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Abstract

The notion of algorithmic stability has been used effedyivie the past to derive
tight generalization bounds. A key advantage of these beismthat they are de-
signed for specific learning algorithms, exploiting thearjicular properties. But,
as in much of learning theory, existing stability analysed bounds apply only
in the scenario where the samples are independently antlddin distributed
(i.i.d.). In many machine learning applications, howevkis assumption does
not hold. The observations received by the learning algeribften have some
inherent temporal dependence, which is clear in systermdig or time series
prediction problems. This paper studies the scenario wiherebservations are
drawn from a stationary mixing sequence, which implies sedéence between
observations that weaken over time. It proves novel stgdithsed generalization
bounds that hold even with this more general setting. Thesads strictly gen-
eralize the bounds given in the i.i.d. case. It also illussaheir application in the
case of several general classes of learning algorithmkidimg Support Vector
Regression and Kernel Ridge Regression.

1 Introduction

The notion of algorithmic stability has been used effedyivie the past to derive tight generalization
bounds [2—4,6]. A learning algorithm is stable when the lilgpses it outputs differ in a limited way

when small changes are made to the training set. A key adyabfastability bounds is that they are
tailored to specific learning algorithms, exploiting thparticular properties. They do not depend
on complexity measures such as the VC-dimension, coveringpers, or Rademacher complexity,
which characterize a class of hypotheses, independengigyélgorithm.

But, as in much of learning theory, existing stability ars&ly and bounds apply only in the scenario
where the samples are independently and identically diged (i.i.d.). Note that the i.i.d. assump-
tion is typically not tested or derived from a data analysismany machine learning applications
this assumption does not hold. The observations receivélodigarning algorithm often have some
inherent temporal dependence, which is clear in systermdiig or time series prediction prob-
lems. A typical example of time series data is stock pricimigere clearly prices of different stocks
on the same day or of the same stock on different days may lendept.

This paper studies the scenario where the observationsama rom a stationary mixing sequence,
a widely adopted assumption in the study of non-i.i.d. psses that implies a dependence between
observations that weakens over time [8, 10,16, 17]. Ourfprace also based on the independent
block technique commonly used in such contexts [17] and &igdined version of McDiarmid’s
inequality [7]. We prove novel stability-based generalmabounds that hold even with this more
general setting. These bounds strictly generalize thed®given in the i.i.d. case and apply to all
stable learning algorithms thereby extending the usegglioé stability-bounds to non-i.i.d. scenar-



ios. It also illustrates their application to general céssef learning algorithms, including Support
Vector Regression (SVR) [15] and Kernel Ridge Regressi8h [1

Algorithms such as support vector regression (SVR) [14hByE been used in the context of time
series prediction in which the i.i.d. assumption does ndt,hsome with good experimental re-
sults [9, 12]. To our knowledge, the use of these algorithmsdn-i.i.d. scenarios has not been
supported by any theoretical analysis. The stability beume give for SVR and many other kernel
regularization-based algorithms can thus be viewed asr8tateoretical basis for their use in such
scenarios.

In Section 2, we will introduce the definitions for the nondi. problems we are considering and
discuss the learning scenarios. Section 3 gives our maiargkration bounds based on stabil-
ity, including the full proof and analysis. In Section 4, wgpsy these bounds to general kernel
regularization-based algorithms, including Support ¥eBegression and Kernel Ridge Regression.

2 Preliminaries

We first introduce some standard definitions for dependesgmiations in mixing theory [5] and
then briefly discuss the learning scenarios in the non-cade.

2.1 Non-i.i.d. Definitions

Definition 1. A sequence of random variabl&s= {Z,},° __ is said to bestationaryif for any ¢

and non-negative integers andk, the random vector&Z,, ..., Z;1,,) and (Ziik, - - -, Zitm+k)
have the same distribution.

Thus, the index or time, does not affect the distribution of a varialdlgin a stationary sequence.
This does not imply independence however. In particularifec j < k, Pr[Z; | Z;] may not
equalPr[Z; | Z;]. The following is a standard definition giving a measure efdiependence of the
random variableg’; within a stationary sequence. There are several equivagfmtitions of this
guantity, we are adopting here that of [17].

Definition 2. LetZ = {Zt}fi_oo be a stationary sequence of random variables. For anye

Z U {—o00,+cc}, let o] denote ther-algebra generated by the random variablég, i < k < j.
Then, for any positive integét, the 5-mixing andp-mixing coefficients of the stochastic proc@ss
are defined as
B(k) =sup E, [ sup |Pr[A| B] - Pr[A]H o(k) = sup ‘Pr[A B - PrA]l. @
n o’ AEa’Zﬂrk AG;L?M
Beo™

Z is said to bes-mixing (p-mixing) if 5(k) — 0 (resp. ¢(k) — 0) ask — oco. Itis said to be
algebraicallys-mixing (algebraically,-mixing) if there exist real number§, > 0 (resp.¢o > 0)
andr > 0 such that3(k) < Go/k" (resp. p(k) < ¢o/k") for all k, exponentially mixingf there
exist real numberg), (resp.yo > 0) andj; (resp.p1 > 0) such thai3(k) < Gy exp(—£1k") (resp.
o(k) < o exp(—p1k")) for all k.

Both (k) and ¢(k) measure the dependence of the events on those that occuoredttmank
units of time in the past.5-mixing is a weaker assumption thg@amixing. We will be using a
concentration inequality that leads to simple bounds batt #pplies top-mixing processes only.
However, the main proofs presented in this paper are givéheirmore general case Gfmixing
sequences. This is a standard assumption adopted in psestiodies of learning in the presence
of dependent observations [8, 10, 16, 17]. As pointed oufLé],[5-mixing seems to be “just the
right” assumption for carrying over several PAC-learniegults to the case of weakly-dependent
sample points. Several results have also been obtained imdhe general context ef-mixing but
they seem to require the stronger condition of exponentighm [11]. Mixing assumptions can be
checked in some cases such as with Gaussian or Markov pesdé€§. The mixing parameters can
also be estimated in such cases.



Most previous studies use a technique originally introdume [1] based orindependent blocksf
equal size [8,10,17]. This technique is particularly ral@when dealing with stationafmixing.
We will need a related but somewhat different techniqueesihe blocks we consider may not have
the same size. The following lemma is a special case of GoyoH.7 from [17].

Lemma 1 (Yu [17], Corollary 2.7) Let > 1 and suppose that is measurable function, with
absolute value bounded by, on a product probability spacé]‘[g‘:1 Q;, [T, crf_;) wherer; <
s; < r;yq foralli. Let@ be a probability measure on the product space with margiredsares);

on (;, 03'), and letQ** be the marginal measure gfon (H;ill 0, T15 aﬁj) vi=1,...,u—1.
Let3(Q) = sup; ;< B(ki), wherek; = riyy — s;, andP = []/_; Q;. Then,

[Elh) -~ EI)] < (u— DMAQ). @

The lemma gives a measure of the difference between théodison of .« blocks where the blocks
are independent in one case and dependent in the other chsadiskribution within each block
is assumed to be the same in both cases. For a monotonicaligading functions, we have
B(Q) = B(k*), wherek* = min;(k;) is the smallest gap between blocks.

2.2 Learning Scenarios

We consider the familiar supervised learning setting wiieedearning algorithm receives a sample
of m labeled pointsS = (z1,...,2m) = (x1,91),- -+, (@m,¥m)) € (X x V)™, whereX is the
input space andl” the set of labelsY{ = R in the regression case), both assumed to be measurable.

For a fixed learning algorithm, we denote by the hypothesis it returns when trained on the sample
S. The error of a hypothesis on a paie X xY is measured in terms of a cost functionY xY —
R.. Thus,c(h(x),y) measures the error of a hypothésisn a pair(z, y), c(h(z),y) = (h(z)—y)?
in the standard regression cases. We will use the short{and) := ¢(h(x), y) for a hypothesis
andz = (z,y) € X x Y and will assume thatis upper bounded by a constavt > 0. We denote
by R(h) the empirical error of a hypothedisfor a training sample& = (z1, ..., z;):

~ 1 &

R(h) = — h, z;). 3

(h) = — ; c(h, i) 3)

In the standard machine learning scenario, the sample pairs., z,, are assumed to be i.i.d., a
restrictive assumption that does not always hold in practige will consider here the more general
case of dependent samples drawn from a stationary mixingesegZ over X x Y. As in the i.i.d.
case, the objective of the learning algorithm is to selecy@othesis with small error over future
samples. But, here, we must distinguish two versions oftoblem.

In the most general version, future samples depend on timnigesampleS and thus the general-
ization error or true error of the hypothegis trained onS must be measured by its expected error
conditioned on the sample:

R(hs) = Elc(hs, 2) | S]. (4)

This is the most realistic setting in this context, which ch&is time series prediction problems.
A somewhat less realistic version is one where the sampéedependent, but the test points are
assumed to be independent of the training samipl€he generalization error of the hypothekis
trained onS is then:

R(hs) = Elc(hs, 2) | S] = Ele(hs, 2)]. (5)

This setting seems less natural since if samples are depgrilen future test points must also
depend on the training points, even if that dependenceasively weak due to the time interval
after which test points are drawn. Nevertheless, it is thim@wvhat less realistic setting that has
been studied by all previous machine learning studies tban aware of [8,10,16,17], even when
examining specifically a time series prediction problem][1Thus, the bounds derived in these
studies cannot be applied to the more general setting.

We will consider instead the most general setting with tHand®on of the generalization error based
on Eq. 4. Clearly, our analysis applies to the less genettihggust discussed as well.



3 Non-i.i.d. Stability Bounds

This section gives generalization bounds flestable algorithms over a mixing stationary distribu-
tion.! The first two sections present our main proofs which hold/fanixing stationary distri-
butions. In the third section, we will be using a concentrainequality that applies t@-mixing
processes only.

The condition of3-stability is an algorithm-dependent property first intnodd in [4] and [6]. It has
been later used successfully by [2, 3] to show algorithneifigestability bounds for i.i.d. samples.
Roughly speaking, a learning algorithm is said tostableif small changes to the training set do
not produce large deviations in its output. The followinges the precise technical definition.

Definition 3. A learning algorithm is said to be (uniformly)-stableif the hypotheses it returns for
any two training sample§ and.S’ that differ by a single point satisfy

\V/ZEXXK |C(h’Saz)_C(hS’72)| SB (6)

Many generalization error bounds rely on McDiarmid’s inelify. But this inequality requires the
random variables to be i.i.d. and thus is not directly agtlie in our scenario. Instead, we will
use a theorem that extends McDiarmid’s inequality to gdmeiging distributions (Theorem 1,
Section 3.3).

To obtain a stability-based generalization bound, we wilblg this theorem tab(S) = R(hs) —
R(hg). To do so, we need to show, as with the standard McDiarmidguality, thatb is a Lipschitz
function and, to make it useful, boufi}®]. The next two sections describe how we achieve both of

these in this non-i.i.d. scenario.

3.1 Lipschitz Condition

As discussed in Section 2.2, in the most general scenasiop®énts depend on the training sample.
We first present a lemma that relates the expected value gfetheralization error in that scenario
and the same expectation in the scenario where the testipdamatependent of the training sample.

We denote byR(hs) = E.[c(hs, 2)|S] the expectation in the dependent case andRblys,) =
Ezlc(hs,, 2)] that expectation when the test points are assumed indepieofithe training, with
S, denoting a sequence similar gobut with the last points removed. Figure 1(a) illustrates that
sequence. The block, is assumed to have exactly the same distribution as thespamneling block
of the same size ifs.

Lemma 2. Assume that the learning algorithm fsstable and that the cost functieris bounded
by M. Then, for any samplg of sizem drawn from ag-mixing stationary distribution and for any
b€ {0,...,m}, the following holds:

| E[R(hs)] ~ E[R(hs,)]| < b5 + 5(0)M. )
Proof. The 3-stability of the learning algorithm implies that
BR(hs)] = E [c(hs, 2)] < B [c(hs,, 2)] + b. ®)
The application of Lemma 1 yields
BIR(hs)] < Ele(hs,, )] + b5 + BB)M = Es[R(hs,)] + b3 + B(b)M. ©)
The other side of the inequality of the lemma can be shownwiolig the same steps. O

We can now prove a Lipschitz bound for the functibn

1The standard variable used for the stability coefficienf.isTo avoid the confusion with thg-mixing
coefficient, we will use3 instead.



(c)

(b)

Figure 1: lllustration of the sequences derived frSrthat are considered in the proofs.

Lemma 3. LetS = (z1,22,...,2m) @and S? = (z2},25,..., 2/ ) be two sequences drawn from a
(3-mixing stationary process that differ only in poing [1,m], and leths andhg: be the hypotheses

returned by as-stable algorithm when trained on each of these samplesn,Ttheany: € [1,m],
the following inequality holds:

D(S) — B(ST)| < (b+1)28 + 26(b)M + % (10)

Proof. To prove this inequality, we first bound the difference of émepirical errors as in [3], then
the difference of the true errors. Bounding the differenfoeosts on agreeing points withand the
one that disagrees with/ yields

~ ~ 1 &
|R(hs) — R(hgi)| = EZ|c(hs,zj)—c(hsi,z;)| (11)
j=1
1 1 . M
= E;w(hsazj)—c(hsi,z;ﬂ+E|c(h5,zi)—c(h51,z£)| B+ —
JF

Now, applying Lemma 2 to both generalization error termsasidg3-stability result in
|R(hs) — R(hs:)| < |R(hs,) — Rhs;)| +2b3 + 25(b) (12)
= Elelhs,,2) — clhs;, 2)] + 263+ 28(b)M < 3+ 263+ 28(b) M

The lemma’s statement is obtained by combining inequalititeand 12. O

3.2 Bound onE[®]

As mentioned earlier, to make the bound useful, we also reebdundEs[®(S)]. This is done by
analyzing independent blocks using Lemma 1.

Lemma 4. Lethg be the hypothesis returned by3astable algorithm trained on a samptedrawn
from a stationary3-mixing distribution. Then, for ab € [1, m], the following inequality holds:

E[[R(S)]] < (6b+1)53 + 36(0) M. (13)

Proof. We first analyze the teris[R(hg)]. Let S; be the sequencé with theb points before and

after pointz;, removed. Figure 1(b) illustrates this definitia#).is thus made of three blocks. L6t
denote a similar set of three blocks each with the same ligitoin as the corresponding blocks$i,
but such that the three blocks are independent. In partjdhiamiddle block reduced to one point

%, is independent of the two others. By tHestability of the algorithm,

m 1 m .
E[R(hs Zj c(hs,z)| <E lm zgcmsi,zi) + 2bB. (14)
Applying Lemma 1 to the first term of the right-hand side ygeld
~ 1 X
< -
E[R(hs)] < B | — Zj 57| + 208+ 28(0)M (15)




Combining the independent block sequences associatﬁdn:@) andR(hg) will help us prove the
lemma in a way similar to the i.i.d. case treated in [3]. Bgbe defined as in the proof of Lemma 2.
To deal with independent block sequences defined with rédspabe same hypothesis, we will
consider the sequenég, = S; N .Sp, which is illustrated by Figure 1(c). This can resultin aswna

as four blocks. As before, we will consider a sequeficgwith a similar set of blocks each with
the same distribution as the corresponding blockS; jin but such that the blocks are independent.

Since three blocks of at mostpoints are removed from each hypothesis, by kgtability of the
learning algorithm, the following holds:

E[@(S)] = E[R(hs) = R(hs) l Zj c(hs, zi) = c(hs, >] (16)
= Si:EJ7Z %i (hszb7 i) — C(hsi,b’z) +6bB (17)

i=1
Now, the application of Lemma 1 to the difference of two castdtions also bounded by/ as in
the right-hand side leads to

1 « .

— > clhg,, %)~ clhg, . 7)

=1

Elo(s)) < _E + 6b3 + 36(b) M. (18)

Sib,2

Sincez andz; are independent and the distribution is stationary, theeg tiae same distribution and
we can replace; with z in the empirical cost and write

Z 51 ’ B hgi,b’z)

Ig[@( +6b6 + 33(b)M < 3+ 6b3 + 36(b)M, (19)

S

WhereS;_’b is the sequence derived froﬁ;yb by replacingz; with z. The last inequality holds by

[3-stability of the learning algorithm. The other side of theguality in the statement of the lemma
can be shown following the same steps. O

3.3 Main Results

This section presents several theorems that constitutaaireresults of this paper. We will use the
following theorem which extends McDiarmid’s inequalityitemixing distributions.

Theorem 1(Kontorovich and Ramanan [7], Thm. 1.1)et® : Z™ — R be a function defined over
a countable spac€. If ¢ is [-Lipschitz with respect to the Hamming metric for same 0, then
the following holds for alk > 0:

Pr{|9(2) - E[2(2)]] > < 2exp (m) , (20)

where|| Ay |lo <1+2) " o(k)
k=1

Theorem 2 (General Non-i.i.d. Stability Bound)Let hs denote the hypothesis returned bya
stable algorithm trained on a sampkdrawn from ap-mixing stationary distribution and letbe
a measurable non-negative cost function upper boundéd by 0, then for any € [0, m| and any
e > 0, the following generalization bound holds

P |

R(hs) — R(hs)| > e+ (6b+ 1) + 6M<p(b)} < 2exp ( —C(LH 2508, 0(i) ) .

2m((b+ 1)206 + 2M(b) + M/m)?
Proof. The theorem follows directly the application of Lemma 3 amaiima 4 to Theorem 1. [

The theorem gives a general stability bound §@mixing stationary sequences. If we further
assume that the sequence is algebraigaliyixing, that is for allk, p(k) = wok~" for somer > 1,
then we can solve for the value bfo optimize the bound.



Theorem 3 (Non-i.i.d. Stability Bound for Algebraically Mixing Seguces) Let hg denote the

hypothesis returned by &-stable algorithm trained on a sampl drawn from an algebraically
p-mixing stationary distributionp(k) = ok~ with » > 1 and letc be a measurable non-negative
cost function upper bounded By > 0, then for anye > 0, the following generalization bound
holds

|

whereg(b) = ¢ (wa

R(hs) — fs(hs)] >ed B+ (r+ 1)6M<p(b)] < 2exp <2m(2;+(zr++ 23;\/4(;(;)2)]%/”1)2) 7

)r/<r+1>

Proof. For an algebraically mixing sequence, the valué afinimizing the bound of Theorem 2

~ - —1/(r+1) - r/(r+1)
satisfiesib = rM(b), which givesh = ( s ) ando(b) = ¢, (wa) .

L The
rooM
following term can be bounded as

m

m m 1—r
. o . m -1
1+2§ go()cp(z):1+2g00§ i §1—|—2<p0<1+/1 i dz):1+2g00<1—|—ﬁ). (21)
i=1 i=1

Forr > 1, the exponent ofn is negative, and so we can bound this last termi bBy2por/(r — 1).
Plugging in this value and the minimizing valueiah the bound of Theorem 2 yields the statement
of the theorem. O

In the case of a zero mixing coefficient & 0 andb = 0), the bounds of Theorem 2 and Theorem 3
coincide with the i.i.d. stability bound of [3]. In order fthe right-hand side of these bounds to
converge, we must have = o(1//m) andp(b) = o(1/,/m). For several general classes of
algorithms,3 < O(1/m) [3]. In the case of algebraically mixing sequences with 1 assumed in
Theorem 33 < O(1/m) implieso(b) = o (3/(rooM))"/("+1) < O(1/y/m). The next section
illustrates the application of Theorem 3 to several gerdaaises of algorithms.

4 Application

We now present the application of our stability bounds tcesavalgorithms in the case of an al-
gebraically mixing sequence. Our bound applies to all digars based on the minimization of a
regularized objective function based on the ndlrfi in a reproducing kernel Hilbert space, where
K is a positive definite symmetric kernel:

m

1
argmin — c(h, z) + N|h||%, 22
nin > el z) + Al 22)

under some general conditions, since these algorithmsaire svith3 < O(1/m) [3]. Two specific
instances of these algorithms are SVR, for which the cogitfon is based on theinsensitive cost:

_ _J0 if |h(z) —y| <,
c(h,z) = |h() = yle = {|h(:v) —y| — e otherwise
and Kernel Ridge Regression [13], for whicth, z) = (h(z) — y)?.
Corollary 1. Assume a bounded outptit= [0, B], a bounded cost function with boudd > 0,
and thatK (z,z) < & for all x for somex > 0. Lethg denote the hypothesis returned by the al-
gorithm when trained on a sampfedrawn from an algebraically-mixing stationary distribution.
Then, with probability at least — §, the following generalization bounds hold for

a. Support vector regression (SVR):

~ K2 w2\ " 3M’ / K2 k2\" M’ 21og(2/4)
< - _ _ —_
R(hs)_R(hs)+2)\m+<)\) mu +¢O<M+2A+</\) mufl) m
b. Kernel Ridge Regression (KRR):
2Bk? N 45*B2\ " 3M’ 21> B? N 4*°B*\" M’ 21og(2/6)
Am A A A mu—1 m

withu =1r/(r+1) € [5,1], M' =2(r + 1)M/(2rpoM)™, ande) = (1 + 2¢r/(r — 1)).

(23)

R(hs) < R(hs) +

+<p6<M+ ,

my

1
2



Proof. It has been shown in [3] that for SVR < x2/(2Am) and for KRR,3 < 2k2B2/(\m).
Plugging in these values in the bound of Theorem 3 and settimgight hand side t9, yield the
statement of the corollary. O

These bounds give, to the best of our knowledge, the firstlisyabased generalization bounds for
SVR and KRR in a non-i.i.d. scenario. Similar bounds can ltaiobd for other families of algo-
rithms such as maximum entropy discrimination, which cashmvn to have comparable stability
properties [3]. These bounds are non-trivial when the dardi\ > 1/m'/?~/" on the regu-
larization parameter holds for all large valuesmof which clearly coincides with the i.i.d. case as
r tends to infinity. It would be interesting to give a quantitatcomparison of our bounds and the
generalization bounds of [10] based on covering numbensifging stationary distributions, in the
scenario where test points are independent of the trairdnmpke. In general, because the bounds
of [10] are not algorithm-dependent, one can expect tightemds using stability, provided that
a tight bound is given on the stability coefficient. The congzn also depends on how fast the
covering number grows with the sample size and trade-offrpaters such as. For a fixed), the
asymptotic behavior of our stability bounds for SVR and KRRight.

5 Conclusion

Our stability bounds for mixing stationary sequences applgarge classes of algorithms, including
SVR and KRR, extending to weakly dependent observatiorssiegibounds in the i.i.d. case. Since
they are algorithm-specific, these bounds can often beetighan other generalization bounds.
Weaker notions of stability might help further improve ofime them.
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