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Abstract

This paper presents an analysis of importance weightingerning from finite
samples and gives a series of theoretical and algorithrsigdtee We point out
simple cases where importance weighting can fail, whiclysats the need for an
analysis of the properties of this technique. We then givé lnpper and lower
bounds for generalization with bounded importance weigints, more signifi-
cantly, give learning guarantees for the more common casetodunded impor-
tance weights under the weak assumption that the second mhasnieounded,
a condition related to the Rényi divergence of the trairang test distributions.
These results are based on a series of novel and generaldeerakrive for un-
bounded loss functions, which are of independent inteYéstuse these bounds to
guide the definition of an alternative reweighting algarithnd report the results
of experiments demonstrating its benefits. Finally, we yreathe properties of
normalized importance weights which are also commonly used

1 Introduction

In real-world applications of machine learning, often thenpling of the training and test instances
may differ, which results in a mismatch between the two ilistions. For example, in web search
applications, there may be data regarding users who cliokesbme advertisement link but little
or no information about other users. Similarly, in credifaddt analyses, there is typically some
information available about the credit defaults of custmmneho were granted credit, but no such
information is at hand about rejected costumers. In oth&llpms such as adaptation, the training
data available is drawn from a source domain different fromtarget domain. These issues of
biased sampling or adaptation have been long recognizedtadéed in the statistics literature.
There is also a large body of literature dealing with différeechniques for sample bias correction
[11, 29, 16, 8, 25, 6] or domain adaptation [3, 7, 19, 10, 17§ recent machine learning and
natural language processing literature.

A common technique used in several of these publicationsdmecting the bias or discrepancy is
based on the so-calléshportance weightingechnique. This consists of weighting the cost of errors
on training instances to emphasize the error on some or gévasize it on others, with the objective
of correcting the mismatch between the distributions dhing and test points, as in sample bias
correction, adaptation, and other related contexts suabtag learning [24, 14, 8, 19, 5]. Different
definitions have been adopted for these weights. A commonitiefi of the weight for point: is
w(z) = P(x)/Q(x) whereP is the target or test distribution ariglis the distribution according to
which training points are drawn. A favorable property okttefinition, which is not hard to verify,

is that it leads to unbiased estimates of the generalizatian [8].

This paper presents an analysis of importance weightingéwning from finite samples. Our study
was originally motivated by the observation that, whilestborrective technique seems natural, in
some cases in practice it does not succeed. An example imdiaretwo is illustrated by Figure 1.
The target distributiot® is the even mixture of two Gaussians centeredat) and(0, 2) both with
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Figure 1: Example of importance weightingeft figure P (in blue) and? (in red) are even mixtures
of Gaussians. The labels are positive within the unit spbengered at the origin (in grey), negative
elsewhere. The hypothesis class is that of hyperplanesatgthe unit spherdight figures plots

of test error vs training sample size using importance wigtfor two different values of the ratio
oo /op. The results indicate mean values of the error over 40 #tinge standard deviation.

standard deviatioap, while the source distributio is the even mixture of two Gaussians centered
at (0,0) and (2,0) but with standard deviation. The hypothesis class is that of hyperplanes
tangent to the unit sphere. The best classifier is selectearipyrical risk minimization. As shown

in Figure 1, forop /o = .3, the error of the hypothesis learned using importance wieiglis close

to 50% even for a training sample &f000 points and the standard deviation of the error is quite
high. In contrast, for p/og = .75, convergence occurs relatively rapidly and learning isessful.

In Section 4, we discuss other examples where importangghtvegd does not succeed.

The problem just described is not limited to isolated exaspSimilar observations have been made
in the past in both the statistics and learning literaturerewecently in the context of the analysis
of boosting by [9] who suggest that importance weighting nbesused with care and highlight the
need for convergence bounds and learning guarantees$dettinique.

We study the theoretical properties of importance weighte show using standard generaliza-
tion bounds that importance weighting can succeed when #ights are bounded. However, this
condition often does not hold in practice. We also show tteaharkably, convergence guarantees
can be given even for unbounded weights under the weak asisuntipat the second moment of the
weights is bounded, a condition that relates to the Rémgrdence ofP? and(@. We further extend
these bounds to guarantees for other possible reweighfiingse results suggest minimizing a bias-
variance tradeoff that we discuss and that leads to sevgrithmic ideas. We explore in detail an
algorithm based on these ideas and report the results ofimgres demonstrating its benefits.

Throughout this paper, we consider the case where the whightion w is known. When it is

not, it is typically estimated from finite samples. The effetthis estimation error is specifically
analyzed by [8]. This setting is closely related to the peabbf importance sampling in statistics
which is that of estimating the expectation of a random \deiaccording tad” while using a sample
drawn according t@), with w given [18]. Here, we are concerned with the effect of the Wisign
learning from finite samples. A different setting is whentffier full access ta@) is assumed, von
Neumann’s rejection sampling technique [28] can then bd.0d& note however that it requiras

to be bounded by some constawt, which is often not guaranteed and is the simplest case of our
bounds. Even then, the method is wasteful as it requires @rmge) samples to obtain one point.

The remainder of this paper is structured as follows. Se@imtroduces the definition of the Rényi
divergences and gives some basic properties of the imprtarights. In Section 3, we give gen-
eralization bounds for importance weighting in the boundask. We also present a general lower
bound indicating the key role played by the Rényi divergeoic” and(@ in this context. Section 4
deals with the more frequent case of unboundedStandard generalization bounds do not apply
here since the loss function is unbounded. We give novelrgénation bounds for unbounded loss
functions under the assumption that the second moment isdeol(see Appendix) and use them to
derive learning guarantees for importance weighting ia thore general setting. In Section 5, we
discuss an algorithm inspired by these guarantees for whécteport preliminary experimental re-
sults. We also discuss why the commonly used remedy of ttingpar capping importance weights
may not always provide the desired effect of improved pentmice. Finally, in Section 6, we study



the properties of an alternative reweighting also commasbd which is based on normalized im-
portance weights, and discuss its relationship with thedumalized) weightsu.

2 Preliminaries

Let X denote the input spack, the label set, and Idt: Y xY — [0, 1] be a loss function. We denote
by P the target distribution and b the source distribution according to which training poiats
drawn. We also denote by the hypothesis set used by the learning algorithm and:byf — Y
the target labeling function.

2.1 Renyidivergences
Our analysis makes use of the notion of Rényi divergenceénfanmation theoretical measure of

the difference between two distributions directly relavarthe study of importance weighting. For
a >0, the Rényi divergenc®,, (P||Q) between distribution® and( is defined by [23]

a—1
DuPIQ) = 10w S P () @

a—1 )

The Rényi divergence is a non-negative quantity and foramy0, D, (P|Q) =0 iff P=Q. For
a =1, it coincides with the relative entropy. We denotedy( P||Q) the exponential in base 2 of
the Rényi divergenc®,, (P||Q):

do(P||Q) = 2P=(PIQ) = [Z Qaai(lga)}al )

2.2 Importance weights

Theimportance weighfor distributionsP and@ is defined byw(z) = P(z)/Q(x). In the follow-
ing, the expectations are taken with respeapto

Lemma 1. The following identities hold for the expectation, secormhmant, and variance ab:
Ew]=1  EW’]=d(P|Q) o*(w)=ds(P|lQ)~ 1. ®)

Proof. The first equality is immediate. The second momentvofan be expressed as follows in
terms of the Rényi divergence:

P(z)\? P(x
Bl = 3 w0) Q) = X (5 ) @) = X P g ) = i)

reX zeX rzeX
Thus, the variance af is given byo?(w) = Eg[w?] — Eg[w]? = da(P||Q) — 1. O

For any hypothesis € H, we denote byR(h) its lossand byﬁw(h) its weighted empirical loss

~ 1 &
RH) = B L@ S Bulh) = 53 (e Libiz). S )
We shall use the abbreviated notatibp(z) for L(h(x), f(x)), in the absence of any ambiguity
about the target functiofi. Note that the unnormalized importance weighting of the Iesinbiased:

Blu(o) ()] = ¥ e L) Q) = Y- Pla) L) = R(b).
The following lemma gives a bound on the second moment.

Lemma 2. For all « >0 andz € X, the second moment of the importance weighted loss can be
bounded as follows:

B [w?(z) L2(2)] < dat1(P]Q) R(h)"=. 4)

e~Q

For o = 1, this become®(h)? < E,qw?(z) L3 (z)] < d2( P||Q).



Proof. The second moment can be bounded as follows:

_ P2
B 1) = 0w | 53

Q(z)
[ZP {Q r]a [ZP(:E) Lﬁzal(x)}T (Holder’s inequality)
= dat1(P|Q) [ ) Ly(x )Lg_ﬂ(x)}T
<da+1(P||Q)R( )ITa B S = dora(P|Q) R(R)! 5. 0

3 Learning Guarantees - Bounded Case

Note thatsup,, w(z)=sup, ggfcg =d(P||Q). We first examine the cask, (P||Q) < +occ and use
the notationV/ =d..(P||Q). The following proposition follows then directly Hoeffdifs inequality.
Proposition 1 (single hypothesis)Fix h € H. For anyé > 0, with probability at least — 9,

log(2/6)

2m

|R(h) = Ry(h)| < M

The upper bound/, though finite, can be quite large. The following theoremvpites a more
favorable bound as a function of the rafid/m when any of the moments ab, d,.1(P|Q),

is finite, which is the case whef, (P||Q) < oo since the Rényi divergence is a non-decreasing
function ofa [23, 2], in particular:

Va >0, dosi(Pl|Q) < dw(P]Q). 5)

Theorem 1(single hypothesis)Fix h € H. Then, for anyx > 1, for anyd > 0, with probability at
least1l —4, the following bound holds for the importance weighting moeit

2Mlog} \/2[da+1(P|Q) (1'% — R(h)?]log

R(h) < Ry(h) + (6)

3m m

For o = 1 after further simplification, this giveB(h) < R,,(h) + Mlog g, [242(PlQ)log 3

3m m

Proof. Let Z denote the random variable(z) L, () — R(h). Then,|Z| < M. By lemma 2, the
variance of the random variabfe can be bounded in terms of the Rényi divergedice; (P||Q):

o*(Z) = g[wg(w) Li(2)*] = R(h)? < day1(P||Q) R(h)' ™= — R(h)*.

Thus, by Bernstein’s inequality [4], it follows that:
~ —me?/2
- < — .
Pr[R(h) — Ry (h) > €] < exp (aQ(Z) n eM/3>

Settingo to match this upper bound shows that with probability attléasé, the following bound
holds for the importance weighting method:

M log 3 N M?2 logz% N 20%(Z)log %

h) < Ry(h
R(h) < Ru(h) + 3m 9m? m

Using the sub-additivity of/- leads to the simpler expression

O

2M log 5 N 20%(Z)log §

3m m

R(h) < Ru(h) +

These results can be straightforwardly extended to gehgpalthesis sets. In particular, for a finite
hypothesis set and fer = 1, the application of the union bound yields the followinguks



Theorem 2 (finite hypothesis set)Let H be a finite hypothesis set. Then, for ahy 0, with
probability at leastl — ¢, the following bound holds for the importance weighting moeit

2M (log | H] +log }) +_x/2d2<fwu9>aog|ffr+1og§>

R(h) < Ry (h) + ™ —

. @)

For infinite hypothesis sets, a similar result can be shovaigtttforwardly using covering numbers
instead of H | or a related measure based on samples ofrsif20].

In the following proposition, we give a lower bound that et emphasizes the role of the Rényi
divergence of the second order in the convergence of impogtaveighting in the bounded case.

Proposition 2 (Lower bound) Assume that\/ < oo and o?(w)/M? > 1/m. Assume thaf{
contains a hypothesis, such thatZ,,(xz) =1 for all z. Then, there exists an absolute constant
c=2/412, such that

da(PIQ) — 1

Pr | sup |R(h — Ry(h)| >
sup |R(h) — B 1) =

}Zc>0 (8)

Proof. Letoy =supp,cy o(wLy,). lfforall z€ X, Ly, (z) =1, theno?(wLy,) =da2(P||Q) — 1=
o?(w)=o0%. The result then follows a general theorem, Theorem 9 provére Appendix. [

4 Learning Guarantees - Unbounded Case

The conditiond.. (P||Q) < oo assumed in the previous section does not always hold, evamie
natural cases, as illustrated by the following examples.

4.1 Examples

Assume thai” and( both follow a Gaussian distribution with the standard déoigsop andog
and with meang andy.':

1 (z — u)z} 1 { (z — u’)z]
P(x) = ex —_— xTr) = ex — | .
© =z |- Cpt] e = Z—ew =
2 ()2 — o2 ()2
In that case,% = Z2exp [ _ %l “;Uzpo_g( #) } thus, even forp = o andyu # 1/ the

importance weights are unboundéd, (P||Q) = sup, ggg = 400, and the bound of Theorem 1

is not informative. The Rényi divergence of the second ioiglgiven by:

do(P||Q) = 22 /+OO exp [_ op(x —p)? —op(r — H/)Q]P(x)dx

op J_ 201230%
oo [T 203 (x — 1)? — 0Bz — )2
== exp | — 957 o2 dx.
opV2m J oo opog

That is, forog > @crp the variance of the importance weights is bounded. By thetiuitigl
property of the Rényi divergence, a similar situation lsdtat the product and sums of such Gaussian
distributions. Hence, in the rightmost example of Figuréhg,importance weights are unbounded,
but their second moment is bounded. In the next section wegedearning guarantees even for
this setting in agreement with the results observed.otpe0.30 p, the same favorable guarantees
do not hold, and, as illustrated in Figure 1, learning is ifiggntly more difficult.

This example of Gaussians can further illustrate what cawi@mg in importance weighting. As-
sume thaf, = ¢/ =0, og =1 andop = 10. One could have expected this to be an easy case for
importance weighting since sampling fraghprovides useful information about. The problem

is, however, that a sample fro@ will contain a very small number of points far from the mean
(of either negative or positive label) and that these ponilisbe assigned very large weights. For

a sample of sizen andog =1, the expected value of an extreme point/8log m — o(1) and its



weight will be in the order ofn =Y/ T1/9% =9 Therefore, a few extreme points will domi-
nate all other weights and necessarily have a huge influemtieecselection of a hypothesis by the
learning algorithm.

Another related example is wheiy = op =1 andy’ = 0. Let u > 0 depend on the sample size
m. If u is large enough compared log(m), then, with high probability, all the weights will be
negligible. This is especially problematic, since thereate of the probability of any event would
be negligible (in fact both an event and its complement). éf normalize the weights, the issue
is overcome, but then, with high probability, the maximunigihé dominates the sum of all other
weights, reverting the situation back to that of the presiexample.

4.2 Importance weighting learning bounds - unbounded case

As in these examples, in practice, the importance weigletsyguically not bounded. However, we
shall show that, remarkably, under the weak assumptionttieasecond moment of the weights
w, d2(P||Q), is bounded, generalization bounds can be given for this aaswell. The follow-
ing result relies on a general learning bound for unboundssl functions proven in the Appendix
(Corollary 1). We denote bpdim(U) the pseudo-dimension of a real-valued function clagg1].
Theorem 3. Let H be a hypothesis set such tfadim({L,(x): h € H}) = p < co. Assume that
da(P||Q) < +o0 andw(x) # 0 for all z. Then, for any > 0, with probability at leastl — ¢, the
following holds:

2 4
’;6 +log 5
- .

R(h) < Ry(h) + 2°/*\/d>(P||Q) éi/Plog

Proof. Sinceds(P||Q) < +oo, the second moment @f(z) L, () is finite and upper bounded by
d>(P||@) (Lemma 2). Thus, by Corollary 1, we can write

aup B — Ry (h) - } < fexp (plog 2em me8/3>
—F———— > € X — —= >

nerr  \/da(P||Q) - p 45/3

wherep is the pseudo-dimension of the function cld&&$ = {w(x)L(x): h € H}. We now show
thatp = Pdim({Ly(x): h € H}). Let H denote{L;(z): h € H}. LetA = {x1,..., 2} bea
set shattered b¥?”’. Then, there exist real numbers . . ., r; such that for any subsét C A there
existsh € H such that

Pr

Vo, € B, w(w;)Lp(z) > 15 Vo, € A— B, w(x;)Lp(x;) <. 9)
Since by assumptiom(x;) >0 for all i € [1, k], this implies that
Vo, € B, Lp(x;) > ri/w(z;) Vo, € A— B, Lp(x;) < ri/w(x;). (10)
Thus,H’ shattersA with the witnesses; = r; /w(x;), i € [1, k]. Using the same observations, it is
straightforward to see that conversely, any set shatterdd’bis shattered by7”. O

The convergence rate of the bound is slightly weak@¢n¢—3/%)) than in the bounded case
(O(m~'/?)). A faster convergence can be obtained however using the precise bound of Theo-
rem 8 at the expense of readability. The Rényi divergeh¢®||)) seems to play a critical role in
the bound and thus in the convergence of importance weightithe unbounded case.

5 Alternative reweighting algorithms

The previous analysis can be generalized to the case of &magylpositive functionu: X — R,
u>0. Let R, (h)=2 Y7 u(x;)Ly(z;) and letQ denote the empirical distribution.

Theorem 4. Let H be a hypothesis set such tHadim({L;,(z): h € H})=p < co. Assume that
0 < Eg[u®(z)] < +o00 andu(z) # 0 for all z. Then, for any) > 0, with probability at leastl — &,

the following holds:

[B(R) = Ru(b)] < | B [[w(2) - ()| Ln(x)] | +

2me 4 10g%

s/plo
2/ max (EQlE LA, VE A L)) i/ il

m
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Figure 2: Comparison of the convergence of 4 different allgors for the learning task of Figure 1:
learning with equal weights for all examples (Unweighteaiportance weighting, using Quantiles
to parameterize the functian and Capping the largest weights.

Proof. SinceR(h) = E[w(x)Lp(z)], we can write
R(h) = Ru(h) = E [[w(z) = u(@)]Ln(2)] + Efu(z) Ly(2)] = Bu(h),

and thus
[R(h) = Ru(h)| < [E [[w(z) — u(@)]Ln(2)] ] + | Elu(z)La(@)] = Ru(h)].

By Corollary 2 applied to the functiom Ly, |E[u(z)Ls(x)] — Ru(h)| can be bounded by

25/4 max(/Eq[u? (@) L2 (@], VEQ [P (@) LR (2)]) /2221 with probability 1 — 6, with
p = Pdim({Ly(x): h € H}) by a proof similar to that of Theorem 3. O

The theorem suggests that other functianthanw can be used to reweight the cost of an error
on each training point by minimizing the upper bound, whiglaitrade-off between the bias term
| Eq[(w(z)—u(z)) Ly (z)]| and the second momeiiax (\/Eq[u?(z) L2 (2)], \/E@[UQ(I)L%(x)]),
where the coefficients are explicitly given. Functionan be selected from different families. Using
an upper bound on these quantities that is independénantl a multiplicative bound of the form

max (VE[?], VER?]) < VER? (1+001/vm),
Q Q Q
leads to the following optimization problem:

min E [fw(@) — u(@)[] + 7V, (11)

uel Q

where~ > 0 is a parameter controlling the trade-off between bias am@dwee minimization and
whereU is a family of possible weight functions out of whiehs selected.

Here, we consider a family of functioris parameterized by the quantile®f the weight function

w. Afunctionu, € U is then defined as follows: within each quantile, the vallenabyw, is the
average ofv over that quantile. For small valuespfthe bias term dominates, and very fine-grained
guantiles minimize the bound of equation (11). For larg@iealofy the variance term dominates
and the bound is minimized by using just one quantile, cpording to an even weighting of
the training examples. Hence by varyingrom small to large values, the algorithm interpolates
between standard importance weighting with just one exapgi quantile, and unweighted learning
where all examples are given the same weight. Figure 2 alsessthe results of experiments for
the learning task of Figure 1 using the algorithm defined Ky @ith this family of functions. The
optimalq is determined by 10-fold cross-validation. We see that aemnapid convergence can be
obtained by using these weights compared to the standamatiamze weights.

Another natural family of functions is that of thresholdeersions of the importance weights
{ug: 6>0,vxe X, up(z)=min(w(z), #)}. In fact, in practice, users often cap importance weights
by choosing an arbitrary value The advantage of this family is that, by definition, the virgare



bounded. However, in some cases, larger weights could tieatto achieve a better performance.
Figure 2 illustrates the performance of this approach. Goegbto importance weighting, no change
in performance is observed until the largest 1% of the waigin¢ capped, in which case we only
observe a performance degradation. We expect the threspatdbe less beneficial when the large
weights reflect the true and are not an artifact of estimation uncertainties.

6 Relationship between normalized and unnormalized weiglst

An alternative approach based on the weight functioa P(x)/Q(x) consists of normalizing the
weights. Thus, while in the unnormalized case the unwetyatepirical error is replaced by

m

%Zw(aﬁ) Lu(z:) =) wf;:i) Ln(x:),

i=1

in the normalized case it is replaced by

- w(@)
(xi)a
2w b

with W =3>"" w(z;). We refer tow(z) = w(xz)/W as thenormalized importance weightAn
advantage of the normalized weights is that they are by diefinbounded by one. However, the
price to pay for this benefit is the fact that the weights arenooe unbiased. In fact, several issues
similar to those we pointed out in the Section 4 affect themadized weights as well.

Here, we maintain the assumption that the second momentafrthortance weights is bounded
and analyze the relationship between normalized and uradzed weights. We show that, under
this assumption, normalized and unnormalized weightsref&ct very close, with high probability.

Observe that for any € [1, m],

() — L) ) [% - ﬂ - le) [1 . g] |

Thus, since”%) < 1, we can write‘@(xi) — vl <1~ W) sinceE[w(x)] =1, we also have

Es[W]=L %", Elw(z:)]=1. Thus, by Corollary 2, for any> 0, with probability at least — 5,
the following inequality holds

L% - ~) 2/log2me+log2
_ | <« 95/4 eTm Lo s
’1 m‘ <2 maX{\/dz(P|Q),\/dz(PIIQ)} { — ,

which implies the same upper bound }@?r(xi) — wirfi)

, simultaneously for all € [1,m)].

7 Conclusion

We presented a series of theoretical results for importamighting both in the bounded weights
case and in the more general unbounded case under the agsuthpt the second moment of the
weights is bounded. We also initiated a preliminary exgloreof alternative weights and showed its
benefits. A more systematic study of new algorithms baset@setlearning guarantees could lead
to even more beneficial and practically useful results. &d\af the learning guarantees we gave
depend on the Rényi divergence of the distributiéhand Q. Accurately estimating that quantity
is thus critical and should motivate further studies of tbevergence of its estimates from finite
samples. Finally, our novel unbounded loss learning boanel®f independent interest and could
be useful in a variety of other contexts.
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A Generalization bounds for unbounded losses

When the class of functions is not bounded, a single funat@mtake arbitrarily large values with
arbitrarily small probabilities. This is the main issue &mriving uniform convergence bounds for
unbounded losses. This problem can be avoided either bynasguhe existence of an envelope,
that is a single non-negative function with a finite expeatalying above the absolute value of the
loss of every function in the hypothesis set [12, 21, 13, &2, dr by assuming that some moment
of the function losses is bounded [26, 27]. Our example insih@ple case of Gaussians where
the functionw is exponential shows that no envelope function would beabiétfor the problem
of importance weighting. Thus, in view of the critical rol&aped by the second moment of the
importance weight, we have chosen to favor the assumptatrtile second moment is bounded, as
in that example. A similar analysis can be given for other raots.

Here, we give two-sided generalization bounds for unbodridsses with finite second moments.

The one-sided version of our bounds coincides with that®f £Z] modulo a constant factor g2,
but the proofs given by Vapnik in both books seem to be inabfreThe core component of our
proof is based on a different technique, which is simplereasl to check.

In what follows, we use the notatidh to denote the empirical distribution based on a finite sample
of sizem, andE to denote the expectation basedin The following theorem reduces the problem

of boundingsup,, ¢ (E[Lz] —E[Lh])/\/E[L,?L] to that of a standard relative deviation bound for
classification.

Theorem 5. For any loss functionl, (not necessarily bounded) and hypothesis Besuch that
0<E[L?] < +oo for all he H, the following two inequalities hold:

E[L] - E[L / 1 Pr[L, > t] — Pr[L, >t
Pr[supw>e 2+10g—]§Pr[ sup fLn >4 1n[h>]>e}.
heH E[L?] € hEH tER Pr[Lp > t]

E[L,] — E[L / 1 Pr[L, > t] — Pr[L;, >t
Pr[supw>€ 2—|—1og—]§Pr[ sup il h>/\] tn > ]>6].
heH E[L,QL] € heH teR Pr[Lh >t]

Proof. We prove the first statement. The second statement can b&shawery similar way.
Fix e >0 and assume that for aflye H and¢ >0, the following holds:
Pr[Ly, > t] — Pr[L;, > ] _
€
PI"[Lh > t] o

(12)

IS i i E[Lh]iﬁ[Lh] 1 i
We show that this implies that for aye H, o] < €4/2 + log ¢. By the properties of the

Lebesgue integral, we can write

+OO/\

+oo .
E[L;] = / Pr[Ly > t]dt and E[Lj] :/ Pr[Ly, > t] dt,
0 0
and similarly,

o0 400
E[L}] :/ Pr[L? > ] dt :/ 2t Pr[Ly, > ] dt.
0 0

In what follows, we use the shorter notatior- E[L?]. Lett; = /41, To boundE[L;] — E[L.],
we simply boundPr[L;, > ¢] — TD\r[Lh > t] by Pr[L;, > ¢] for large values of, that ist > ¢;, and

In [26][p.204-206], statement (5.37) cannot be derivednfrassumption (5.35), contrarily to what is
claimed by the author, and in general does not hold: the fitsgral in (5.37) is restricted to a sub-domain
and is thus smaller than the integral of (5.35). Furtherptbeemain statement claimed in Section (5.6.2) is not
valid. In [27][p.200-202], the author invokes thagrange methodo show the main inequality, but the proof
steps are not mathematically justified. Even with our bestrsf we could not justify some of the steps and
strongly believe the proof not to be correct. In particuthg way functionz is concluded to be equal to one
over the first interval is suspicious and not based on a mattieah proof.

10



use inequality (12) for smaller valuesof

—+oo

E[Ln] — E[Ly] :/ Pr[L;, > t] — Pr[L, > t]dt < \/Pr Lp >t dt+/ Pr[L;, > t]dt.
0

For relatively small values of, Pr[L;, > t] is close to one. Thus, if we defirig by ¢ = é we
can write
—+oo —+o0
hl— hl < et—i— r[Lp, > t]dt + r[Ly, > t]dt = t)g(t) dt,
E[L E|L d Pr[L tld Pr|L d f d
0
with
(21)/ ¢ if0<t<t o if0<t<t
F) =2 \J2APHLy > fe fto<t<t; glt)={ 7% if to <t <t
2t PI‘[Lh > t] e iftg <t. Pr[lz/;>t] % if t; < t.

Now, by the Cauchy-Schwarz inequality,

N +oo +oo
E[Lh]—E[Lh1s\/ / f(t)th\/ JARICR

The first integral on the right-hand side can be bounded &s/fsi

+oo to +oo
/ ft)?dt = / V2Ieé® dt +/ 2t Pr[Ly, > t]e? dt < V2Itge® + 31 = 2621,
0 0

to

and, since; /ty = 1/¢, the second one can be computed and bounded following

to gt b dt oo Pr[Ly, > 1]
2dt = dt
[ o= [ G [

1 1 o0 2t Pr[Ly, > 1]
= - —1 - ———dt
2 + 2 € /tl 4t2¢2
1 1. 1 o0 2t Pr[Ly, > 1 1 1 I 1. 1
< =+ =log - ————dt < = 1 =1+ =log-.
=g 508 /m 132 Sty e T TR
Combining the bounds obtained for these integrals yieldsctly
=~ 1 1 1
E[Ln) — E[Ln] <4 [2¢T (14 Slog— | =€)/ (2 +log - VT,
€ €
which concludes the proof of the theorem. O

We will use the following relative deviation bound for cldgstion of [1, 27]. Such relative devia-
tion results give sharper generalization bounds for bictagsification.

Theorem 6 ([1]). Let L be the binary classification loss. Then, for any hypothestigisof real-
valued functions, the following inequality holds:

sup R(h) —R(h) _
heH R(h)

2
Pr < 4I1y (2m) exp <_m_e> ,

4

wherelly (m) is the value of the growth function (maximum number of dizsdions) for a sample
of sizem, using the hypothesis sét.

It is not hard to show using the same proof as that of [1, 27&]dhsimilar guarantee holds for the
left side: Pr[supheHle(h) > €] < 41y (2m) exp( mfz). Combining these results with

Theorem 5 yields directly the following.
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Theorem 7. Let H be a hypothesis set of real-valued functions aradloss function (not necessarily
bounded) such that for all € H, 0 < E[L?(z)] < +oc0c. Then, the following holds:

Pr [EEE E[Lh%"(x” > ey/2 + log ﬂ < AT15(2m) exp (_mTGZ) .

oy PR ] < ey (7).

Theorem 8. Let H be a hypothesis set of real-valued functions aradloss function (not necessarily
bounded) such that for ah € H, 0 < E[L?(z)] < +oo. Assume that thadim({L(x): h €
H}) = d < o. Then, the following holds:

Pr |:}Sll€12 E[Lh%’lw > €y/2 + log é] < dexp (dlogzeTm - mTe2>

Proof. The results follows immediately by Sauer’s lemma and thetfat the VC dimension of the
family {sgn(Ly(x)—t): h € H,t € R} is precisely the pseudo-dimension{df,(z): h € H}. O

The following corollary gives a simpler form of this bound.

Corollary 1. Let H be a hypothesis set of real-valued functions dnd loss function (not neces-
sarily bounded) such that for all € H, 0 <E[L? (x)] < +o00. Assume that thatdim({L,,(z): he
H})=d< 0. Then, the following holds:

n 8/3
Pr [sup ElLn(@)] = BlLn()] e] <4exp (dlog Qedm - ng/g )

nerr  /EL ()]

Proof. Itis not hard to show tha/4 =ming{3: Ve€[0,1],e1/1 + $log 2 < 7} by studying the
functione — ey/1 + 2 log 1 — e”. This, combined with Theorem 7, gives the result. O

The following two-sided bound results directly from Coeoll 1 and a similar bound for the other
side that can be derived in the same way from Theorem 7.

Corollary 2. Let H be a hypothesis set of real-valued functions dnd loss function (not neces-
sarily bounded) such that for all € H, 0 <E[L? (x)] < +o00. Assume that thatdim({L,(z): he
H})=d < oo. Then, for any > 0, with probability at leastl — ¢, for anyh € H, the following
holds:

E[Ly(z)] — E[Ly(z)]| < 20/4max{,/ E[L2(z)], \/E[L2(z }i/w

B General lower bound based on maximum variance

Variants of the following result are known in the folkloretbe learning theory community. We give
a full proof below.

Theorem 9. Let G denote a family of functions taking valueslin1]. For g € G, leto%(g) denote

the variance ofy and o (G) = sup,c o(g). Assume that- < o?(G) < +occ. Then, the following

inequality holds:

| Elg] — E[g]]
o(G)

1 2
Pr |su > — 13
Leg - 2\/_1 12 (13)

where the probability is taken over samples of size
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Proof. Fix e € (0,1). By definition of the supremum, there exigts G with o(g) > (1 — ¢)o(G).
Let = Ll Blsl By definition, B[22] = 1y B[y, Eledogledl ) L Thys,

1
— = E[2%] = E[Z1 z¢p0,1/ 2y + BIZ* zep2vm) s (vim) + EIZ* 1 250y ()

1

<
~ 4m

+ 2P 2) > /(2] + B2 7o)
which gives

Pr{1Z] > 1/(2Vm)] > oy~ % B2 ) (14)
Now, by the property of the Lebesgue integral,

2

—+o0 —+o0
9 B 9 B U t
mE[Z lz>ﬁ]—/0 PrmZ lz>\/%>t]dt—/0 Pr[Z>ﬁ}dt+/u2 Pr{Z>\/E]dt
u? oo t
:uzPr[Z> —]+/ Pr[z> —} dt.
m u2 m
By Bernstein’s inequality,
t EN t —m L g2 q
Pr[Z>U—]:Pr[‘E[g]—E[gH>U—0(g)]§expl 7 (9) 1
" " 202(g) +2/3,/ £0(9)
Using the assumptioh/\/m < o(g) gives

P2 > \/ﬂ = o [2o2<g>_+t;j;g\)/ia2 <g>] - {u;i/tm] < exp(=3/8V0)
Thus,

—+oo +oo
mE[Z212>\%] < yZe 38 4 / e 3/8VEqE — 2e3/8u 4 / 2te 3/,

u? u

An integration in parts leads to
mE[Z21z>#] < (u® 4+ 16/3u + 128/9) exp(—3/8u).

Foru > 41/2, (u? + 16/3u + 128/9) exp(—3/8u) < 1/4. Thus, by (14), for, > 41/2,
Pr{Z] > 1/@vm)] = —5 - —5 = =

4u2  4u2 22

Thus, for alle € (0, 1),

Pr |sup
geG

|Elg] — E[g]]
o(@)

>1—6 S 2
~2ym | T 412

which concludes the proof. O
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