayes classifier and corresponding Bayes-consistent
plug-in algorithm in multi-label learning. This includes the characterization of the Bayes classifier
for subset 0/1 loss and Hamming loss in [Cheng et al., 2010] and the characterization of the Bayes
classifier for F1 measure in [Dembczynski et al., 2011]. Dembczynski et al. [2013], Waegeman et al.
[2014] further extended the results in [Dembczynski et al., 2011] by designing a Bayes-consistent
plug-in algorithm for the Fβ measure. Koyejo et al. [2015] characterized the Bayes classifier for
general linear fractional losses with respect to the confusion matrix and designed the corresponding
plug-in algorithms in the empirical utility maximization (EUM) framework. In this framework, the
measures are directly defined as functions of the population, in contrast to a loss function that is
defined as a function over a single instance in the decision theoretic analysis (DTA) framework [Ye
et al., 2012]. Menon et al. [2019] studied the Bayes-consistency of various reduction methods with
respect to Precision@κ and Recall@κ in multi-label learning. However, all these publications only
established Bayes-consistency for specific loss functions. Can we derive a unified surrogate loss
framework that is Bayes-consistent for any multi-label loss?

Furthermore, as Awasthi, Mao, Mohri, and Zhong [2022a,b] pointed out, Bayes-consistency is an
asymptotic guarantee and does not provide convergence guarantees. It also applies only to the family
of all measurable functions unlike the restricted hypothesis sets typically used in practice. Instead,
they proposed a stronger guarantee known as H-consistency bounds, which are both non-asymptotic
and account for the hypothesis set while implying Bayes-consistency. These guarantees provide upper
bounds on the target estimation error in terms of the surrogate estimation error. Can we leverage
this state-of-the-art consistency guarantee when designing surrogate loss functions for multi-label
learning?

Moreover, one of the main concerns in multi-label learning is label correlations (see [Dembczyński
et al., 2012]). For the simplest form of multi-label loss, the popular Hamming loss, the existing
Bayes-consistent binary relevance surrogate fails to account for label correlations. Can we design
consistent loss functions that effectively account for label correlations as well?

Our Contributions. This paper directly addresses these key questions in multi-label learning. We
present a detailed study of surrogate losses and algorithms for multi-label learning, supported by
H-consistency bounds.

In Section 3, we first show that for the simplest form of multi-label loss, the popular Hamming loss,
the well-known consistent binary relevance surrogate, when using smooth losses such as logistic
losses, suffers from a sub-optimal dependency on the number of labels in terms of H-consistency
bounds. Furthermore, this loss function fails to account for label correlations.

To address these drawbacks, we introduce a novel surrogate loss, multi-label logistic loss, that
accounts for label correlations and benefits from label-independent H-consistency bounds (Section 4).
We then broaden our analysis to cover a more extensive family of multi-label losses, including all
common ones and a new extension defined based on linear-fractional functions with respect to the
confusion matrix (Section 5).

In Section 6, we also extend our multi-label logistic losses to more comprehensive multi-label
comp-sum losses, adapting comp-sum losses from standard classification to the multi-label learning.

2



We prove that this family of surrogate losses benefits from H-consistency bounds, and thus Bayes-
consistency, across any general multi-label loss. Our work thus proposes a unified surrogate loss
framework that is Bayes-consistent for any multi-label loss, significantly expanding upon previous
work which only established consistency for specific loss functions.

Additionally, we adapt constrained losses from standard classification to multi-label constrained
losses in a similar way, which also benefit from H-consistency bounds and thus Bayes-consistency
for any multi-label loss (Section 7). We further describe efficient gradient computation algorithms for
minimizing the multi-label logistic loss (Section 8).

2 Preliminaries

Multi-label learning. We consider the standard multi-label learning setting. Let X be the input space
and Y = {+1,−1}l the set of all possible labels or tags, where l is a finite number. For example, X can
be a set of images, and Y can be a set of l pre-given tags (such as ’flowers’, ’shoes’, or ’books’) that
can be associated with each image in the image tagging problem. Let n = ∣Y∣. For any instance x ∈ X
and its associated label y = (y1, . . . , yl) ∈ Y, if yi = +1, we say that label i is relevant to x. Otherwise,
it is not relevant. Let [l] = {1, . . . , l}. Given a sample S drawn i.i.d. according to some distribution
D over X × Y, the goal of multi-label learning is to learn a hypothesis h∶X × [l]→ R to minimize the
generalization error defined by a multi-label loss function L∶Hall ×X × Y→ R,

RL(h) = E
(x,y)∼D

[L(h,x, y)], (1)

where Hall is the family of all measurable hypotheses. For convenience, we abusively denote the
scoring vector by h(x) = (h(x,1), . . . , h(x, l)). Given a hypothesis set H ⊂ Hall, we denote by
R∗

L(H) = infh∈HR(h) the best-in-class error. We refer to the difference RL(h) − R∗
L(H) as the

estimation error, which is termed the excess error when H =Hall. Let sign∶ t↦ 1t≥0 − 1t<0 be the
sign function, and let t∶X→ R+ be a threshold function. The target loss function L can be typically
given by a function L mapping from Y × Y to real numbers:

L(h,x, y) = L(h(x), y), (2)
where h(x) ∶= [h1(x), . . . ,hl(x)] ∈ Y is the prediction for the input x ∈ X and hi(x) = sign(h(x, i))
for any i ∈ [l]. There are many multi-label loss functions, such as Hamming loss, (partial) ranking
loss, F1 and the more general Fβ measure loss, subset 0/1 loss, precision@κ, recall@κ, etc. [Zhang
and Zhou, 2013]. Among these, several loss functions are defined based on the prediction of the
hypothesis h(x), while others are based on the scoring vector h(x). We will specifically consider the
first type of multi-label loss in the form given in (2), which is based on some ‘distance’ between the
prediction and the true label. This includes all the loss functions previously mentioned (see Section 5
for a list of several common multi-label losses in this family) but excludes the (partial) ranking loss,
which is defined based on pairwise scores. For convenience, we may alternatively refer to L or its
induced L as the multi-label loss. Without loss of generality, we assume that L ∈ [0,1], which can
be achieved through normalization. We also denote by Lmax = maxy′,y L(y′, y). Our analysis is
general and adapts to any multi-label loss L. Note that we adhere to the decision-theoretic analysis
(DTA) framework, in which a loss function is defined over a single instance, and the measure is
the expected loss, also known as the generalization error (the expectation of the loss function over
samples). Another popular framework is empirical utility maximization (EUM), where measures are
defined directly as functions of the population, that is, as a function of the expectation over samples.

Surrogate risk minimization and consistency. Minimizing the multi-label loss L directly is com-
putationally hard for most hypothesis sets because it is discrete and non-convex. A common method
involves minimizing a smooth surrogate loss function L̃∶Hall ×X × Y→ R, which is the main focus
of this paper. Minimizing a surrogate loss directly leads to an algorithm for multi-label learning.
A desirable guarantee for the surrogate loss in multi-label learning is Bayes-consistency [Zhang,
2004a,b, Bartlett et al., 2006, Tewari and Bartlett, 2007, Steinwart, 2007, Gao and Zhou, 2011]. That
is, minimizing the surrogate loss over the family of all measurable functions leads to the minimization
of the multi-label loss over the same family:
Definition 2.1. A surrogate loss L̃ is said to be Bayes-consistent with respect to a multi-label loss L
if the following holds for any distribution and all given sequences of hypotheses {hn}n∈N ⊂Hall:

( lim
n→+∞

RL̃(hn) −R∗
L̃
(Hall) = 0) Ô⇒ ( lim

n→+∞
RL(hn) −R∗

L(Hall) = 0). (3)
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As pointed out by Awasthi, Mao, Mohri, and Zhong [2022a,b] (see also [Long and Servedio, 2013,
Zhang and Agarwal, 2020, Awasthi et al., 2021a,b, Mao et al., 2023d,c,a,b,e, Awasthi et al., 2023,
2024, Mao et al., 2024a,b,c,h,g,e,h,d,f, Mohri et al., 2024, Cortes et al., 2024]), Bayes-consistency
is an asymptotic guarantee that cannot provide any guarantee for approximate minimizers; it also
applies only to the family of all measurable functions and does not consider the hypothesis sets
typically used in practice. Instead, they propose a stronger guarantee known as H-consistency bounds,
which are both non-asymptotic and dependent on the hypothesis set, and imply Bayes-consistency
when H =Hall. These guarantees provide upper bounds on the target estimation error in terms of the
surrogate estimation error. In the multi-label learning scenario, they can be formulated as follows:

Definition 2.2. A surrogate loss L̃ is said to admit an H-consistency bound with respect to a multi-
label loss L if the following condition holds for any distribution and for all hypotheses h ∈H, given a
concave function Γ∶R+ → R+ with Γ(0) = 0:

RL(h) −R∗
L(H) +ML(H) ≤ Γ(RL̃(h) −R∗

L̃
(H) +ML̃(H)). (4)

The quantities ML̃(H) appearing in the bounds are called minimizability gaps, which measure the
difference between the best-in-class error and the expected best pointwise error for a loss function L̃
and a hypothesis set H:

ML̃(H) = R∗
L̃
(H) −E

x
[ inf
h∈H

(E
y∣x

[L̃(h,x, y)])] ≥ 0. (5)

These are inherent quantities depending on the distribution and hypothesis set, which we cannot
hope to minimize. Since Γ is concave and Γ(0) = 0, Γ is sub-additive and an H-consistency
bound (4) implies that: RL(h) −R∗

L(H) +ML(H) ≤ Γ(RL̃(h) −R∗
L̃
(H)) + Γ(ML̃(H)). Therefore,

when the surrogate estimation error (RL̃(h) −R∗
L̃
(H)) is minimized to ε, the target estimation

error (RL(h) −R∗
L(H)) is upper bounded by Γ(ε) + Γ(ML̃(H)). The minimizability gaps vanish

when H = Hall or in more general realizable cases, such as when R∗
L̃
(H) = R∗

L̃
(Hall) [Steinwart,

2007, Awasthi, Mao, Mohri, and Zhong, 2022b, Mao, Mohri, and Zhong, 2023f]. In these cases,
H-consistency bounds imply the H-consistency of a surrogate loss L̃ with respect to a multi-label loss
L: RL̃(h)−R∗

L̃
(H) ≤ ε Ô⇒ RL(h)−R∗

L(H) ≤ Γ(ε), for any ε ≥ 0. The minimizability gap ML̃(H)
is upper bounded by the approximate error AL̃(H) = R∗

L̃
(H)−Ex[infh∈Hall

(Ey∣x[L̃(h,x, , y)])] and
is generally a finer quantity [Mao et al., 2023f]. Thus, H-consistency bounds are more informative,
more favorable, and stronger than excess error bounds, and they imply these bounds when H =Hall.

Next, we will study surrogate loss functions and algorithms for multi-label learning, supported by
H-consistency bounds, the state-of-the-art consistency guarantee for surrogate risk minimization.

3 Existing consistent surrogates for the Hamming loss

In the section, we consider the simplest form of multi-label loss, the Hamming loss, defined as:

∀(h,x, y) ∈H ×X × Y, Lham(h,x, y) = Lham(h(x), y), where Lham(y′, y) =
l

∑
i=1

1yi≠y′i . (6)

The existing Bayes-consistent surrogate loss function is to transform the multi-label learning into l
independent binary classification tasks [Gao and Zhou, 2011], defined as for all (h,x, y) ∈H×X×Y,

L̃br(h,x, y) =
l

∑
i=1

Φ(yih(x, i)), (7)

where Φ∶R→ R+ is a binary margin-based loss function, such as the logistic loss u↦ log(1 + e−u).
The algorithm that minimizes this surrogate loss is known as binary relevance [Zhang and Zhou,
2013], which learns an independent binary classifier for each of the l labels. Gao and Zhou [2011,
Theorem 15] shows that L̃br is Bayes-consistent with respect to Lham if Φ is Bayes-consistent with
respect to `0−1∶ (f, x, y)↦ 1y≠sign(f(x)), the binary zero-one loss. Here, we prove a stronger result
that L̃br admits an H-consistency bound with respect to Lham with a functional form lΓ( ⋅

l
) if Φ

admits an H-consistency bounds with respect to `0−1 with a functional form Γ(⋅). Let F be a
hypothesis set consisting of functions mapping from X to R.
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Theorem 3.1. Let H = Fl. Assume that the following F-consistency bound holds in the binary
classification, for some concave function Γ∶R→ R+:

∀f ∈ F, R`0−1(f) −R∗
`0−1

(F) +M`0−1(F) ≤ Γ(RΦ(f) −R∗
Φ(F) +MΦ(F)). (8)

Then, the following H-consistency bound holds in the multi-label learning: for all h ∈H,

RLham
(h) −R∗

Lham
(H) +MLham

(H) ≤ lΓ
⎛
⎝
RL̃br

(h) −R∗
L̃br

(H) +ML̃br
(H)

l

⎞
⎠
. (9)

The proof is included in Appendix A. We say that a hypothesis set F is complete if {f(x)∶ f ∈ F} = R
for all x ∈ X. This notion of completeness is broadly applicable and holds for commonly used
hypothesis sets in practice, including linear hypotheses, multi-layer feed-forward neural networks,
and all measurable functions. For such complete hypothesis sets F and with smooth functions Φ like
the logistic loss function, Γ admits a square root dependency in the binary classification [Awasthi
et al., 2022a, Mao et al., 2024h]. Thus, by Theorem 3.1, we obtain the following result.
Corollary 3.2. Let H = Fl. Assume that F is complete and Φ(u) = log(1+e−u). Then, the following
H-consistency bound holds in the multi-label learning: for all h ∈H,

RLham
(h) −R∗

Lham
(H) +MLham

(H) ≤ l 1
2 (RL̃br

(h) −R∗
L̃br

(H) +ML̃br
(H))

1
2
. (10)

Since t↦ t
1
2 is sub-additive, the right-hand side of the H-consistency bound in Corollary 3.2 can be

further upper bounded by l
1
2 (RL̃br

(h) −R∗
L̃br

(H))
1
2 + l 1

2 (ML̃br
(H))

1
2 . This implies that when the

estimation error of the surrogate loss L̃br is reduced to ε, the corresponding estimation error of the

Hamming loss is upper bounded by l
1
2 ε

1
2 + l 1

2 (ML̃br
(H))

1
2 −MLham

(H). In the nearly realizable
cases where minimizability gaps are negligible, this upper bound approximates to

RLham
(h) −R∗

Lham
(H) ≤ l 1

2 ε
1
2 . (11)

Therefore, as the number of labels l increases, the bound becomes less favorable. Furthermore, the
loss function L̃br clearly fails to account for the inherent correlations among labels. For instance,
‘coffee’ and ’mug’ are more likely to co-occur than ‘coffee’ and ‘umbrella’. Additionally, L̃br is only
Bayes-consistent with respect to the Hamming loss and cannot yield risk-minimizing predictions for
other multi-label losses such as subset 0/1 loss or Fβ-measure loss [Dembczyński et al., 2012]. To
address these drawbacks, we will introduce a new surrogate loss in the next section.

4 Multi-label logistic loss

In this section, we define a new surrogate loss for Hamming loss in multi-label learning that accounts
for label correlations and benefits from label-independent H-consistency bounds. This loss function
can be viewed as a generalization of the (multinomial) logistic loss [Verhulst, 1838, 1845, Berkson,
1944, 1951], used in standard classification, to multi-label learning. Thus, we will refer to it as
multi-label logistic loss. It is defined as follows: for all (h,x, y) ∈H ×X × Y,

L̃log(h,x, y) = ∑
y′∈Y

(1 − Lham(y′, y)) log
⎛
⎝ ∑y′′∈Y

e∑
l
i=1(y

′′
i −y

′
i)h(x,i)

⎞
⎠
. (12)

This formulation can be interpreted as a weighted logistic loss, where (1 − Lham(⋅, y)) serves as a
weight vector. Additionally, the term ∑li=1 (y′′i − y′i)h(x, i) represents the difference in the scores
between the label y′ and any other label y′′, where these scores account for the correlations among
the labels yi within the logarithmic function.

The next result shows that the multi-label logistic loss benefits from a favorable H-consistency bound
with respect to Lham, without dependency on the number of labels l. We assume that H = Fl and F
is complete, conditions that typically hold in practice.
Theorem 4.1. Let H = Fl. Assume that F is complete. Then, the following H-consistency bound
holds in the multi-label learning: for all h ∈H,

RLham
(h) −R∗

Lham
(H) +MLham

(H) ≤ 2(RL̃log
(h) −R∗

L̃log
(H) +ML̃log

(H))
1
2
. (13)
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Since t↦ t
1
2 is sub-additive, the right-hand side of the H-consistency bound in Theorem 4.1 can be

further upper bounded by 2(RL̃log
(h) −R∗

L̃log
(H))

1
2 + 2(ML̃log

(H))
1
2 . This implies that when the

estimation error of the surrogate loss L̃log is reduced up to ε, the corresponding estimation error of

the Hamming loss is upper bounded by 2ε
1
2 + 2(ML̃log

(H))
1
2 −MLham

(H). In the nearly realizable
cases where minimizability gaps are negligible, this upper bound approximates to

RLham
(h) −R∗

Lham
(H) ≤ 2ε

1
2 . (14)

Therefore, the bound is independent of the number of labels l. This contrasts with the bound for L̃br

shown in (11), where a label-dependent factor `
1
2 replaces the constant factor 2, making it significantly

less favorable.

The proof of Theorem 4.1 is included in Appendix B.2. We first present a general tool (Theorem B.1)
in Appendix B.1, which shows that to derive H-consistency bounds in multi-label learning with a
concave function Γ, it is only necessary to upper bound the conditional regret of the target multi-label
loss by that of the surrogate loss with the same Γ. This generalizes [Awasthi, Mao, Mohri, and
Zhong, 2022b, Theorem 2] in standard multi-class classification to multi-label learning. Next, we
characterize the conditional regret of the target multi-label loss, such as Hamming loss, in Lemma B.2
found in Appendix B.1, under the given assumption. By using Lemma B.2, we upper bound the
conditional regret of Lham by that of the surrogate loss L̃log with a concave function Γ(t) = 2

√
t.

When H =Hall, minimizability gaps ML̃log
(H) and MLham

(H) vanish, Theorem 4.1 implies excess
error bound and Bayes-consistency of multi-label logistic loss with respect to the Hamming loss.
Corollary 4.2. The following excess error bound holds in the multi-label learning: for all h ∈Hall,

RLham
(h) −R∗

Lham
(Hall) ≤ 2(RL̃log

(h) −R∗
L̃log

(Hall))
1
2
. (15)

Moreover, L̃log is Bayes-consistent with respect to Lham.

Approaches like binary relevance surrogate loss treat each label independently. This overlooks crucial
inherent information encoded in the relationships between labels. Our new form of surrogate losses
explicitly captures these label correlations. Both the binary relevance surrogate loss and our new
surrogate loss are Bayes-consistent, meaning that minimizing them over the family of all measurable
functions approximates the Bayes-optimal solution. However, our correlation-aware surrogate losses
can converge faster, which is reflected in their more favorable H-consistency bounds, independent of
the number of labels.

It is known that L̃br is only Bayes-consistent with respect to the Hamming loss and Precision@κ, and
can be arbitrarily bad for other multi-label losses such as Fβ-measure loss [Dembczynski et al., 2011].
Instead, we will show in the next section that our surrogate loss L̃log adapts to and is Bayes-consistent
with respect to an extensive family of multi-label losses, including the Fβ measure loss.

5 Extension: general multi-label losses

In this section, we broaden our analysis to cover a more extensive family of multi-label losses,
including all common ones and a new extension defined based on linear-fractional functions with
respect to the confusion matrix. Note that several loss functions are defined over the space {0,1}l,
rather than {+1,−1}l. To accommodate this difference, any pair y, y′ ∈ Y = {+1,−1}l can be
projected onto {0,1}l by letting y = y+1

2
and y′ = y′+1

2
, where 1 ∈ Rl is the vector with all elements

equal to 1. Several common multi-label losses are defined as follows.

Hamming loss: L(y′, y) = ∑li=1 1yi≠y′i .

Fβ-measure loss: L(y′, y) = 1 − (1+β2)y′⋅y
β2∥y∥1+∥y′∥1

.

Subset 0/1 loss: L(y′, y) = maxi∈[l] 1y′i≠yi .

Jaccard distance: L(y′, y) = 1 − y′⋅y
∥y∥1+∥y′∥1−y′⋅y

6



Precision@κ: L(y′, y) = 1 − 1
κ ∑i∈T(y′) 1yi=1 subject to y′ ∈ Yκ, where Yκ = {y ∈ Y∶ ∥y∥1 = κ} and

T(y′) = {i ∈ [l]∶ y′i = 1}.

Recall@κ: L(y′, y) = 1 − 1
∥y∥1
∑i∈T(y′) 1yi=1 subject to y′ ∈ Yκ, where Yκ = {y ∈ Y∶ ∥y∥1 = κ} and

T(y′) = {i ∈ [l]∶ y′i = 1}.

More generally, we can define a multi-label loss based on true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) , which can be written explicitly as follows:

TP = y′ ⋅ y TN = ∥y∥1 − y
′ ⋅ y

FP = ∥y′∥1 − y
′ ⋅ y, FN = l + y′ ⋅ y − ∥y∥1 − ∥y′∥1

Similar to [Koyejo et al., 2014, 2015], we now define a general family of multi-label losses as
linear-fractional functions in terms of these four quantities:

L(y′, y) = a0 + a11TP + a10FP + a01FN + a00TN
b0 + b11TP + b10FP + b01FN + b00TN

. (16)

It can be shown that the aforementioned Hamming loss, Fβ-measure loss, Jaccard distance, precision
and recall all belong to this family. Note that the previous definitions in [Koyejo et al., 2014, 2015]
are within the empirical utility maximization (EUM) framework [Ye et al., 2012], where the measures
are directly defined as functions of the population. We generalize their definition to the decision
theoretic analysis (DTA) framework, in terms of loss functions defined over y and y′.

Moreover, we can consider extending multi-label losses (16) to non-linear fractional functions of
these four quantities, or more generally, to any other forms, as long as they are defined over the space
Y × Y.

Another important family of multi-label losses is the tree distance loss, used in cases of hierarchical
classes. In many practical applications, the class labels exist within a predefined hierarchy. For
example, in the image tagging problem, class labels might include broad categories such as ‘animals’
or ‘vehicles’, which further subdivide into more specific classes like ‘mammals’ and ‘birds’ for
animals, or ‘cars’ and ‘trucks’ for vehicles. Each of these subcategories can be divided even further,
showcasing a clear hierarchical structure.

Tree distance: Let T = (Y,E,W ) be a tree over the label space Y, with edge set E and positive,
finite edge lengths specified by W . Suppose r ∈ Y is designated as the root node. Then, LT (y′, y) =
the shortest path length in T between y and y′.

Despite the widespread use of hierarchical classes in practice, to our knowledge, no Bayes-consistent
surrogate has been proposed for the tree distance loss in multi-label learning. Next, we will show that
our multi-label logistic loss can accommodate all these different loss functions, including the tree
distance loss. For any general multi-label loss L, we define the multi-label logistic loss as follows:

∀(h,x, y) ∈H ×X × Y, L̃log(h,x, y) = ∑
y′∈Y

(1 − L(y′, y)) log
⎛
⎝ ∑y′′∈Y

e∑
l
i=1(y

′′
i −y

′
i)h(x,i)

⎞
⎠
. (17)

Here, L can be chosen as all the multi-label losses mentioned above. Next, we will show that L̃log

benefits from H-consistency bounds and Bayes consistency with respect to any of these loss functions.
Theorem 5.1. Let H = Fl. Assume that F is complete. Then, the following H-consistency bound
holds in the multi-label learning:

∀h ∈H, RL(h) −R∗
L(H) +ML(H) ≤ 2(RL̃log

(h) −R∗
L̃log

(H) +ML̃log
(H))

1
2
. (18)

The proof of Theorem 5.1 is basically the same as that of Theorem 4.1, modulo replacing the Hamming
loss Lham with a general multi-label loss L. We include it in Appendix B.3 for completeness. When
H = Hall, minimizability gaps ML̃log

(H) and ML(H) vanish, Theorem 4.1 implies excess error
bound and Bayes-consistency of multi-label logistic loss with respect to any multi-label loss.
Corollary 5.2. The following excess error bound holds in the multi-label learning: for all h ∈Hall,

RL(h) −R∗
L(Hall) ≤ 2(RL̃log

(h) −R∗
L̃log

(Hall))
1
2
. (19)

Moreover, L̃log is Bayes-consistent with respect to L.
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Corollary 5.2 is remarkable, as it demonstrates that a unified surrogate loss, L̃log, is Bayes-consistent
for any multi-label loss, significantly expanding upon previous work which only established con-
sistency for specific loss functions. Furthermore, Theorem 5.1 provides a stronger guarantee than
Bayes-consistency, which is both non-asymptotic and specific to the hypothesis set used.

Minimizing the multi-label logistic loss directly leads to the effective algorithm in multi-label learning.
We further discuss the efficiency and practicality of this algorithm in Section 8, where we describe
efficient gradient computation.

6 Extension: multi-label comp-sum losses

In this section, we further extend our multi-label logistic losses to more comprehensive multi-
label comp-sum losses, adapting comp-sum losses [Mao, Mohri, and Zhong, 2023f] from standard
classification to the multi-label learning. As shown by Mao, Mohri, and Zhong [2023f], a comp-sum
loss is defined via a composition of the function Ψ and a sum, and includes the logistic loss (Ψ(u) =
log(u)) [Verhulst, 1838, 1845, Berkson, 1944, 1951], the sum-exponential loss (Ψ(u) = u − 1)
[Weston and Watkins, 1998, Awasthi et al., 2022b], the generalized cross-entropy loss (Ψ(u) =
1
q
(1 − 1

uq
), q ∈ (0,1)) [Zhang and Sabuncu, 2018], and the mean absolute error loss (Ψ(u) = 1 − 1

u
)

[Ghosh et al., 2017] as special cases.

Given any multi-label loss L, we will define our novel multi-label comp-sum losses as follows:

∀(h,x, y) ∈H ×X × Y, L̃comp(h,x, y) = ∑
y′∈Y

(1 − L(y′, y))Ψ
⎛
⎝ ∑y′′∈Y

e∑
l
i=1(y

′′
i −y

′
i)h(x,i)

⎞
⎠
. (20)

This formulation can be interpreted as a weighted comp-sum loss, where (1 − L(⋅, y)) serves as a
weight vector. Additionally, this formulation accounts for label correlations among the yis within the
function Ψ. Next, we prove that this family of surrogate losses benefits from H-consistency bounds,
and thus Bayes-consistency, across any general multi-label loss.
Theorem 6.1. Let H = Fl. Assume that F is complete. Then, the following H-consistency bound
holds in the multi-label learning:

∀h ∈H, RL(h) −R∗
L(H) +ML(H) ≤ Γ(RL̃comp

(h) −R∗
L̃comp

(H) +ML̃comp
(H)), (21)

where Γ(t) = 2
√
t when Ψ(u) = log(u) or u− 1; Γ(t) = 2

√
nqt when Ψ(u) = 1

q
(1 − 1

uq
), q ∈ (0,1);

and Γ(t) = nt when Ψ(u) = 1 − 1
u

.

Corollary 6.2. The following excess error bound holds in the multi-label learning:

∀h ∈Hall, RL(h) −R∗
L(Hall) ≤ Γ(RL̃comp

(h) −R∗
L̃comp

(Hall)), (22)

where Γ(t) = 2
√
t when Ψ(u) = log(u) or u− 1; Γ(t) = 2

√
nqt when Ψ(u) = 1

q
(1 − 1

uq
), q ∈ (0,1);

and Γ(t) = nt when Ψ(u) = 1 − 1
u

. Moreover, L̃comp with these choices of Ψ are Bayes-consistent
with respect to L.

The proof of Theorem 6.1 is included in Appendix B.4. Similar to the proof of Theorem 5.1, we make
use of Theorem B.1 and Lemma B.2 in Appendix B.1. However, upper bounding the conditional
regret of L by that of the surrogate loss L̃comp for different choices of Ψ requires a distinct analysis
depending on the specific form of the function Ψ, leading to various concave functions Γ. Our proof
is inspired by the proof of H-consistency bounds for comp-sum losses in [Mao et al., 2023f] through
the introduction of a parameter µ and optimization. However, the novelty lies in the adaptation of µ
with a quantity s tailored to multi-label loss functions instead of the score vector h itself.

Note that, as with Ψ(u) = log(u) shown in Section 5, for Ψ(u) = u − 1, the bounds are also
independent of the number of labels and are favorable. However, for other choices of Ψ, the bounds
exhibit a worse dependency on n, which can be exponential with respect to l.

7 Extension: multi-label constrained losses

In this section, we introduce another novel family of surrogate losses, adapting constrained losses
[Lee et al., 2004, Awasthi et al., 2022b] from standard classification to multi-label constrained losses
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in a similar way. Given any general multi-label loss L, we define multi-label constrained losses as:

∀(h,x, y) ∈H ×X × Y, L̃cstnd(h,x, y) = ∑
y′∈Y

L(y′, y)Φ(−
l

∑
i=1

y′ih(x, i)). (23)

where ∑y∈Y∑li=1 yih(x, i) = 0. Next, we show that L̃cstnd also benefit from H-consistency bounds
and thus Bayes-consistency for any multi-label loss.
Theorem 7.1. Let H = Fl. Assume that F is complete Then, the following H-consistency bound
holds in the multi-label learning:

∀h ∈H, RL(h) −R∗
L(H) +ML(H) ≤ Γ(RL̃cstnd

(h) −R∗
L̃cstnd

(H) +ML̃cstnd
(H)), (24)

where Γ(t) = 2
√
Lmaxt when Φ(u) = e−u; Γ(t) = 2

√
t when Φ(u) = max{0,1 − u}2; and Γ(t) = t

when Φ(u) = max{0,1 − u} or Φ(u) = min{max{0,1 − u/ρ},1}, ρ > 0.

Corollary 7.2. The following excess error bound holds in the multi-label learning:

∀h ∈Hall, RL(h) −R∗
L(Hall) ≤ Γ(RL̃cstnd

(h) −R∗
L̃cstnd

(Hall)), (25)

where Γ(t) = 2
√
Lmaxt when Φ(u) = e−u; Γ(t) = 2

√
t when Φ(u) = max{0,1 − u}2; and Γ(t) = t

when Φ(u) = max{0,1 − u} or Φ(u) = min{max{0,1 − u/ρ},1}, ρ > 0. Moreover, L̃cstnd with
these choices of Φ are Bayes-consistent with respect to L.

The proof of Theorem 7.1 is included in Appendix B.5. As with the proof of Theorem 6.1, we use
Theorem B.1 and Lemma B.2 from Appendix B.1, and aim to upper bound the conditional regret of L
by that of the surrogate losses L̃comp using various concave functions Γ. However, the difference lies
in our introduction and optimization of a parameter µ tailored to a quantity z that is specific to the
form of the multi-label constrained loss.

These results show that in cases where minimizability gaps vanish, reducing the estimation error of
L̃cstnd to ε results in the estimation error of target multi-label loss L being upper bounded by either√
ε or ε, modulo a constant that is independent of the number of labels.

8 Efficient Gradient Computation

In this section, we demonstrate the efficient computation of the gradient for the multi-label logistic
loss L̃log at any point (xj , yj). This loss function is therefore both theoretically grounded in H-
consistency bounds and computationally efficient. Consider the labeled pair (xj , yj) and a hypothesis
h in H. The expression for L̃log(h,xj , yj) can be reformulated as follows:

L̃log(h,xj , yj) = ∑
y′∈Y

(1 − L(y′, yj)) log
⎛
⎝ ∑y′′∈Y

e∑
l
i=1(y

′′
i −y

′
i)h(x

j ,i)⎞
⎠

= − ∑
y′∈Y

(1 − L(y′, yj))
l

∑
i=1

y′ih(xj , i) + ∑
y′∈Y

(1 − L(y′, yj)) log
⎛
⎝∑y∈Y

e∑
l
i=1 yih(x

j ,i)⎞
⎠
.

Let L1(j) = ∑y∈Y(1 − L(y, yj)), which is independent of h and can be pre-computed. It can also be
invariant with respect to j and is a fixed constant for many loss functions such as the Hamming loss.

For many commonly used loss functions, the terms involving sums over all possible label combina-
tions can be simplified analytically. To illustrate this, we provide explicit formulae for the Hamming
loss and Fβ measure loss functions:

Hamming loss: ∑y∈Y(1 − Lham(y, yj)) = −(l − 1)2l + ∑y∈Y(l − Lham(y, yj)) = −(l − 1)2l +
∑y∈Y∑li=1 1yi=yji

= −(l − 1)2l +∑li=1∑y∈Y 1yi=yji
= −(l − 1)2l + 2l−1l = 2l−1(2 − l).

Fβ measure: ∑y∈Y(1 − LFβ(y, yj)) = ∑y∈Y (1+β2)y⋅yj
β2∥y∥1+∥yj∥1

= ∑nk=0∑y∈Gk
(1+β2)y⋅yj
β2k+∥yj∥1

=

∑nk=0
(1+β2)∑li=1 y

j
i
(n−1
k−1

)
β2k+∥yj∥1

= ∑lk=0
(1+β2)∥yj∥1( l−1

k−1
)

β2k+∥yj∥1
, where Gk = {y ∈ Y ∶ ∥y∥1 = k}.
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A similar analysis applies to many other loss functions, thus, these terms do not affect the
tractability of our algorithms. Next, we will consider the hypothesis set of linear functions
H = {x↦w ⋅Ψ(x, i)∶w ∈ Rd}, where Ψ is a feature mapping from X × [l] to Rd. Using the
shorthand w for h, we can rewrite L̃log at (xj , yj) as follows:

L̃log(w, xj , yj) = −w ⋅
⎡⎢⎢⎢⎢⎣
∑
y′∈Y

(1 − L(y′, yj))(
l

∑
i=1

y′iΨ(xj , i))
⎤⎥⎥⎥⎥⎦
+ L1(j) log(Zw,j), (26)

where Zw,j = ∑y∈Y ew⋅(∑li=1 yiΨ(xj ,i)). Then, we can compute the gradient of L̃log at any w ∈ Rd:

∇L̃log(w) = − ∑
y′∈Y

(1 − L(y′, yj))(
l

∑
i=1

y′iΨ(xj , i)) + L1(j)∑
y∈Y

ew⋅(∑li=1 yiΨ(xj ,i))

Zw,j
(
l

∑
i=1

yiΨ(xj , i))

= − ∑
y′∈Y

(1 − L(y′, yj))(
l

∑
i=1

y′iΨ(xj , i)) + L1(j) E
y∼qw

[(
l

∑
i=1

yiΨ(xj , i))], (27)

where qw is a distribution over Y with probability mass function qw(y) = e
w⋅(∑li=1 yiΨ(x

j,i))

Zw,j
. By

rearranging the terms in (27), we obtain the following result.

Lemma 8.1. The gradient of L̃log at any w ∈ Rd can be expressed as follows:

∇L̃log(w) =
l

∑
i=1

Ψ(xj , i)L2(i, j) + L1(j)
l

∑
i=1

Ψ(xj , i)Qw(i) (28)

where L2(i, j) = ∑y∈Y(1 − L(y, yj))yi, L1(j) = ∑y∈Y(1 − L(y, yj)), Qw(i) = ∑y∈Y qw(y)yi,
qw(y) = e

w⋅(∑li=1 yiΨ(x
j,i))

Zw,j
, and Zw,j = ∑y∈Y ew⋅(∑li=1 yiΨ(xj ,i)). The overall time complexity for

gradient computation is O(l).

Here, the evaluation of L2(i, j), i ∈ [l] and L1(j) can be computed once and for all, before any
gradient computation. For evaluation of Qw(i), note that it can be equivalently written as follows:

Qw(i) = ∑
y∈Y

ew⋅Ψ̃(xj ,y)

∑y∈Y ew⋅Ψ̃(xj ,y)
yi, with Ψ̃(xj , y) =

l

∑
i=1

yiΨ(xj , i), (29)

where Ψ̃(xj , y) admits a Markovian property of order 1 [Manning and Schutze, 1999, Cortes et al.,
2016]. Thus, as shown by Cortes et al. [2016, 2018], Qw(i) can be evaluated efficiently by running
two single-source shortest-distance algorithms over the (+,×) semiring on an appropriate weighted
finite automaton (WFA). More specifically, in our case, the WFA can be described as follows: there
are (l + 1) vertices labeled 0, . . . , l. There are two transitions from k to (k + 1) labeled with +1 and
−1. The weight of the transition with label +1 is exp(+w ⋅ Ψ̃(xj , k)), and exp(−w ⋅ Ψ̃(xj , k)) for
the other. 0 is the initial state, and l the final state. The overall time complexity of computing all
quantities Qw(i), i ∈ [l], is O(l).

9 Conclusion

We presented a comprehensive analysis of surrogate losses for multi-label learning, establishing
strong consistency guarantees. We introduced a novel multi-label logistic loss that addresses the
shortcomings of existing methods and enjoys label-independent consistency bounds. Our proposed
family of multi-label comp-sum losses offers a unified framework with strong consistency guarantees
for any general multi-label loss, significantly expanding upon previous work. Additionally, we
presented efficient algorithms for their gradient computation. While empirical validation is left for
future work, our theoretical results demonstrate the potential of these new surrogate losses to advance
multi-label learning. This unified framework shows promise for broader applications and paves the
way for future research in multi-label learning and related areas.

10



References
P. Awasthi, N. Frank, A. Mao, M. Mohri, and Y. Zhong. Calibration and consistency of adversarial

surrogate losses. Advances in Neural Information Processing Systems, pages 9804–9815, 2021a.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. A finer calibration analysis for adversarial robustness.
arXiv preprint arXiv:2105.01550, 2021b.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. H-consistency bounds for surrogate loss minimizers.
In International Conference on Machine Learning, 2022a.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. Multi-class H-consistency bounds. In Advances in
neural information processing systems, pages 782–795, 2022b.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. Theoretically grounded loss functions and algorithms
for adversarial robustness. In International Conference on Artificial Intelligence and Statistics,
pages 10077–10094, 2023.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. DC-programming for neural network optimizations.
Journal of Global Optimization, 2024.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal
of the American Statistical Association, 101(473):138–156, 2006.

J. Berkson. Application of the logistic function to bio-assay. Journal of the American Statistical
Association, 39:357—-365, 1944.

J. Berkson. Why I prefer logits to probits. Biometrics, 7(4):327—-339, 1951.

J. Bogatinovski, L. Todorovski, S. Džeroski, and D. Kocev. Comprehensive comparative study of
multi-label classification methods. Expert Systems with Applications, 203:117215, 2022.

R. Busa-Fekete, H. Choi, K. Dembczynski, C. Gentile, H. Reeve, and B. Szorenyi. Regret bounds for
multilabel classification in sparse label regimes. In Advances in Neural Information Processing
Systems, pages 5404–5416, 2022.

W. Cheng, E. Hüllermeier, and K. J. Dembczynski. Bayes optimal multilabel classification via
probabilistic classifier chains. In international conference on machine learning, pages 279–286,
2010.

C. Cortes, V. Kuznetsov, M. Mohri, and S. Yang. Structured prediction theory based on factor graph
complexity. In Advances in Neural Information Processing Systems, 2016.

C. Cortes, V. Kuznetsov, M. Mohri, D. Storcheus, and S. Yang. Efficient gradient computation for
structured output learning with rational and tropical losses. In Advances in Neural Information
Processing Systems, 2018.

C. Cortes, A. Mao, C. Mohri, M. Mohri, and Y. Zhong. Cardinality-aware set prediction and top-k
classification. In Advances in neural information processing systems, 2024.

K. Dembczynski, W. Waegeman, W. Cheng, and E. Hüllermeier. An exact algorithm for f-measure
maximization. In Advances in neural information processing systems, 2011.

K. Dembczynski, W. Kotłowski, and E. Hüllermeier. Consistent multilabel ranking through univariate
loss minimization. In Proceedings of the 29th International Coference on International Conference
on Machine Learning, pages 1347–1354, 2012.
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A Proof of H-consistency bounds for existing surrogate losses (Theorem 3.1)

Theorem 3.1. Let H = Fl. Assume that the following F-consistency bound holds in the binary
classification, for some concave function Γ∶R→ R+:

∀f ∈ F, R`0−1(f) −R∗
`0−1

(F) +M`0−1(F) ≤ Γ(RΦ(f) −R∗
Φ(F) +MΦ(F)). (8)

Then, the following H-consistency bound holds in the multi-label learning: for all h ∈H,

RLham
(h) −R∗

Lham
(H) +MLham

(H) ≤ lΓ
⎛
⎝
RL̃br

(h) −R∗
L̃br

(H) +ML̃br
(H)

l

⎞
⎠
. (9)

Proof. Let p(y ∣ x) = P(Y = y ∣ X = x) be the conditional probability of Y = y given X = x.
Given a multi-label surrogate loss L̃ and a hypothesis set H, we denote the conditional error by
CL̃(h,x) = Ey∣x[L̃(h,x, y)], the best-in-class conditional error by C∗

L̃
(H, x) = infh∈H CL̃(h,x), and

the conditional regret by ∆CL̃,H(h,x) = CL̃(h,x) − C∗
L̃
(H, x). We can express the conditional error

of the hamming loss and the surrogate loss L̃br as follows:

CLham
(h,x) = ∑

y∈Y
p(y ∣ x)

l

∑
i=1

1yi≠h(x,i)

=
l

∑
i=1

⎛
⎝ ∑
y∶yi=+1

p(y ∣ x)11≠sign(h(x,i)) + ∑
y∶yi=−1

p(y ∣ x)1−1≠sign(h(x,i))
⎞
⎠

CL̃br
(h,x) = ∑

y∈Y
p(y ∣ x)

l

∑
i=1

Φ(yih(x, i))

=
l

∑
i=1

⎛
⎝ ∑
y∶yi=+1

p(y ∣ x)Φ(h(x, i)) + ∑
y∶yi=−1

p(y ∣ x)Φ(−h(x, i))
⎞
⎠

Let qi(+1 ∣ x) = ∑y∶yi=+1 p(y ∣ x) and qi(−1 ∣ x) = ∑y∶yi=−1 p(y ∣ x). Let fi = h(⋅, i) ∈ F, for
all i ∈ [l]. Then, it is clear that the conditional regrets of Lham and L̃br can be expressed as the
corresponding conditional regrets of `0−1 and Φ under this new introduced new distribution:

∆CLham,H(h,x) =
l

∑
i=1

∆C`0−1,F(fi, x), ∆CL̃br,H
(h,x) =

l

∑
i=1

∆CΦ,F(fi, x). (30)

Since we have ∆C`0−1,F(fi, x) ≤ Γ(∆CΦ,F(fi, x)) under the assumption, we obtain

∆CLham,H(h,x) =
l

∑
i=1

∆C`0−1,F(fi, x) ≤
l

∑
i=1

Γ(∆CΦ,F(fi, x))

≤ lΓ(1

l

l

∑
i=1

∆CΦ,F(fi, x)) (concavity of Γ)

= lΓ(1

l
∆CL̃br,H

(h,x)).

By taking the expectation on both sides and using the Jensen’s inequality, we have

RLham
(h) −R∗

Lham
(H) +MLham

(H) = E
x
[∆CLham,H(h,x)]

≤ E
x
[lΓ(1

l
∆CL̃br,H

(h,x))]

≤ lΓ
⎛
⎝
Ex[∆CL̃br,H

(h,x)]
l

⎞
⎠

(concavity of Γ)

= lΓ
⎛
⎝
RL̃br

(h) −R∗
L̃br

(H) +ML̃br
(H)

l

⎞
⎠
.

This completes the proof.
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B Proofs of H-consistency bounds for new surrogate losses

B.1 Auxiliary definitions and results (Theorem B.1 and Lemma B.2)

Before proceeding with the proof, we first introduce some notation and definitions. Given a multi-
label surrogate loss L̃ and a hypothesis set H, we denote the conditional error by CL̃(h,x) =
Ey∣x[L̃(h,x, y)], the best-in-class conditional error by C∗

L̃
(H, x) = infh∈H CL̃(h,x), and the condi-

tional regret by ∆CL̃,H(h,x) = CL̃(h,x) − C∗
L̃
(H, x). We then present a general theorem, which

shows that to derive H-consistency bounds in multi-label learning with a concave function Γ, it is
only necessary to upper bound the conditional regret of the target multi-label loss by that of the
surrogate loss with the same Γ.

Theorem B.1. Let L be a multi-label loss and L̃ be a surrogate loss. Given a concave function
Γ∶R+ → R+. If the following condition holds for all h ∈H and x ∈ X:

∆CL,H(h,x) ≤ Γ(∆CL̃,H(h,x)), (31)

then, for any distribution and for all hypotheses h ∈H,

RL(h) −R∗
L(H) +ML(H) ≤ Γ(RL̃(h) −R∗

L̃
(H) +ML̃(H)). (32)

Proof. By the definitions, the expectation of the conditional regrets for L and L̃ can be expressed as:

E
x
[∆CL,H(h,x)] = RL(h) −R∗

L(H) +ML(H)

E
x
[∆CL̃,H(h,x)] = RL̃(h) −R∗

L̃
(H) +ML̃(H).

Thus, by taking the expectation on both sides of (31) and using Jensen’s inequality, we have

RL(h) −R∗
L(H) +ML(H) = E

x
[∆CL,H(h,x)]

≤ E
x
[Γ(∆CL̃,H(h,x))] (Eq. (31))

≤ Γ(E
x
[∆CL̃,H(h,x)]) (concavity of Γ)

= Γ(RL̃(h) −R∗
L̃
(H) +ML̃(H)).

This completes the proof.

To derive H-consistency bounds using Theorem B.1, we will characterize the conditional regret
of a multi-label loss L. For simplicity, we first introduce some notation. For any x ∈ X, let
y(x) = argminy′∈YEy∣x[L(y′, y)] ∈ Y, where we choose the label with the lowest index under the
natural ordering of labels as the tie-breaking strategy. To simplify the notation further, we will drop
the dependency on x. Specifically, we use y to denote y(x) and h to denote h(x). Additionally, we
define ch = Ey∣x[L(h, y)], cy = Ey∣x[L(y, y)] and cy′ = Ey∣x[L(y′, y)], ∀y′ ∈ Y.

Lemma B.2. Let H = Fl. Assume that F is complete. Then, the conditional regret of a multi-label
loss L can be expressed as follows: ∆CL,H(h,x) = ch − cy.

Proof. By definition, the conditional error of L can be expressed as follows:

CL(h,x) = E
y∣x

[L(h,x, y)] = E
y∣x

[L(h(x), y)] = ch. (33)

Since H = Fl and F is complete, for any x ∈ X, {h(x)∶h ∈H} = Y. Then, the best-in-class
conditional error of L can be expressed as follows:

C∗L(H, x) = inf
h∈H

CL(h,x) = inf
h∈H

E
y∣x

[L(h(x), y)] = E
y∣x

[L(y(x), y)] = cy. (34)

Therefore, ∆CL,H(h,x) = CL(h,x) − C∗L(H, x) = ch − cy.

Next, by using Lemma B.2, we will upper bound the conditional regret of the target multi-label loss L
by that of the surrogate loss L̃ with a concave function Γ.
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B.2 Proof of Theorem 4.1

Theorem 4.1. Let H = Fl. Assume that F is complete. Then, the following H-consistency bound
holds in the multi-label learning: for all h ∈H,

RLham
(h) −R∗

Lham
(H) +MLham

(H) ≤ 2(RL̃log
(h) −R∗

L̃log
(H) +ML̃log

(H))
1
2
. (13)

Proof. We will use the following notation adapted to the Hamming loss: ch = Ey∣x[Lham(h, y)],
cy = Ey∣x[L(y, y)] and cy′ = Ey∣x[Lham(y′, y)], ∀y′ ∈ Y. We will denote by s(h,x, y′) =

e∑
l
i=1 y

′
ih(x,i)

∑y′′∈Y e∑
l
i=1

y′′
i
h(x,i) and simplify notation by using sy′ , thereby dropping the dependency on h and x.

It is clear that sy′ ∈ [0,1]. Then, the conditional error of L̃log can be expressed as follows:

CL̃log
(h,x) = E

y∣x

⎡⎢⎢⎢⎢⎣
∑
y′∈Y

(1 − Lham(y′, y)) log
⎛
⎝ ∑y′′∈Y

e∑
l
i=1(y

′′
i −y

′
i)h(x,i)

⎞
⎠

⎤⎥⎥⎥⎥⎦
= − ∑

y′∈Y
(1 − cy′) log(sy′)

For any h ≠ y, we define sµ as follows: set sµy′ = sy′ for all y′ ≠ y and y′ ≠ h; define sµh = sy − µ; and
let sµy = sh + µ. Note that sµ can be realized by some h′ ∈ H due to the completeness assumption.
Then, we have

∆CL̃log,H
(h,x) ≥

⎛
⎝
− ∑
y′∈Y

(1 − cy′) log(sy′)
⎞
⎠
− inf
µ∈R

⎛
⎝
− ∑
y′∈Y

(1 − cy′) log(sµy′)
⎞
⎠

= sup
µ∈R

{(1 − ch)[log(sy − µ) − log(sh)] + (1 − cy)[log(sh + µ) − log(sy)]}

= (1 − cy) log
(sh + sy)(1 − cy)
sy(2 − ch − cy)

+ (1 − ch) log
(sh + sy)(1 − ch)
sh(2 − ch − cy)

(supremum is attained when µ∗ = −(1−ch)sh+(1−cy)sy
2−cy−ch )

≥ (1 − cy) log
2(1 − cy)

(2 − ch − cy)
+ (1 − ch) log

2(1 − ch)
(2 − ch − cy)

(minimum is attained when sh = sy since ch ≥ cy and sh ≥ sy)

≥ (ch − cy)2

2(2 − ch − cy)
(a log 2a

a+b + b log 2b
a+b ≥

(a−b)2

2(a+b) ,∀a, b ∈ [0,1])

≥ (ch − cy)2

4
.

Therefore, by Lemma B.2, ∆CLham,H(h,x) ≤ 2(∆CL̃log,H
(h,x))

1
2 . By Theorem B.1, we complete

the proof.
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B.3 Proof of Theorem 5.1

Theorem 5.1. Let H = Fl. Assume that F is complete. Then, the following H-consistency bound
holds in the multi-label learning:

∀h ∈H, RL(h) −R∗
L(H) +ML(H) ≤ 2(RL̃log

(h) −R∗
L̃log

(H) +ML̃log
(H))

1
2
. (18)

Proof. The proof is basically the same as that of Theorem 4.1, modulo replacing the Hamming loss
Lham with a general multi-label loss L. We adopt the following notation: ch = Ey∣x[L(h, y)], cy =
Ey∣x[L(y, y)] and cy′ = Ey∣x[L(y′, y)], ∀y′ ∈ Y. We will denote by s(h,x, y′) = e∑

l
i=1 y

′
ih(x,i)

∑y′′∈Y e∑
l
i=1

y′′
i
h(x,i)

and simplify notation by using sy′ , thereby dropping the dependency on h and x. It is clear that
sy′ ∈ [0,1]. Then, the conditional error of L̃log can be expressed as follows:

CL̃log
(h,x) = E

y∣x

⎡⎢⎢⎢⎢⎣
∑
y′∈Y

(1 − L(y′, y)) log
⎛
⎝ ∑y′′∈Y

e∑
l
i=1(y

′′
i −y

′
i)h(x,i)

⎞
⎠

⎤⎥⎥⎥⎥⎦
= − ∑

y′∈Y
(1 − cy′) log(sy′)

For any h ≠ y, we define sµ as follows: set sµy′ = sy′ for all y′ ≠ y and y′ ≠ h; define sµh = sy − µ; and
let sµy = sh + µ. Note that sµ can be realized by some h′ ∈H under the assumption. Then, we have

∆CL̃log,H
(h,x) ≥

⎛
⎝
− ∑
y′∈Y

(1 − cy′) log(sy′)
⎞
⎠
− inf
µ∈R

⎛
⎝
− ∑
y′∈Y

(1 − cy′) log(sµy′)
⎞
⎠

= sup
µ∈R

{(1 − ch)[log(sy − µ) − log(sh)] + (1 − cy)[log(sh + µ) − log(sy)]}

= (1 − cy) log
(sh + sy)(1 − cy)
sy(2 − ch − cy)

+ (1 − ch) log
(sh + sy)(1 − ch)
sh(2 − ch − cy)

(supremum is attained when µ∗ = −(1−ch)sh+(1−cy)sy
2−cy−ch )

≥ (1 − cy) log
2(1 − cy)

(2 − ch − cy)
+ (1 − ch) log

2(1 − ch)
(2 − ch − cy)
(minimum is attained when sh = sy)

≥ (ch − cy)2

2(2 − ch − cy)
(a log 2a

a+b + b log 2b
a+b ≥

(a−b)2

2(a+b) ,∀a, b ∈ [0,1])

≥ (ch − cy)2

4
.

Therefore, by Lemma B.2, ∆CL,H(h,x) ≤ 2(∆CL̃log,H
(h,x))

1
2 . By Theorem B.1, we complete the

proof.
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B.4 Proof of Theorem 6.1

Theorem 6.1. Let H = Fl. Assume that F is complete. Then, the following H-consistency bound
holds in the multi-label learning:

∀h ∈H, RL(h) −R∗
L(H) +ML(H) ≤ Γ(RL̃comp

(h) −R∗
L̃comp

(H) +ML̃comp
(H)), (21)

where Γ(t) = 2
√
t when Ψ(u) = log(u) or u− 1; Γ(t) = 2

√
nqt when Ψ(u) = 1

q
(1 − 1

uq
), q ∈ (0,1);

and Γ(t) = nt when Ψ(u) = 1 − 1
u

.

Proof. Recall that we adopt the following notation: ch = Ey∣x[L(h, y)], cy = Ey∣x[L(y, y)] and

cy′ = Ey∣x[L(y′, y)], ∀y′ ∈ Y. We will denote by s(h,x, y′) = e∑
l
i=1 y

′
ih(x,i)

∑y′′∈Y e∑
l
i=1

y′′
i
h(x,i) and simplify

notation by using sy′ , thereby dropping the dependency on h and x. It is clear that sy′ ∈ [0,1]. Next,
we will analyze case by case.

The case where Φ(u) = log(u): See the proof of Theorem 5.1.

The case where Φ(u) = u − 1: The conditional error of L̃comp can be expressed as follows:

CL̃comp
(h,x)

= E
y∣x

⎡⎢⎢⎢⎢⎣
∑
y′∈Y

(1 − L(y′, y))
⎛
⎝ ∑y′′∈Y

e∑
l
i=1(y

′′
i −y

′
i)h(x,i) − 1

⎞
⎠

⎤⎥⎥⎥⎥⎦

= ∑
y′∈Y

(1 − cy′)(
1

sy′
− 1).

For any h ≠ y, we define sµ as follows: set sµy′ = sy′ for all y′ ≠ y and y′ ≠ h; define sµh = sy − µ; and
let sµy = sh + µ. Note that sµ can be realized by some h′ ∈H under the assumption. Then, we have

∆CL̃comp,H
(h,x)

≥ ∑
y′∈Y

(1 − cy′)(
1

sy′
− 1) − inf

µ∈R

⎛
⎝∑y′∈Y

(1 − cy′)(
1

sµy′
− 1)

⎞
⎠

= sup
µ∈R

{(1 − ch)[
1

sh
− 1

sy − µ
] + (1 − cy)[

1

sy
− 1

sh + µ
]}

= 1 − ch
sh

+ 1 − cy

sy
− 2 − ch − cy + 2(1 − ch)

1
2 (1 − cy)

1
2

sh + sy

(supremum is attained when µ∗ = −
√

1−chsh+
√

1−cysy√
1−cy+

√
1−ch

)

≥ ((1 − ch)
1
2 − (1 − cy)

1
2 )

2
(minimum is attained when sh = sy = 1

2
)

= (ch − cy)2

((1 − ch)
1
2 + (1 − cy)

1
2 )2

≥ (ch − cy)2

4
.

Therefore, by Lemma B.2, ∆CL,H(h,x) ≤ 2(∆CL̃comp,H
(h,x))

1
2 . By Theorem B.1, we complete

the proof.

The case where Φ(u) = 1
q
(1 − 1

uq
), q ∈ (0,1): The conditional error of L̃comp can be expressed as:

CL̃comp
(h,x) = 1

q
∑
y′∈Y

(1 − cy′)(1 − (sy′)q).
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For any h ≠ y, we define sµ as follows: set sµy′ = sy′ for all y′ ≠ y and y′ ≠ h; define sµh = sy − µ; and
let sµy = sh + µ. Note that sµ can be realized by some h′ ∈H under the assumption. Then, we have

∆CL̃comp,H
(h,x)

≥ 1

q
∑
y′∈Y

(1 − cy′)(1 − sy) − inf
µ∈R

⎛
⎝

1

q
∑
y′∈Y

(1 − cy′)(1 − (sµy′)
q)

⎞
⎠

= 1

q
sup
µ∈R

{(1 − ch)[−sh + (sy − µ)q] + (1 − cy)[−(sy)q + (sh + µ)q]}

= 1

q
(sh + sy)q((1 − cy)

1
1−q + (1 − ch)

1
1−q )

1−q
− 1

q
(1 − cy)sqy −

1

q
(1 − ch)sqh

(supremum is attained when µ∗ = −(1−ch)
1

1−q sh+(1−cy)
1

1−q sy

(1−cy)
1

1−q +(1−ch)
1

1−q
)

≥ 1

qnq
[2q((1 − cy)

1
1−q + (1 − ch)

1
1−q )

1−q
− (1 − cy) − (1 − ch)]

(minimum is attained when sh = sy = 1
n

)

≥ (ch − cy)2

4nq
. ((a

1
1−q +b

1
1−q

2
)

1−q
− a+b

2
≥ q

4
(a − b)2,∀a, b ∈ [0,1], 0 ≤ a + b ≤ 1)

Therefore, by Lemma B.2, ∆CL,H(h,x) ≤ 2n
q
2 (∆CL̃comp,H

(h,x))
1
2 . By Theorem B.1, we complete

the proof.

The case where Φ(u) = (1 − 1
u
): The conditional error of L̃comp can be expressed as:

CL̃comp
(h,x) = ∑

y′∈Y
(1 − cy′)(1 − (sy′)q).

For any h ≠ y, we define sµ as follows: set sµy′ = sy′ for all y′ ≠ y and y′ ≠ h; define sµh = sy − µ; and
let sµy = sh + µ. Note that sµ can be realized by some h′ ∈H under the assumption. Then, we have

∆CL̃comp,H
(h,x)

≥ ∑
y′∈Y

(1 − cy′)(1 − sy) − inf
µ∈R

⎛
⎝∑y′∈Y

(1 − cy′)(1 − sµy′)
⎞
⎠

= sup
µ∈R

{(1 − ch)[−sh + sy − µ] + (1 − cy)[−sy + sh + µ]}

= sh(ch − cy) (supremum is attained when µ∗ = sy)

≥ 1

n
(ch − cy). (minimum is attained when sh = 1

n
)

Therefore, by Lemma B.2, ∆CL,H(h,x) ≤ n∆CL̃comp,H
(h,x). By Theorem B.1, we complete the

proof.
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B.5 Proof of Theorem 7.1

Theorem 7.1. Let H = Fl. Assume that F is complete Then, the following H-consistency bound
holds in the multi-label learning:

∀h ∈H, RL(h) −R∗
L(H) +ML(H) ≤ Γ(RL̃cstnd

(h) −R∗
L̃cstnd

(H) +ML̃cstnd
(H)), (24)

where Γ(t) = 2
√
Lmaxt when Φ(u) = e−u; Γ(t) = 2

√
t when Φ(u) = max{0,1 − u}2; and Γ(t) = t

when Φ(u) = max{0,1 − u} or Φ(u) = min{max{0,1 − u/ρ},1}, ρ > 0.

Proof. Recall that we adopt the following notation: ch = Ey∣x[L(h, y)], cy = Ey∣x[L(y, y)] and
cy′ = Ey∣x[L(y′, y)], ∀y′ ∈ Y. We will also denote by z(h,x, y′) = ∑li=1 y

′
ih(x, i) and simplify

notation by using zy′ , thereby dropping the dependency on h and x. It is clear that the constraint can
be expressed as ∑y′∈Y zy′ = 0. Next, we will analyze case by case.

The case where Φ(u) = e−u: The conditional error of L̃cstnd can be expressed as follows:

CL̃cstnd
(h,x) = E

y∣x

⎡⎢⎢⎢⎢⎣
∑
y′∈Y

L(y′, y)e∑
l
i=1 y

′
ih(x,i)

⎤⎥⎥⎥⎥⎦
= ∑
y′∈Y

cy′e
zy′ .

For any h ≠ y, we define zµ as follows: set zµy′ = zy′ for all y′ ≠ y and y′ ≠ h; define zµh = zy − µ; and
let zµy = zh + µ. Note that zµ can be realized by some h′ ∈H under the assumption. Then, we have

∆CL̃comp,H
(h,x) ≥ ∑

y′∈Y
cy′e

zy′ − inf
µ∈R

⎛
⎝∑y′∈Y

cy′e
zµ
y′
⎞
⎠

= sup
µ∈R

{cy(ezy − ezh+µ) + ch(ezh − ezy−µ)}

= (
√
chezh −

√
cyezy)

2
(supremum is attained when µ∗ = 1

2
log

cye
zy

che
zh

)

= ( ch − cy√
cy +

√
ch

)
2

(minimum is attained when zh = zy = 0)

≥ 1

4Lmax
(ch − cy)2

.

Therefore, by Lemma B.2, ∆CL,H(h,x) ≤ 2(Lmax)
1
2 (∆CL̃cstnd,H

(h,x))
1
2 . By Theorem B.1, we

complete the proof.

The case where Φ(u) = max{0,1 − u}2: The conditional error of L̃cstnd can be expressed as follows:

CL̃cstnd
(h,x) = ∑

y′∈Y
cy′ max{0,1 + zy′}2

.

For any h ≠ y, we define zµ as follows: set zµy′ = zy′ for all y′ ≠ y and y′ ≠ h; define zµh = zy − µ; and
let zµy = zh + µ. Note that zµ can be realized by some h′ ∈H under the assumption. Then, we have

∆CL̃cstnd,H
(h,x)

≥ ∑
y′∈Y

cy′ max{0,1 + zy′}2 − inf
µ∈R

⎛
⎝∑y′∈Y

cy′ max{0,1 + zµy′}
2⎞
⎠

= sup
µ∈R

{cy(max{0,1 + zy}2 −max{0,1 + zh + µ}2) + ch(max{0,1 + zh}2 −max{0,1 + zy − µ}2)}

≥ (1 + zh)2(cy − ch)2 (differentiating with respect to µ to optimize)

≥ (ch − cy)2
. (minimum is attained when zh = 0)

Therefore, by Lemma B.2, ∆CL,H(h,x) ≤ (∆CL̃cstnd,H
(h,x))

1
2 . By Theorem B.1, we complete the

proof.
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The case where Φ(u) = max{0,1 − u}: The conditional error of L̃cstnd can be expressed as:

CL̃cstnd
(h,x) = ∑

y′∈Y
cy′ max{0,1 + zy′}.

For any h ≠ y, we define zµ as follows: set zµy′ = zy′ for all y′ ≠ y and y′ ≠ h; define zµh = zy − µ; and
let zµy = zh + µ. Note that zµ can be realized by some h′ ∈H under the assumption. Then, we have

∆CL̃cstnd,H
(h,x)

≥ ∑
y′∈Y

cy′ max{0,1 + zy′} − inf
µ∈R

⎛
⎝∑y′∈Y

cy′ max{0,1 + zµy′}
⎞
⎠

= sup
µ∈R

{cy(max{0,1 + zy} −max{0,1 + zh + µ}) + ch(max{0,1 + zh}2 −max{0,1 + zy − µ}2)}

≥ (1 + zh)(cy − ch) (differentiating with respect to µ to optimize)
≥ (ch − cy). (minimum is attained when zh = 0)

Therefore, by Lemma B.2, ∆CL,H(h,x) ≤ ∆CL̃cstnd,H
(h,x). By Theorem B.1, we complete the

proof.

The case where Φ(u) = min{max{0,1 − u/ρ},1}, ρ > 0: The conditional error of L̃cstnd can be
expressed as:

CL̃cstnd
(h,x) = ∑

y′∈Y
cy′ min{max{0,1 + zy′/ρ},1}.

For any h ≠ y, we define zµ as follows: set zµy′ = zy′ for all y′ ≠ y and y′ ≠ h; define zµh = zy − µ; and
let zµy = zh + µ. Note that zµ can be realized by some h′ ∈H under the assumption. Then, we have

∆CL̃cstnd,H
(h,x)

≥ ∑
y′∈Y

cy′ min{max{0,1 + zy′/ρ},1} − inf
µ∈R

⎛
⎝∑y′∈Y

cy′ min{max{0,1 + zµy′/ρ},1}
⎞
⎠

= sup
µ∈R

{cy(min{max{0,1 + zy/ρ},1} −min{max{0,1 + (zh + µ)/ρ},1})

+ ch(min{max{0,1 + zh/ρ},1} −min{max{0,1 + (zy − µ)/ρ}},1)}

≥ (cy − ch). (differentiating with respect to µ to optimize)

Therefore, by Lemma B.2, ∆CL,H(h,x) ≤ ∆CL̃cstnd,H
(h,x). By Theorem B.1, we complete the

proof.

C Future work

While our work introduces a unified surrogate loss framework that is Bayes-consistent across any
multi-label loss, thereby broadening the scope beyond previous approaches that established con-
sistency only for particular loss functions, there remains an exciting opportunity for empirical
comparison with surrogate losses tailored to specific loss functions—a direction we leave for future
work. Furthermore, refining surrogate losses to theoretically enhance performance for specific target
losses presents another promising avenue for research.
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