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Abstract

This paper presents an analysis of importance weighting forlearning from finite
samples and gives a series of theoretical and algorithmic results. We point out
simple cases where importance weighting can fail, which suggests the need for an
analysis of the properties of this technique. We then give both upper and lower
bounds for generalization with bounded importance weightsand, more signifi-
cantly, give learning guarantees for the more common case ofunbounded impor-
tance weights under the weak assumption that the second moment is bounded,
a condition related to the Rényi divergence of the trainingand test distributions.
These results are based on a series of novel and general bounds we derive for un-
bounded loss functions, which are of independent interest.We use these bounds to
guide the definition of an alternative reweighting algorithm and report the results
of experiments demonstrating its benefits. Finally, we analyze the properties of
normalized importance weights which are also commonly used.

1 Introduction

In real-world applications of machine learning, often the sampling of the training and test instances
may differ, which results in a mismatch between the two distributions. For example, in web search
applications, there may be data regarding users who clickedon some advertisement link but little
or no information about other users. Similarly, in credit default analyses, there is typically some
information available about the credit defaults of customers who were granted credit, but no such
information is at hand about rejected costumers. In other problems such as adaptation, the training
data available is drawn from a source domain different from the target domain. These issues of
biased sampling or adaptation have been long recognized andstudied in the statistics literature.
There is also a large body of literature dealing with different techniques for sample bias correction
[11, 29, 16, 8, 25, 6] or domain adaptation [3, 7, 19, 10, 17] inthe recent machine learning and
natural language processing literature.

A common technique used in several of these publications forcorrecting the bias or discrepancy is
based on the so-calledimportance weightingtechnique. This consists of weighting the cost of errors
on training instances to emphasize the error on some or de-emphasize it on others, with the objective
of correcting the mismatch between the distributions of training and test points, as in sample bias
correction, adaptation, and other related contexts such asactive learning [24, 14, 8, 19, 5]. Different
definitions have been adopted for these weights. A common definition of the weight for pointx is
w(x)=P (x)/Q(x) whereP is the target or test distribution andQ is the distribution according to
which training points are drawn. A favorable property of this definition, which is not hard to verify,
is that it leads to unbiased estimates of the generalizationerror [8].

This paper presents an analysis of importance weighting forlearning from finite samples. Our study
was originally motivated by the observation that, while this corrective technique seems natural, in
some cases in practice it does not succeed. An example in dimension two is illustrated by Figure 1.
The target distributionP is the even mixture of two Gaussians centered at(0, 0) and(0, 2) both with
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Figure 1: Example of importance weighting.Left figure: P (in blue) andQ (in red) are even mixtures
of Gaussians. The labels are positive within the unit spherecentered at the origin (in grey), negative
elsewhere. The hypothesis class is that of hyperplanes tangent to the unit sphere.Right figures: plots
of test error vs training sample size using importance weighting for two different values of the ratio
σQ/σP . The results indicate mean values of the error over 40 runs± one standard deviation.

standard deviationσP , while the source distributionQ is the even mixture of two Gaussians centered
at (0, 0) and (2, 0) but with standard deviationσQ. The hypothesis class is that of hyperplanes
tangent to the unit sphere. The best classifier is selected byempirical risk minimization. As shown
in Figure 1, forσP /σQ = .3, the error of the hypothesis learned using importance weighting is close
to 50% even for a training sample of5,000 points and the standard deviation of the error is quite
high. In contrast, forσP /σQ = .75, convergence occurs relatively rapidly and learning is successful.
In Section 4, we discuss other examples where importance weighting does not succeed.

The problem just described is not limited to isolated examples. Similar observations have been made
in the past in both the statistics and learning literature, more recently in the context of the analysis
of boosting by [9] who suggest that importance weighting must be used with care and highlight the
need for convergence bounds and learning guarantees for this technique.

We study the theoretical properties of importance weighting. We show using standard generaliza-
tion bounds that importance weighting can succeed when the weights are bounded. However, this
condition often does not hold in practice. We also show that,remarkably, convergence guarantees
can be given even for unbounded weights under the weak assumption that the second moment of the
weights is bounded, a condition that relates to the Rényi divergence ofP andQ. We further extend
these bounds to guarantees for other possible reweightings. These results suggest minimizing a bias-
variance tradeoff that we discuss and that leads to several algorithmic ideas. We explore in detail an
algorithm based on these ideas and report the results of experiments demonstrating its benefits.

Throughout this paper, we consider the case where the weightfunction w is known. When it is
not, it is typically estimated from finite samples. The effect of this estimation error is specifically
analyzed by [8]. This setting is closely related to the problem of importance sampling in statistics
which is that of estimating the expectation of a random variable according toP while using a sample
drawn according toQ, with w given [18]. Here, we are concerned with the effect of the weights on
learning from finite samples. A different setting is when further full access toQ is assumed, von
Neumann’s rejection sampling technique [28] can then be used. We note however that it requiresw
to be bounded by some constantM , which is often not guaranteed and is the simplest case of our
bounds. Even then, the method is wasteful as it requires on averageM samples to obtain one point.

The remainder of this paper is structured as follows. Section 2 introduces the definition of the Rényi
divergences and gives some basic properties of the importance weights. In Section 3, we give gen-
eralization bounds for importance weighting in the boundedcase. We also present a general lower
bound indicating the key role played by the Rényi divergence ofP andQ in this context. Section 4
deals with the more frequent case of unboundedw. Standard generalization bounds do not apply
here since the loss function is unbounded. We give novel generalization bounds for unbounded loss
functions under the assumption that the second moment is bounded (see Appendix) and use them to
derive learning guarantees for importance weighting in this more general setting. In Section 5, we
discuss an algorithm inspired by these guarantees for whichwe report preliminary experimental re-
sults. We also discuss why the commonly used remedy of truncating or capping importance weights
may not always provide the desired effect of improved performance. Finally, in Section 6, we study
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the properties of an alternative reweighting also commonlyused which is based on normalized im-
portance weights, and discuss its relationship with the (unnormalized) weightsw.

2 Preliminaries

LetX denote the input space,Y the label set, and letL : Y×Y → [0, 1] be a loss function. We denote
by P the target distribution and byQ the source distribution according to which training pointsare
drawn. We also denote byH the hypothesis set used by the learning algorithm and byf : X → Y
the target labeling function.

2.1 Rényi divergences

Our analysis makes use of the notion of Rényi divergence, aninformation theoretical measure of
the difference between two distributions directly relevant to the study of importance weighting. For
α≥0, the Rényi divergenceDα(P‖Q) between distributionsP andQ is defined by [23]

Dα(P‖Q) =
1

α − 1
log2

∑

x

P (x)

(
P (x)

Q(x)

)α−1

. (1)

The Rényi divergence is a non-negative quantity and for anyα > 0, Dα(P‖Q) = 0 iff P = Q. For
α = 1, it coincides with the relative entropy. We denote bydα(P‖Q) the exponential in base 2 of
the Rényi divergenceDα(P‖Q):

dα(P‖Q) = 2Dα(P‖Q) =

[ ∑

x

Pα(x)

Qα−1(x)

] 1
α−1

. (2)

2.2 Importance weights

The importance weightfor distributionsP andQ is defined byw(x) = P (x)/Q(x). In the follow-
ing, the expectations are taken with respect toQ.

Lemma 1. The following identities hold for the expectation, second moment, and variance ofw:

E[w] = 1 E[w2] = d2(P‖Q) σ2(w) = d2(P‖Q) − 1. (3)

Proof. The first equality is immediate. The second moment ofw can be expressed as follows in
terms of the Rényi divergence:

E
Q
[w2] =

∑

x∈X

w2(x)Q(x) =
∑

x∈X

(
P (x)

Q(x)

)2

Q(x) =
∑

x∈X

P (x)

(
P (x)

Q(x)

)
= d2(P‖Q).

Thus, the variance ofw is given byσ2(w) = EQ[w2] − EQ[w]2 = d2(P‖Q) − 1.

For any hypothesish∈H , we denote byR(h) its lossand byR̂w(h) its weighted empirical loss:

R(h) = E
x∼P

[L(h(x), f(x))] R̂w(h) =
1

m

m∑

i=1

w(xi)L(h(xi), f(xi)).

We shall use the abbreviated notationLh(x) for L(h(x), f(x)), in the absence of any ambiguity
about the target functionf . Note that the unnormalized importance weighting of the loss is unbiased:

E
Q
[w(x)Lh(x)] =

∑

x

P (x)

Q(x)
Lh(x)Q(x) =

∑

x

P (x)Lh(x) = R(h).

The following lemma gives a bound on the second moment.

Lemma 2. For all α > 0 andx ∈ X , the second moment of the importance weighted loss can be
bounded as follows:

E
x∼Q

[w2(x)L2
h(x)] ≤ dα+1(P‖Q)R(h)1−

1
α . (4)

For α = 1, this becomesR(h)2 ≤ Ex∼Q[w2(x)L2
h(x)] ≤ d2(P‖Q).

3



Proof. The second moment can be bounded as follows:

E
x∼Q

[w2(x)L2
h(x)] =

∑

x

Q(x)

[
P (x)

Q(x)

]2

L2
h(x) =

∑

x

P (x)
1
α

[
P (x)

Q(x)

]
P (x)

α−1

α L2
h(x)

≤
[∑

x

P (x)

[
P (x)

Q(x)

]α] 1
α
[ ∑

x

P (x)L
2α

α−1

h (x)

] α−1

α

(Hölder’s inequality)

= dα+1(P‖Q)

[∑

x

P (x)Lh(x)L
α+1

α−1

h (x)

] α−1

α

≤ dα+1(P‖Q)R(h)1−
1
α B1+ 1

α = dα+1(P‖Q)R(h)1−
1
α .

3 Learning Guarantees - Bounded Case

Note thatsupx w(x)=supx
P (x)
Q(x) =d∞(P‖Q). We first examine the cased∞(P‖Q)<+∞ and use

the notationM =d∞(P‖Q). The following proposition follows then directly Hoeffding’s inequality.

Proposition 1 (single hypothesis). Fix h ∈ H . For anyδ > 0, with probability at least1 − δ,

|R(h) − R̂w(h)| ≤ M

√
log(2/δ)

2m
.

The upper boundM , though finite, can be quite large. The following theorem provides a more
favorable bound as a function of the ratioM/m when any of the moments ofw, dα+1(P‖Q),
is finite, which is the case whend∞(P‖Q) < ∞ since the Rényi divergence is a non-decreasing
function ofα [23, 2], in particular:

∀α > 0, dα+1(P‖Q) ≤ d∞(P‖Q). (5)

Theorem 1 (single hypothesis). Fix h ∈ H . Then, for anyα≥1, for anyδ >0, with probability at
least1−δ, the following bound holds for the importance weighting method:

R(h) ≤ R̂w(h) +
2M log 1

δ

3m
+

√
2
[
dα+1(P‖Q)R(h)1−

1
α − R(h)2

]
log 1

δ

m
. (6)

For α = 1 after further simplification, this givesR(h) ≤ R̂w(h) +
2M log 1

δ

3m +

√
2d2(P‖Q) log 1

δ

m .

Proof. Let Z denote the random variablew(x)Lh(x)−R(h). Then,|Z| ≤ M . By lemma 2, the
variance of the random variableZ can be bounded in terms of the Rényi divergencedα+1(P‖Q):

σ2(Z) = E
Q
[w2(x)Lh(x)2] − R(h)2 ≤ dα+1(P‖Q)R(h)1−

1
α − R(h)2.

Thus, by Bernstein’s inequality [4], it follows that:

Pr[R(h) − R̂w(h) > ǫ] ≤ exp

( −mǫ2/2

σ2(Z) + ǫM/3

)
.

Settingδ to match this upper bound shows that with probability at least 1−δ, the following bound
holds for the importance weighting method:

R(h) ≤ R̂w(h) +
M log 1

δ

3m
+

√
M2 log2 1

δ

9m2
+

2σ2(Z) log 1
δ

m
.

Using the sub-additivity of
√· leads to the simpler expression

R(h) ≤ R̂w(h) +
2M log 1

δ

3m
+

√
2σ2(Z) log 1

δ

m
.

These results can be straightforwardly extended to generalhypothesis sets. In particular, for a finite
hypothesis set and forα = 1, the application of the union bound yields the following result.
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Theorem 2 (finite hypothesis set). Let H be a finite hypothesis set. Then, for anyδ > 0, with
probability at least1−δ, the following bound holds for the importance weighting method:

R(h) ≤ R̂w(h) +
2M(log |H | + log 1

δ )

3m
+

√
2d2(P‖Q)(log |H | + log 1

δ )

m
. (7)

For infinite hypothesis sets, a similar result can be shown straightforwardly using covering numbers
instead of|H | or a related measure based on samples of sizem [20].

In the following proposition, we give a lower bound that further emphasizes the role of the Rényi
divergence of the second order in the convergence of importance weighting in the bounded case.

Proposition 2 (Lower bound). Assume thatM < ∞ and σ2(w)/M2 ≥ 1/m. Assume thatH
contains a hypothesish0 such thatLh0

(x) = 1 for all x. Then, there exists an absolute constantc,
c=2/412, such that

Pr

[
sup
h∈H

∣∣R(h) − R̂w(h)
∣∣ ≥

√
d2(P‖Q) − 1

4m

]
≥ c > 0. (8)

Proof. Let σH =suph∈H σ(wLh). If for all x∈X , Lh0
(x)=1, thenσ2(wLh0

)=d2(P‖Q) − 1=
σ2(w)=σ2

H . The result then follows a general theorem, Theorem 9 provenin the Appendix.

4 Learning Guarantees - Unbounded Case

The conditiond∞(P‖Q)<∞ assumed in the previous section does not always hold, even insome
natural cases, as illustrated by the following examples.

4.1 Examples

Assume thatP andQ both follow a Gaussian distribution with the standard deviationsσP andσQ

and with meansµ andµ′:

P (x) =
1√

2πσP

exp

[
− (x − µ)2

2σ2
P

]
Q(x) =

1√
2πσQ

exp

[
− (x − µ′)2

2σ2
Q

]
.

In that case,P (x)
Q(x) =

σQ

σP
exp

[
− σ2

Q(x−µ)2−σ2
P (x−µ′)2

2σ2
P σ2

Q

]
, thus, even forσP = σQ andµ 6= µ′ the

importance weights are unbounded,d∞(P‖Q) = supx
P (x)
Q(x) = +∞, and the bound of Theorem 1

is not informative. The Rényi divergence of the second order is given by:

d2(P‖Q) =
σQ

σP

∫ +∞

−∞
exp

[
−

σ2
Q(x − µ)2 − σ2

P (x − µ′)2

2σ2
P σ2

Q

]
P (x)dx

=
σQ

σ2
P

√
2π

∫ +∞

−∞
exp

[
−

2σ2
Q(x − µ)2 − σ2

P (x − µ′)2

2σ2
P σ2

Q

]
dx.

That is, forσQ >
√

2
2 σP the variance of the importance weights is bounded. By the additivity

property of the Rényi divergence, a similar situation holds for the product and sums of such Gaussian
distributions. Hence, in the rightmost example of Figure 1,the importance weights are unbounded,
but their second moment is bounded. In the next section we provide learning guarantees even for
this setting in agreement with the results observed. ForσQ =0.3σP , the same favorable guarantees
do not hold, and, as illustrated in Figure 1, learning is significantly more difficult.

This example of Gaussians can further illustrate what can gowrong in importance weighting. As-
sume thatµ = µ′ = 0, σQ = 1 andσP = 10. One could have expected this to be an easy case for
importance weighting since sampling fromQ provides useful information aboutP . The problem
is, however, that a sample fromQ will contain a very small number of points far from the mean
(of either negative or positive label) and that these pointswill be assigned very large weights. For
a sample of sizem andσQ =1, the expected value of an extreme point is

√
2 log m − o(1) and its
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weight will be in the order ofm−1/σ2
P +1/σ2

Q = m0.99. Therefore, a few extreme points will domi-
nate all other weights and necessarily have a huge influence on the selection of a hypothesis by the
learning algorithm.

Another related example is whenσQ = σP = 1 andµ′ = 0. Let µ ≫ 0 depend on the sample size
m. If µ is large enough compared tolog(m), then, with high probability, all the weights will be
negligible. This is especially problematic, since the estimate of the probability of any event would
be negligible (in fact both an event and its complement). If we normalize the weights, the issue
is overcome, but then, with high probability, the maximum weight dominates the sum of all other
weights, reverting the situation back to that of the previous example.

4.2 Importance weighting learning bounds - unbounded case

As in these examples, in practice, the importance weights are typically not bounded. However, we
shall show that, remarkably, under the weak assumption thatthe second moment of the weights
w, d2(P‖Q), is bounded, generalization bounds can be given for this case as well. The follow-
ing result relies on a general learning bound for unbounded loss functions proven in the Appendix
(Corollary 1). We denote byPdim(U) the pseudo-dimension of a real-valued function classU [21].
Theorem 3. LetH be a hypothesis set such thatPdim({Lh(x) : h ∈ H}) = p < ∞. Assume that
d2(P‖Q) < +∞ andw(x) 6= 0 for all x. Then, for anyδ > 0, with probability at least1 − δ, the
following holds:

R(h) ≤ R̂w(h) + 25/4
√

d2(P‖Q)
3
8

√
p log 2me

p + log 4
δ

m
.

Proof. Sinced2(P‖Q) < +∞, the second moment ofw(x)Lh(x) is finite and upper bounded by
d2(P‖Q) (Lemma 2). Thus, by Corollary 1, we can write

Pr

[
sup
h∈H

R(h) − R̂w(h)√
d2(P‖Q)

> ǫ

]
≤ 4 exp

(
p log

2em

p
− mǫ8/3

45/3

)
,

wherep is the pseudo-dimension of the function classH ′′ = {w(x)Lh(x) : h ∈ H}. We now show
thatp = Pdim({Lh(x) : h ∈ H}). Let H ′ denote{Lh(x) : h ∈ H}. Let A = {x1, . . . , xk} be a
set shattered byH ′′. Then, there exist real numbersr1, . . . , rk such that for any subsetB ⊆ A there
existsh ∈ H such that

∀xi ∈ B, w(xi)Lh(xi) ≥ ri ∀xi ∈ A − B, w(xi)Lh(xi) < ri. (9)
Since by assumptionw(xi)>0 for all i ∈ [1, k], this implies that

∀xi ∈ B, Lh(xi) ≥ ri/w(xi) ∀xi ∈ A − B, Lh(xi) < ri/w(xi). (10)
Thus,H ′ shattersA with the witnessessi = ri/w(xi), i ∈ [1, k]. Using the same observations, it is
straightforward to see that conversely, any set shattered by H ′ is shattered byH ′′.

The convergence rate of the bound is slightly weaker (O(m−3/8)) than in the bounded case
(O(m−1/2)). A faster convergence can be obtained however using the more precise bound of Theo-
rem 8 at the expense of readability. The Rényi divergenced2(P‖Q) seems to play a critical role in
the bound and thus in the convergence of importance weighting in the unbounded case.

5 Alternative reweighting algorithms

The previous analysis can be generalized to the case of an arbitrary positive functionu : X → R,
u>0. Let R̂u(h)= 1

m

∑m
i=1 u(xi)Lh(xi) and letQ̂ denote the empirical distribution.

Theorem 4. Let H be a hypothesis set such thatPdim({Lh(x) : h ∈ H}) = p <∞. Assume that
0 < EQ[u2(x)]<+∞ andu(x) 6= 0 for all x. Then, for anyδ >0, with probability at least1 − δ,
the following holds:

|R(h) − R̂u(h)| ≤
∣∣∣ E

Q

[
[w(x) − u(x)]Lh(x)

]∣∣∣+

25/4 max
(√

EQ[u2(x)L2
h(x)],

√
E bQ[u2(x)L2

h(x)]
) 3

8

√
p log 2me

p + log 4
δ

m
.
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Figure 2: Comparison of the convergence of 4 different algorithms for the learning task of Figure 1:
learning with equal weights for all examples (Unweighted),Importance weighting, using Quantiles
to parameterize the functionu, and Capping the largest weights.

Proof. SinceR(h) = E[w(x)Lh(x)], we can write

R(h) − R̂u(h) = E
Q

[
[w(x) − u(x)]Lh(x)

]
+ E[u(x)Lh(x)] − R̂u(h),

and thus

|R(h) − R̂u(h)| ≤
∣∣E

Q

[
[w(x) − u(x)]Lh(x)

]∣∣ + |E[u(x)Lh(x)] − R̂u(h)|.

By Corollary 2 applied to the functionu Lh, |E[u(x)Lh(x)] − R̂u(h)| can be bounded by

25/4 max(
√

EQ[u2(x)L2
h(x)],

√
E bQ[u2(x)L2

h(x)])
3
8

√
p log 2me

p +log 4
δ

m with probability 1− δ, with
p = Pdim({Lh(x) : h ∈ H}) by a proof similar to that of Theorem 3.

The theorem suggests that other functionsu thanw can be used to reweight the cost of an error
on each training point by minimizing the upper bound, which is a trade-off between the bias term
|EQ[(w(x)−u(x))Lh(x)]| and the second momentmax

(√
EQ[u2(x)L2

h(x)],
√

E bQ[u2(x)L2
h(x)]

)
,

where the coefficients are explicitly given. Functionu can be selected from different families. Using
an upper bound on these quantities that is independent ofh and a multiplicative bound of the form

max
(√

E
Q
[u2],

√
E
bQ
[u2]

)
≤

√
E
Q
[u2]

(
1 + O(1/

√
m)

)
,

leads to the following optimization problem:

min
u∈U

E
Q

[
|w(x) − u(x)|

]
+ γ

√
E
Q
[u2], (11)

whereγ > 0 is a parameter controlling the trade-off between bias and variance minimization and
whereU is a family of possible weight functions out of whichu is selected.

Here, we consider a family of functionsU parameterized by the quantilesq of the weight function
w. A functionuq ∈ U is then defined as follows: within each quantile, the value taken byuq is the
average ofw over that quantile. For small values ofγ, the bias term dominates, and very fine-grained
quantiles minimize the bound of equation (11). For large values ofγ the variance term dominates
and the bound is minimized by using just one quantile, corresponding to an even weighting of
the training examples. Hence by varyingγ from small to large values, the algorithm interpolates
between standard importance weighting with just one example per quantile, and unweighted learning
where all examples are given the same weight. Figure 2 also shows the results of experiments for
the learning task of Figure 1 using the algorithm defined by (11) with this family of functions. The
optimalq is determined by 10-fold cross-validation. We see that a more rapid convergence can be
obtained by using these weights compared to the standard importance weightsw.

Another natural family of functions is that of thresholded versions of the importance weights
{uθ : θ>0, ∀x∈X, uθ(x)=min(w(x), θ)}. In fact, in practice, users often cap importance weights
by choosing an arbitrary valueθ. The advantage of this family is that, by definition, the weights are

7



bounded. However, in some cases, larger weights could be critical to achieve a better performance.
Figure 2 illustrates the performance of this approach. Compared to importance weighting, no change
in performance is observed until the largest 1% of the weights are capped, in which case we only
observe a performance degradation. We expect the thresholding to be less beneficial when the large
weights reflect the truew and are not an artifact of estimation uncertainties.

6 Relationship between normalized and unnormalized weights

An alternative approach based on the weight functionw = P (x)/Q(x) consists of normalizing the
weights. Thus, while in the unnormalized case the unweighted empirical error is replaced by

1

m

m∑

i=1

w(xi)Lh(xi) =

m∑

i=1

w(xi)

m
Lh(xi),

in the normalized case it is replaced by
m∑

i=1

w(xi)

W
Lh(xi),

with W =
∑m

i=1 w(xi). We refer toŵ(x) = w(x)/W as thenormalized importance weight. An
advantage of the normalized weights is that they are by definition bounded by one. However, the
price to pay for this benefit is the fact that the weights are nomore unbiased. In fact, several issues
similar to those we pointed out in the Section 4 affect the normalized weights as well.

Here, we maintain the assumption that the second moment of the importance weights is bounded
and analyze the relationship between normalized and unnormalized weights. We show that, under
this assumption, normalized and unnormalized weights are in fact very close, with high probability.

Observe that for anyi ∈ [1, m],

ŵ(xi) −
w(xi)

m
= w(xi)

[
1

W
− 1

m

]
=

w(xi)

W

[
1 − W

m

]
.

Thus, sincew(xi)
W ≤ 1, we can write

∣∣∣ŵ(xi) − w(xi)
m

∣∣∣ ≤
∣∣1 − W

m

∣∣ . SinceE[w(x)]=1, we also have

ES [W ]= 1
m

∑m
k=1 E[w(xk)]=1. Thus, by Corollary 2, for anyδ>0, with probability at least1− δ,

the following inequality holds

∣∣∣∣1 − W

m

∣∣∣∣ ≤ 25/4 max

{√
d2(P‖Q),

√
d2(P‖Q̂)

}
3
8

√
log 2me + log 4

δ

m
,

which implies the same upper bound on
∣∣∣ŵ(xi) − w(xi)

m

∣∣∣, simultaneously for alli ∈ [1, m].

7 Conclusion

We presented a series of theoretical results for importanceweighting both in the bounded weights
case and in the more general unbounded case under the assumption that the second moment of the
weights is bounded. We also initiated a preliminary exploration of alternative weights and showed its
benefits. A more systematic study of new algorithms based on these learning guarantees could lead
to even more beneficial and practically useful results. Several of the learning guarantees we gave
depend on the Rényi divergence of the distributionsP andQ. Accurately estimating that quantity
is thus critical and should motivate further studies of the convergence of its estimates from finite
samples. Finally, our novel unbounded loss learning boundsare of independent interest and could
be useful in a variety of other contexts.
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A Generalization bounds for unbounded losses

When the class of functions is not bounded, a single functioncan take arbitrarily large values with
arbitrarily small probabilities. This is the main issue forderiving uniform convergence bounds for
unbounded losses. This problem can be avoided either by assuming the existence of an envelope,
that is a single non-negative function with a finite expectation lying above the absolute value of the
loss of every function in the hypothesis set [12, 21, 13, 22, 15], or by assuming that some moment
of the function losses is bounded [26, 27]. Our example in thesimple case of Gaussians where
the functionw is exponential shows that no envelope function would be suitable for the problem
of importance weighting. Thus, in view of the critical role played by the second moment of the
importance weight, we have chosen to favor the assumption that the second moment is bounded, as
in that example. A similar analysis can be given for other moments.

Here, we give two-sided generalization bounds for unbounded losses with finite second moments.
The one-sided version of our bounds coincides with that of [26, 27] modulo a constant factor of

√
2,

but the proofs given by Vapnik in both books seem to be incorrect.1 The core component of our
proof is based on a different technique, which is simpler andeasy to check.

In what follows, we use the notation̂Pr to denote the empirical distribution based on a finite sample
of sizem, andÊ to denote the expectation based on̂Pr. The following theorem reduces the problem
of boundingsuph∈H(E[Lh]− Ê[Lh])/

√
E[L2

h] to that of a standard relative deviation bound for
classification.

Theorem 5. For any loss functionL (not necessarily bounded) and hypothesis setH such that
0<E[L2

h]<+∞ for all h∈H , the following two inequalities hold:

Pr

[
sup
h∈H

E[Lh] − Ê[Lh]√
E[L2

h]
> ǫ

√
2 + log

1

ǫ

]
≤ Pr

[
sup

h∈H,t∈R

Pr[Lh > t] − P̂r[Lh > t]√
Pr[Lh > t]

> ǫ

]
.

Pr

[
sup
h∈H

Ê[Lh] − E[Lh]√
Ê[L2

h]
> ǫ

√
2 + log

1

ǫ

]
≤ Pr

[
sup

h∈H,t∈R

P̂r[Lh > t] − Pr[Lh > t]√
P̂r[Lh > t]

> ǫ

]
.

Proof. We prove the first statement. The second statement can be shown in a very similar way.

Fix ǫ>0 and assume that for anyh ∈ H andt≥0, the following holds:

Pr[Lh > t] − P̂r[Lh > t]√
Pr[Lh > t]

≤ ǫ. (12)

We show that this implies that for anyh ∈ H , E[Lh]−bE[Lh]√
E[L2

h]
≤ ǫ

√
2 + log 1

ǫ . By the properties of the

Lebesgue integral, we can write

E[Lh] =

∫ +∞

0

Pr[Lh > t] dt and Ê[Lh] =

∫ +∞

0

P̂r[Lh > t] dt,

and similarly,

E[L2
h] =

∫ +∞

0

Pr[L2
h > t] dt =

∫ +∞

0

2t Pr[Lh > t] dt.

In what follows, we use the shorter notationI = E[L2
h]. Let t1 =

√
I
2

1
ǫ . To boundE[Lh] − Ê[Lh],

we simply boundPr[Lh > t] − P̂r[Lh > t] by Pr[Lh > t] for large values oft, that ist > t1, and

1In [26][p.204-206], statement (5.37) cannot be derived from assumption (5.35), contrarily to what is
claimed by the author, and in general does not hold: the first integral in (5.37) is restricted to a sub-domain
and is thus smaller than the integral of (5.35). Furthermore, the main statement claimed in Section (5.6.2) is not
valid. In [27][p.200-202], the author invokes theLagrange methodto show the main inequality, but the proof
steps are not mathematically justified. Even with our best efforts, we could not justify some of the steps and
strongly believe the proof not to be correct. In particular,the way functionz is concluded to be equal to one
over the first interval is suspicious and not based on a mathematical proof.

10



use inequality (12) for smaller values oft:

E[Lh] − Ê[Lh] =

∫ +∞

0

Pr[Lh > t] − P̂r[Lh > t] dt ≤
∫ t1

0

ǫ
√

Pr[Lh > t]dt +

∫ +∞

t1

Pr[Lh > t]dt.

For relatively small values oft, Pr[Lh > t] is close to one. Thus, if we definet0 by t0 =
√

I
2 , we

can write

E[Lh] − Ê[Lh] ≤
∫ t0

0

ǫ dt +

∫ t1

t0

ǫ
√

Pr[Lh > t]dt +

∫ +∞

t1

Pr[Lh > t]dt =

∫ +∞

0

f(t)g(t) dt,

with

f(t) =






(2I)1/4 ǫ if 0 ≤ t ≤ t0√
2t Pr[Lh > t] ǫ if t0 ≤ t ≤ t1√
2t Pr[Lh > t] ǫ if t1 ≤ t.

g(t) =






1
(2I)1/4 if 0 ≤ t ≤ t0
1√
2t

if t0 ≤ t ≤ t1√
Pr[Lh>t]

2t
1
ǫ if t1 ≤ t.

Now, by the Cauchy-Schwarz inequality,

E[Lh] − Ê[Lh] ≤

√∫ +∞

0

f(t)2 dt

√∫ +∞

0

g(t)2 dt.

The first integral on the right-hand side can be bounded as follows:
∫ +∞

0

f(t)2 dt =

∫ t0

0

√
2Iǫ2 dt +

∫ +∞

t0

2t Pr[Lh > t]ǫ2 dt ≤
√

2I t0 ǫ2 + ǫ2I = 2ǫ2I,

and, sincet1/t0 = 1/ǫ, the second one can be computed and bounded following
∫ +∞

0

g(t)2 dt =

∫ t0

0

dt√
2I

+

∫ t1

t0

dt

2t
+

∫ +∞

t1

Pr[Lh > t]

2tǫ2
dt

=
1

2
+

1

2
log

1

ǫ
+

∫ +∞

t1

2t Pr[Lh > t]

4t2ǫ2
dt

≤ 1

2
+

1

2
log

1

ǫ
+

∫ +∞

t1

2t Pr[Lh > t]

4t21ǫ
2

dt ≤ 1

2
+

1

2
log

1

ǫ
+

I

4t21ǫ
2

= 1 +
1

2
log

1

ǫ
.

Combining the bounds obtained for these integrals yields directly

E[Lh] − Ê[Lh] ≤
√

2ǫ2I

(
1 +

1

2
log

1

ǫ

)
= ǫ

√(
2 + log

1

ǫ

)√
I,

which concludes the proof of the theorem.

We will use the following relative deviation bound for classification of [1, 27]. Such relative devia-
tion results give sharper generalization bounds for binaryclassification.

Theorem 6 ([1]). Let L be the binary classification loss. Then, for any hypothesis set H of real-
valued functions, the following inequality holds:

Pr

[
sup
h∈H

R(h) − R̂(h)√
R(h)

> ǫ

]
≤ 4ΠH(2m) exp

(
−mǫ2

4

)
,

whereΠH(m) is the value of the growth function (maximum number of classifications) for a sample
of sizem, using the hypothesis setH .

It is not hard to show using the same proof as that of [1, 27] that a similar guarantee holds for the

left side: Pr[suph∈H

bR(h)−R(h)√
bR(h)

> ǫ] ≤ 4ΠH(2m) exp
(
−mǫ2

4

)
. Combining these results with

Theorem 5 yields directly the following.
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Theorem 7. LetH be a hypothesis set of real-valued functions andL a loss function (not necessarily
bounded) such that for allh ∈ H , 0 < E[L2

h(x)] < +∞. Then, the following holds:

Pr

[
sup
h∈H

E[Lh(x)] − Ê[Lh(x)]√
E[L2

h(x)]
> ǫ

√
2 + log

1

ǫ

]
≤ 4ΠH(2m) exp

(
−mǫ2

4

)
.

Pr

[
sup
h∈H

Ê[Lh(x)] − E[Lh(x)]√
Ê[L2

h(x)]
> ǫ

√
2 + log

1

ǫ

]
≤ 4ΠH(2m) exp

(
−mǫ2

4

)
.

Theorem 8. LetH be a hypothesis set of real-valued functions andL a loss function (not necessarily
bounded) such that for allh ∈ H , 0 < E[L2

h(x)] < +∞. Assume that thatPdim({Lh(x) : h ∈
H}) = d < ∞. Then, the following holds:

Pr

[
sup
h∈H

E[Lh(x)] − Ê[Lh(x)]√
E[L2

h(x)]
> ǫ

√
2 + log

1

ǫ

]
≤ 4 exp

(
d log

2em

d
− mǫ2

4

)
.

Proof. The results follows immediately by Sauer’s lemma and the fact that the VC dimension of the
family {sgn(Lh(x)−t) : h ∈ H, t ∈ R} is precisely the pseudo-dimension of{Lh(x) : h ∈ H}.

The following corollary gives a simpler form of this bound.

Corollary 1. Let H be a hypothesis set of real-valued functions andL a loss function (not neces-
sarily bounded) such that for allh ∈ H , 0<E[L2

h(x)]<+∞. Assume that thatPdim({Lh(x) : h∈
H})=d<∞. Then, the following holds:

Pr

[
sup
h∈H

E[Lh(x)] − Ê[Lh(x)]√
E[L2

h(x)]
> ǫ

]
≤ 4 exp

(
d log

2em

d
− mǫ8/3

45/3

)
.

Proof. It is not hard to show that3/4=minβ{β : ∀ǫ∈ [0, 1], ǫ
√

1 + 1
2 log 1

ǫ ≤ eβ} by studying the

functionǫ 7→ ǫ
√

1 + 1
2 log 1

ǫ − eβ . This, combined with Theorem 7, gives the result.

The following two-sided bound results directly from Corollary 1 and a similar bound for the other
side that can be derived in the same way from Theorem 7.

Corollary 2. Let H be a hypothesis set of real-valued functions andL a loss function (not neces-
sarily bounded) such that for allh ∈ H , 0<E[L2

h(x)]<+∞. Assume that thatPdim({Lh(x) : h∈
H}) = d <∞. Then, for anyδ > 0, with probability at least1 − δ, for anyh ∈ H , the following
holds:

∣∣∣E[Lh(x)] − Ê[Lh(x)]
∣∣∣ ≤ 25/4 max

{√
E[L2

h(x)],

√
Ê[L2

h(x)]

}
3
8

√
d log 2me

d + log 8
δ

m
.

B General lower bound based on maximum variance

Variants of the following result are known in the folklore ofthe learning theory community. We give
a full proof below.

Theorem 9. LetG denote a family of functions taking values in[0, 1]. For g∈G, let σ2(g) denote
the variance ofg andσ(G) = supg∈G σ(g). Assume that1m ≤ σ2(G) < +∞. Then, the following
inequality holds:

Pr

[
sup
g∈G

[∣∣ E[g] − Ê[g]
∣∣

σ(G)

]
≥ 1

2
√

m

]
≥ 2

412
, (13)

where the probability is taken over samples of sizem.

12



Proof. Fix ǫ∈ (0, 1). By definition of the supremum, there existsg ∈G with σ(g)≥ (1 − ǫ)σ(G).

Let Z = E[g]−bE[g]
σ(g) . By definition,E[Z2]= 1

m2 E[
∑m

i=1
(E[g]−g(xi))

2

σ2(g) ]= 1
m . Thus,

1

m
= E[Z2] = E[Z21Z∈[0,1/(2

√
m)]] + E[Z21Z∈[1/(2

√
m),u/(

√
m)]] + E[Z21Z≥u/(

√
m)]

≤ 1

4m
+

u2

m
Pr[|Z| ≥ 1/(2

√
m)] + E[Z21Z>u/(

√
m)],

which gives

Pr[|Z| ≥ 1/(2
√

m)] ≥ 3

4u2
− m

u2
E[Z21Z>u/(

√
m)]. (14)

Now, by the property of the Lebesgue integral,

m E[Z21Z> u√
m

] =

∫ +∞

0

Pr[mZ21Z> u√
m

> t]dt =

∫ u2

0

Pr

[
Z >

u√
m

]
dt +

∫ +∞

u2

Pr

[
Z >

√
t

m

]
dt

= u2 Pr

[
Z >

√
u2

m

]
+

∫ +∞

u2

Pr

[
Z >

√
t

m

]
dt.

By Bernstein’s inequality,

Pr

[
Z >

√
t

m

]
= Pr[

∣∣E[g] − Ê[g]
∣∣ >

√
t

m
σ(g)] ≤ exp

[
−m t

m σ2(g)

2σ2(g) + 2/3
√

t
mσ(g)

]
.

Using the assumption1/
√

m ≤ σ(g) gives

Pr

[
Z >

√
t

m

]
≤ exp

[ −tσ2(g)

2σ2(g) + 2/3
√

tσ2(g)

]
= exp

[ −t

2 + 2/3
√

t

]
≤ exp(−3/8

√
t).

Thus,

m E[Z21Z> u√
m

] ≤ u2e−3/8u +

∫ +∞

u2

e−3/8
√

tdt = u2e−3/8u +

∫ +∞

u

2te−3/8tdt.

An integration in parts leads to

m E[Z21Z> u√
m

] ≤ (u2 + 16/3u + 128/9) exp(−3/8u).

Foru ≥ 41/2, (u2 + 16/3u + 128/9) exp(−3/8u) ≤ 1/4. Thus, by (14), foru ≥ 41/2,

Pr[|Z| ≥ 1/(2
√

m)] ≥ 3

4u2
− 1

4u2
=

1

2u2
.

Thus, for allǫ∈(0, 1),

Pr

[
sup
g∈G

[∣∣ E[g] − Ê[g]
∣∣

σ(G)

]
≥ 1 − ǫ

2
√

m

]
≥ 2

412
,

which concludes the proof.
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