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Abstract

We introduce Gaussian Margin Machines
(GMMs), which maintain a Gaussian distribu-
tion over weight vectors for binary classification.
The learning algorithm for these machines
seeks the least informative distribution that will
classify the training data correctly with high
probability. One formulation can be expressed
as a convex constrained optimization problem
whose solution can be represented linearly
in terms of training instances and their inner
and outer products, supporting kernelization.
The algorithm admits a natural PAC-Bayesian
justification and is shown to minimize a quantity
directly related to a PAC-Bayesian general-
ization bound. A preliminary evaluation on
handwriting recognition data shows that our
algorithm improves on SVMs for the same task,
achieving lower test error and lower test error
variance.

1 Introduction

Linear classifiers learned with support vector machine
(SVM) methods [4, 2] are widely used and commonly re-
garded as the state of the art for a variety of learning tasks.
SVMs and most other linear classification learners output
asingleweight vector but they do not supply additional in-
formation about alternative weight vectors or a confidence
information associated to the weight vector learned.

Bayesian methods, on the other hand, maintain a distri-
bution over weight vectors and do not commit to a sin-
gle choice. This posterior distribution follows by Bayes’s
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rule from the prior distribution and the training observa-
tions, and in theory provides for randomized optimal deci-
sions assuming that the prior distribution correctly mod-
els the constraints of the situation. Unfortunately, the
posterior distribution is very complicated even for simple
Bayesian logistic regression [7], requiring approximations
that limit the applicability and effectiveness of the Bayesian
approach.

We propose here a learning objective which draws from
both SVMs and Bayesian ideas. As in Bayesian methods,
we maintain a distribution over alternative weight vectors,
rather than committing to a single specific one. However,
these distributions are not derived by Bayes’ rule. Instead,
they represent our knowledge of the weights given con-
straints imposed by the training examples, expressed as a
Gaussian distribution over weight vectors, learned from the
training data. The learning algorithm seeks a distribution
with small relative entropy with respect to a fixed isotropic
distribution, such that each training example is correctly
classified by a strict majority of the weight vectors. This
condition can be viewed as a probabilistic version of the ge-
ometric large-margin principle underlying algorithms such
as SVMs.

The learning problem for GMMs is a convex constrained
optimization whose optimal solution is a linear combina-
tion of training instances and their inner and outer prod-
ucts, thereby supporting the use of arbitrary Mercer ker-
nels. The form of the algorithm allows us to use directly
the PAC-Bayesian family of generalization bounds. Alter-
natively, a slight variant of the algorithm can be seen as a
robust variant of SVMs.

We compare the performance of GMMs to SVMs on a
handwritten digit classification task, and show that over
random samples of the problem, GMMs achieve improved
average performance. We also show that GMMs are more
robust in the sense that they achieve lower test error vari-
ance than SVMs.
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Figure 1: Gaussian distribution over two-dimensional
weight vectors. Green vectors classify incorrectly the ex-
ample((0.5, 1),+1), blue vectors. The density around a
weight vector is proportional to its relative importance. The
black circle marks the mean of the Gaussian.

2 Gaussian Margin Algorithms

Standard linear classification learning algorithms returna
single weight vectorw used to predict the label of any test
point. We study a generalization of these algorithms where
hypotheses are probability distributions over weight vec-
tors w. Such a hypothesis can be seen as a randomized
linear classifier. To classify an instancex, a parameter vec-
tor w is drawn according to the hypothesis and predicts the
labelsign(w · x).

One benefit of this randomization is to produce a morero-
bustsolution, as argued by Herbrichet al. in a similar con-
text [5, 6]. PAC-Bayesian analysis and its generalization
bounds give additional justification to this approach, as we
shall detail in Section 4.

The probability distribution over weight vectors learned by
our algorithm is selected among the family of full Gaus-
sian distributionsN (µ,Σ) with meanµ ∈ R

d and covari-
ance matrixΣ ∈ R

d×d. The componentµp of the mean
vector and the diagonal termΣp,p of the covariance matrix
learned,p = 1 . . . d, convey the partial knowledge gained
about the weight assigned to featurep. The largerΣp,p and
the more diversity is allowed for the weightwp. Similarly,
each covariance termΣp,q captures the correlation between
featuresp and q. Fig. 1 illustrates this in the case of a
simple two-dimensional Gaussian distribution. The multi-
variate Gaussian distribution over weight vectorsN (µ,Σ)
induces a univariate Gaussian distribution over the signed
marginM of the hyperplanes they define:

M ∼ N
(

y(µ · x),
(

x⊤Σx
))

. (1)

At prediction time, the true value ofy is of course unknown
and should thus be omitted from (1).

The design of our algorithm is guided by both a large-
margin requirement, as with most successful determinis-
tic linear discrimination algorithms, and the maximum en-
tropy principle.

Given a labeled sampleS = ((x1, y1), . . . , (xn, yn)), the
maximum entropy principle invites us to seek the proba-
bility distribution over weight vectors that is the closest
to an uninformative distribution, e.g., an isotropic Gaus-
sian distributionN (0, aI) for some constant scalara > 0,
where closeness is measured by the relative entropy, or the
Kullback-Leibler divergence. The large-margin require-
ment imposes that in the separable case, with high proba-
bility, a weight vector drawn fromN (µ,Σ) correctly label
the training samples. A relaxed version of this condition is
required in the non-separable case. The next two sections
present in detail the optimization problems for both cases.

2.1 Optimization in the Separable Case

This section derives the optimization problem for learning
GMMs in the case where the training sample is linearly
separable. In this case, we can require the weight vectors to
correctly classify all training points, with high probability,
that is

Pr [sign (w · xi) = yi] ≥ η , (2)

whereη ∈ (0.5, 1] is a fixed confidence parameter. In view
of the maximum entropy principle already discussed, the
optimization problem in this case can thus be written as

min
µ,Σ

DKL(N (µ,Σ) ‖N (0, aI)) (3)

s.t. Pr[sign (w · xi) = yi] ≥ η i = 1, . . . , n .

We now give a more explicit expression for both the ob-
jective and the constraints of this optimization problem,
starting with the constraints. The constraint on pointxi,
i = 1, . . . , n, can be rewritten as

Pr[yi (w · xi) ≥ 0] ≥ η . (4)

Sincew is drawn from a Gaussian distributionN (µ,Σ),
the signed-margin random variableMi = yi (w · xi) for
point (xi, yi) also follows a Gaussian distribution with the
following mean and variance:

µi = yi (µ · xi) σ2
i = x⊤

i Σxi . (5)

Let Φ denote the standard normal cumulative distribution
function:

∀u ∈ R, Φ(u) =
1√
2π

∫ u

−∞

e−
v2

2 dv . (6)

Since(Mi − µi) /σi is a standard normal distribution, it
follows thatPr[yi (w · xi) ≥ 0] can be written as

Pr

[

(Mi − µi) /σi ≥ −µi

σi

]

= 1 − Φ

(

−µi

σi

)

. (7)

Thus, the constraint (4) can be expressed in terms ofΦ by

−µi

σi

≤ Φ−1 (1 − η) = −Φ−1 (η) . (8)
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Plugging back the expression ofµi andσi in terms ofµ and
Σ (5) leads to the following formulation of the constraint
related to point(xi, yi):

yi(µ · xi) ≥ φ
√

x⊤
i Σxi whereφ = Φ−1 (η) . (9)

This can be viewed as a large-margin constraint where the
value of the margin required depends on the examplexi

via a quadratic form. Interestingly, the large-margin con-
straint (9) arises here from a high-confidence probabilistic
constraint (4), rather than from standard geometric consid-
erations.

We now study the objective function of the optimiza-
tion problem (3). The relative entropy ofN (µ,Σ) and
N (0, aI) is given by

2 DKL(N (µ,Σ) ‖N (0, aI)) = log

(

det aI

detΣ

)

+ Tr

(

1

a
Σ

)

− d+ (µ − 0)
⊤ 1

a
(µ − 0) , (10)

whered is the dimension of the space. This can be writ-
ten as a sum of two Bregman divergences [3]: the Itakura-
Saito matrix divergence between the two covariance ma-
trices [18], and a Euclidean distance between the weight
vectors.

In view of (9) and (10) and disregarding constant terms, we
obtain the following explicit formulation of the optimiza-
tion problem for GMMs in the separable case:

min
µ,Σ

1

2

(

− log detΣ +
1

a
Tr (Σ) +

1

a
‖µ‖2

)

s.t. yi(µ · xi) ≥ φ
√

x⊤
i Σxi, i = 1, . . . , n

Σ � 0 . (11)

2.2 Optimization in the Non-Separable Case

To deal with the more general case of linearly non-
separable samples, we can relax the inequality constraints
by introducing a slack variableξi for each pointxi and aug-
menting the objective function with a corresponding slack
penalty term, as in the case of support vector machines [4],
or other similar optimization problems. Proceeding in this
way, we obtain the following relaxed version of the previ-
ous optimization problem:

min
1

2

(

− log detΣ +
1

a
Tr (Σ) +

1

a
‖µ‖2

)

+ C
n

∑

i=1

ξi

s.t. yi(µ · xi) ≥ φ
√

x⊤
i Σxi −Diξi

Σ � 0, and ξi ≥ 0 for i = 1, . . . , n , (12)

whereC > 0 is a tradeoff parameter and theDi, i =
1, . . . , n, are non-negative slack scale factors whose pos-
sible values will be discussed later.

The optimization problem just presented can be further
simplified via a change of variables to eliminate the vari-
ance parametera. Specifically, letΣ̃ andµ̃ be defined by
Σ̃ = (φ2/a)Σ and µ̃ = (1/

√
a)µ. Then, the objective

function can be rewritten as

− log det

(

a

φ2
Σ̃

)

+
1

a
Tr

(

a

φ2
Σ̃

)

+
1

a

∥

∥

√
aµ̃

∥

∥

2

= − log det
(

Σ̃
)

−d log

(

a

φ2

)

+
1

φ2
Tr

(

Σ̃
)

+‖µ̃‖2 ,

and the constraints reformulated as

yi

(√
aµ̃ · xi

)

≥ φ

√

x⊤
i

(

a

φ2
Σ̃

)

xi −Diξi

⇔ yi (µ̃ · xi) ≥
√

x⊤
i Σ̃xi −Diξi .

where we absorbed the factor1/
√
a into the scale factors

Di. Omitting additive constants and settingψ = 1/φ2

leads to the following simplified form of the GMMs op-
timization problem for the non-separable case:

min
µ,Σ

1

2

(

− log detΣ + ψTr (Σ) + ‖µ‖2
)

+ C

n
∑

i=1

ξi

s.t. yi(µ · xi) ≥
√

x⊤
i Σxi −Diξi i = 1, . . . , n

Σ � 0 , ξi ≥ 0 i = 1, . . . , n . (13)

3 Dual Problem and Representer Theorem

This section derives the dual optimization problem for (13)
and shows that any positive-definite symmetric kernel can
be used for GMMs, instead of the dot product in the input
space.

The objective function of (13) is convex both inµ andΣ.
The constraints are also linear inµ and thus convex but they
areconcavein Σ. However, the change of variableΣ =
Υ2, whereΥ is a PSD matrix whose eigenvalues are the
square roots of those forΣ, yields a convex optimization
problem. The resulting optimization problem is then

min
µ,Υ

− log detΥ +
ψ

2
Tr

(

Υ2
)

+
1

2
‖µ‖2

+ C

n
∑

i=1

ξi

s.t. yi(µ · xi) ≥ ‖Υxi‖ −Diξi

Υ � 0 , Υ = Υ⊤ , ξi ≥ 0 i = 1, . . . , n . (14)

As we shall see later, the condition onΥ being PSD and
symmetric can be omitted since it is always satisfied by the
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solution. The Lagrangian of the problem is therefore

L(µ,Υ;α) = − log detΥ +
ψ

2
Tr

(

Υ2
)

+
1

2
‖µ‖2

+

n
∑

i=1

αi

(

√

x⊤
i ΥΥxi −Diξi − yi(µ · xi)

)

+ C

n
∑

i=1

ξi −
n

∑

i=1

γiξi . (15)

At the optimum, the gradient with respect toµ andΥ is
zero:

∇µL = µ −
n

∑

i=1

αiyixi = 0 ⇒ µ =

n
∑

i=1

αiyixi . (16)

∇ΥL = −Υ−1 + ψΥ +

n
∑

i=1

αi

xix
⊤
i Υ

2
√

x⊤
i Υ2xi

(17)

+

n
∑

i=1

αi

Υxix
⊤
i

2
√

x⊤
i Υ2xi

= 0 . (18)

LetU be defined by

U = ψI +

n
∑

i=1

αi

xix
⊤
i

√

x⊤
i Υ2xi

. (19)

Then,∇ΥL = 0 can be rewritten as∇ΥL = −Υ−1 +
1
2ΥU + 1

2UΥ = 0 at the optimum. From this, it follows

thatΥ = U− 1

2 at the optimum, that is

Υ−2 = ψI +

n
∑

i=1

αi

xix
⊤
i

√

x⊤
i Υ2xi

. (20)

Note that this implies thatΥ−2 and thusΥ is a PSD matrix.
Finally, setting the gradient with respect toξi to zero yields:

∇ξi
L = −αiDi + C − γi = 0 =⇒ αi ≤ C/Di . (21)

Let X = [x1 . . .xn] be the matrix whose column vectors
are the training examplesx1, . . . ,xn, and letB be the di-
agonal matrix defined byB = diag(β1, . . . , βd) where

βi
def
=

αi√
vi

and vi = x⊤
i Υ2xi . (22)

Denote byK the kernel matrix of the training data,K =
X

⊤
X, whereKi,j = xj ·xi, and letki be theith column of

K. Rewriting Equation (20) in matrix form in terms ofX
andB and using the matrix inversion identity (or Sherman-
Morrison-Woodbury formula) to computeΥ2 helps us de-
rive an equivalent expression in terms of the kernel matrix
K and the new parameters{βi} (see the Appendix for the
details of this derivation). This leads to the following dual

optimization problem equivalent to (14):

max
βi

log det
(

ψI +
√

BK

√
B

)

− 1

2
Tr

[(

(ψB)
−1

+ K

−1

K

)]

+

n
∑

i=1

βivi −
1

2

∑

i,j

βiβj

√
vi
√
vjyiyjKi,j (23)

s.t. 0 ≤ βi ≤ C/(Di

√
vi) i = 1, . . . , n

vi =
1

ψ

(

Ki,i − k⊤
i

(

(ψB)
−1

+ K

)−1

ki

)

.

Since the dual problem is expressed in terms of the kernel
matrixK, the following result can be shown as for SVMs.

Theorem 1 The optimal meanµ and covarianceΥ2 pa-
rameters of(13)can be written as a linear combination of
the input vectors where the coefficients are dependent only
on inner product of the input vectors.

The dual optimization problem helps us further under-
stand the role of the two parametersC andφ (or ψ). As
with SVMs, the parameterC determines the trade-off be-
tween two terms of the primal’s objective (13): better ac-
curacy on the training data (larger values) versus “simplic-
ity” (smaller values). This trade-off translates into an upper
bound on the dual parameters (23): with larger values of
C, some examples may significantly affect the optimal so-
lution. The parameterφ appears only in the constraints of
(11). Forφ = 0, the constraints are invariant toΣ and lead
to the optimal solutionΣ = I. As φ increases, the stan-
dard deviation of the margin

√

x⊤
i Σxi plays an increas-

ingly important role, producing solutions with smaller (and
more skewed) eigenvalues. This can also be observed from
(20): for large values ofψ (smallφ) the solution is more
similar to the identity matrix, while for smaller values ofφ,
its shape depends on the training examples.

4 Analysis

This section presents generalization bounds for GMMs
both in the separable and non-separable case, based on
a PAC-Bayesian analysis. PAC-Bayesian bounds were
first introduced by McAllester [12], and further refined by
McAllester [13], and Langford and Seeger [10, 16]. They
have been shown to be often quite tight. Langford and
Shawe-Taylor also used PAC-Bayesian methods to analyze
large-margin algorithms [11].

We first introduce some notation needed for the discus-
sion of these bounds. Letℓ(w, (x, y)) denote the zero-
one loss, that isℓ(w, (x, y)) = 1 if sign(w · x) 6= y and
ℓ(w, (x, y)) = 0 otherwise.

LetD be a distribution over the labeled examples(x, y) and
denote byℓ(w,D) the expected zero-one loss of a linear
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classifier characterized by its weight vectorw:

ℓ(w,D) = Pr
(x,y)∼D

[sign(w · x) 6= y]

= E
(x,y)∼D

[ℓ(w, (x, y))] .

We denote abusively byℓ(w, S) the expected loss
ℓ(w,DS) for the empirical distributionDS of a sample
S. We also denote byℓ(N (µ,Σ) ,D) the expectation of
ℓ(w,D) over weight vectorsw drawn from a Gaussian dis-
tributionN (µ,Σ):

ℓ(N (µ,Σ) ,D) = E
(x,y)∼D

w∼N (µ,Σ)

[ℓ(w, (x, y))] . (24)

We use the following two-sided PAC-Bayesian theo-
rem, which is a Gaussian version of a theorem of
McAllester [14, Sec. 2].

Theorem 2 Fix a prior distribution over weight vectors
N (µ0,Σ0). For anyδ ∈ [0, 1], with probability at least
1 − δ over samplesS = {(xi, yi)}n

i=1 of size n, for all
posterior distributionsN (µ,Σ) the following holds:

DKL (ℓ (N (µ,Σ) , S) ‖ℓ (N (µ,Σ) ,D))

≤ DKL (N (µ,Σ) ‖N (µ0,Σ0)) + log 2n
δ

n− 1
. (25)

The theorem states that the average generalization error di-
verges from the average training error by no more than a
quantity depending on the divergence between the poste-
rior and prior distributions over weight vectors, where di-
vergence is measured by the relative entropy. Thus, to guar-
antee a low generalization error, two quantities should be
minimized: the training errorℓ (N (µ,Σ) , S) and the rel-
ative entropy between the posterior and prior distributions
over weight vectorsDKL (N (µ,Σ) ‖N (µ0,Σ0)).

Following McAllester [14], we can state the following
somewhat “weaker but perhaps clearer statement”.

Theorem 3 Fix a prior distribution over weight vectors
N (µ0,Σ0). Then, for anyδ ∈ [0, 1], with probability at
least1 − δ over samplesS = {(xi, yi)}n

i=1 of size n, for
all posterior distributionsN (µ,Σ) the following holds:

ℓ (N (µ,Σ) ,D) ≤ C1
1

n

n
∑

i=1

Φ

(

−µi

σi

)

+ C2

DKL (N (µ,Σ) ‖N (µ0,Σ0)) + log 2n
δ

n− 1
, (26)

whereµi = yi (µ · xi), σi =
√

x⊤
i Σxi,C1 = 1+

√
2/2 ≈

1.7, andC2 = 2 +
√

2/2 ≈ 2.7.

Proof: We give a more explicit expression of the bound
of Theorem 2. Following McAllester [14], we note that
for q > p, DKL (p‖q) ≤ x impliesq < p +

√
2px + 2x.

Using the inequality
√
px ≤ 1

2 (p+ x), we obtain: q ≤
(1 +

√
2/2)p+ (2 +

√
2/2)x = C1 p+ C2 x.

To conclude the proof we observe that by the definition of
ℓ (N (µ,Σ) , S), the following holds:

ℓ (N (µ,Σ) , S) =
1

n

n
∑

i=1

ℓ(N (µ,Σ) , (xi, yi))

=
1

n

n
∑

i=1

Pr [yi (w · xi) ≤ 0] =
1

n

n
∑

i=1

Φ

(

−µi

σi

)

.

This last equality was established earlier in Section 2.1 to
formulate the GMMs optimization problem in the separa-
ble case.
The next result states our first generalization bound for the
performance of the GMMs classifier in the separable case.

Corollary 4 Fix a distribution over weight vectors
N (0, I). Then, for anyδ ∈ [0, 1], with probability at least
1− δ over the choice of a sampleS of sizen, the following
bound holds simultaneously for all distributionsN (µ,Σ)
that satisfyPrw∼N (µ,Σ)[yi(w · xi) ≥ 0] ≥ η for some
η ∈ (0.5, 1]:

ℓ (N (µ,Σ) ,D) ≤ C1 (1 − η)

+C2

1
2

(

− log (detΣ) + Tr (Σ) + ‖µ‖2 − d
)

+ log 2n
δ

n− 1
.

Proof: The result follows from Theorem 3. By assump-
tion,

Pr [yi (w · xi) ≤ 0] = Φ

(

−µi

σi

)

≤ (1 − η) .

Using this inequality to bound the first term of the right-
hand side of the bound of Theorem 3 and identity (10) to
give an explicit expression of the relative entropy between
the posteriorN (µ,Σ) and the priorN (0; I) in the second
term yields directly the statement of the corollary.
In the separable case, the GMMs optimization problem
(11) precisely consists of minimizing the bound on the gen-
eralization error given by Corollary 4. Thus, the corollary
gives a strong justification for our algorithm in that case. A
similar analysis holds in the general case of non-separable
training samples.

Corollary 5 Fix a distribution over weight vectors
N (0, I) and letφ denoteφ = Φ−1 (η). Then, for any
δ ∈ [0, 1], with probability at least1 − δ over the choice
of a sampleS = ((x1, y1), . . . , (xn, yn)) of sizen, the
following bound holds simultaneously for all distributions
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N (µ,Σ) and all values ofη ∈ (0.5, 1]:

ℓ (N (µ,Σ) ,D) ≤ C1

n

n
∑

i=1

Φ
(

−φ+max
{

φ− µi

σi

, 0
})

+C2

1
2

(

− log (detΣ) + Tr (Σ) + ‖µ‖2 − d
)

+ log 2n
δ

n− 1
.

Proof: The corollary follows from Theorem 3. The rela-
tive entropy appearing in the right-hand side of the bound
of Theorem 3 can be replaced by a more explicit expres-
sion as in Corollary 4. The first term of the right-hand
side of the bound of Theorem 3 can be bounded using
−x ≤ −y+max{y−x, 0} and the fact thatΦ is monoton-
ically increasing. This yields the statement of the corollary.

As in the separable case, Corollary 5 provides a theoretical
justification for the GMMs algorithm in the non-separable
case. Indeed, by definition of theξis in the optimization
problem (13) for GMMs,ξi = max {(φσi − µi) /Di, 0}.
Thus, if we setDi = σi, i = 1, . . . , n, the algorithm can be
viewed as minimizing a monotonic function of the bound

since for our choice ofDi, Φ
(

−φ+max
{

φ− µi

σi

, 0
})

=

Φ (−φ+ ξi).

Note however thatσi is a function of the optimal solution
µ andΣ and thus can not be set in advance. Also, replacing
the scale parametersDi with σi =

√

x⊤
i Σxi in (13) leads

to a non-convex optimization problem. In the next section,
we present results of experiments in which we simply set
Di = 1. This choice may not be optimal, yet it allows us to
avoid algorithmic complexities arising from non-convexity.

5 Alternative View

The GMMs learning algorithms of Sec. 2 were motivated
by a generalized maximum entropy principle. However, a
similar optimization problem can be derived starting from
the standard optimization problem of SVMs. In the separa-
ble case, the QP problem for SVMs is the following [2]:

min
w

1

2
‖w‖2

s.t. yi(w · xi) ≥ 1 for i = 1, . . . , n . (27)

To obtain a robust formulation we can replace the single
weight vectorw with a Gaussian distribution over weight
vectorsw ∼ N (µ,Σ), and the objective function and con-
straints with their probabilistic counterparts.

The inequality constraints of the SVM optimization prob-
lem (27) are thus replaced with the requirement that
the inequality hold with probability at leastη, that is
Pr [yi(w · xi) ≥ 1] ≥ η. This inequality can be equiva-
lently rewritten as follows, as in Section 2.1:

yi(µ · xi) ≥ 1 + φ
√

x⊤
i Σxi , (28)

where, as in (9),η = Φ(φ).

The objective function can be replaced with its expectation

E
[

‖w‖2
]

. This however is not sufficient since the solution

could then be triviallyΣ = 0. Instead, we can subtract from
the objective a term proportional to the entropy, to ensure
that the entropy of the optimal solution is non-zero. The
new objective function is thus:

−H [N (µ,Σ)] +
A

2
E

[

‖w‖2
]

=

− 1

2
d log(2π) − 1

2
log detΣ +

A

2

(

Tr (Σ) + ‖µ‖2
)

.

Omitting additive constants and relaxing the constraints
([4]) we obtain the following robust version of SVMs:

min
µ,Σ

− 1

2
log detΣ +

A

2

(

Tr (Σ) + ‖µ‖2
)

+ C
∑

i

ξi

s.t. yi(µ · xi) ≥ 1 − ξi + φ
√

x⊤
i Σxi i = 1 . . . n

Σ � 0 . (29)

The comparison of this optimization problem (29) and
the GMMs optimization problem (11) shows that that the
objectives of the two optimization problems coincide for
A = 1/a. However, the constraints of the problem (11) are
homogeneous while those of (29) are not because of the ad-
ditional term1. As a result, the three hyperparametersA,
C andφ cannot be reduced to two, unlike what was done
in deriving (13) from (12).

6 Experiments

We implemented in matlab a Hildreth-like algorithm [3] to
solve (13) in the case whereDi = 1 for all i, which is
then a well defined convex optimization problem both in
the separable and the non-separable cases. Our algorithm
iterates over the training points and for each point updates
the parameters to classify that point optimally. Each itera-
tion requiresO(d2) time to access the covariance matrix.

We evaluated our algorithm using the USPS handwritten
digits dataset. The training set contained7,291 training ex-
amples and the test set2,007 examples. Originally, each
instance represented an image of size16 × 16 pixels of a
digit, with ten possible digits. Due to our preliminary im-
plementation’s limitations, we reduced the dimensionality
of the data by replacing each four adjacent pixels with their
mean, which resulted in image size of8 × 8, thereby re-
ducing the dimensionality from256 to 64. We repeated the
following process over all45 pairs of digits10 times: for
each pair, we randomly selected100 examples which were
associated with one of the two digits of the current pair, the
remaining training examples associated with the pair were
used as a validation set. The test set was the standard USPS
test set restricted to the relevant two digits.
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Figure 2: Average (left) and standard deviation (middle) test error (×100) of GMMs (x-axis) vs SVMs (y-axis) for 45
label-pairs of the USPS dataset. A point above the liney = x indicates better performance for the GMM algorithm. Right:
Average test error (×100) of GMMs (y-axis) using the mean predictorsign (µ · x) (black squares) and the Gibbs predictor
Pr [y 6= sign (w · x)] (blue circles) as functions ofη for 3 vs.8 discrimination.

We trained two algorithms: support vector machines
(SVMs) and Gaussian Margin Machines (GMMs). For
SVMs, we experimented with9 different values of the reg-
ularization parameterC, and for the GMMs with11 values
for φ and12 for the regularization parameterC. We trained
each of the algorithms using all these parameter values and
selected the model with the minimal error over the valida-
tion set. We then used that model to compute the error over
the test set and averaged the results over the10 repeats.

The left panel of Fig. 2 shows the results for both SVMs
and the GMMs. Each point corresponds to one of the45
binary classification problems. A point above the liney =
x corresponds to a pair where GMMs performs better than
SVMs, and vise-versa. GMMs outperforms SVMs since
36 of the points are above the liney = x and 9 points
below. We also evaluated the robustness of each method by
computing the standard deviation of the test error over the
10 repeats. The results are summarized in the middle panel
of Fig. 2. GMMs seem to be more robust as28 points are
above the liney = x while 17 are below.

The right panel of Fig. 2 shows the results of our empiri-
cal study of the effect of the parameterη on performance
when using for prediction the meansign (µ · x) (bottom
black line with squares) or the averaged Gibbs prediction
Pr [y 6= sign (w · x)] (top blue line with circles). Inter-
estingly, the minimal error of the the Gibbs predictor is
reached forη close to1 and its error is close to.5 when
η is close to.5. For the mean predictorsign (µ · x), the
error values are within a smaller range, with the smallest
error attained for a small value ofη. These observations
apply also to other digit pairs, with the optimal setting for
all tests beingη = 0.54.

7 Related Work

The work presented here bears some similarity with that
of Jaakkolaet al. on maximum entropy discrimination [8]

in which they propose a training approach that maximizes
the relative entropy between a prior distribution over the
parameters and some given distribution. However, in that
work, both the prior distribution and the learned distribu-
tion over weight vectors are Gaussian distributions with
fixed covariance matrices, while within our formulation the
covariance of the distributions is also learned. Jaakkola
et al. further propose to make a prediction by taking the
sign of the average “margin”,signE [w · x], while we pro-
pose to use the probability of error, effectively replacingthe
sign operator with the expectation. Jaakkolaet al.define a
distribution over “margin” variables as well. Our method
does not provide an explicit notion of margin, instead that
stands out as a byproduct of our derivations. Finally, the
dual form of their algorithm [8, Theorem 2] is very sim-
ilar to the SVMs dual, with the addition of an extra term
to the objective. The dual form of our algorithm is more
involved, and finding a simple useful equivalent is still an
open problem.

Other previous work related to this topic typically assumes
a Gaussian or uniform distribution over the input data
rather than over the classifiers. Lanckrietet al. [9] assume
that the points associated with each of the classes are dis-
tributed according to a class-dependent Gaussian distribu-
tion. Nathet al. [15] use a clustering technique to group
data points, and then optimize an SVM-like criterion such
that a large fraction of the points of each cluster be classi-
fied correctly. Ni and Zhang [1] assume a uniform-isotropic
noise over input vectors, and modify SVMs to classify well
the worst noise-instance per input vector. Shivaswamy and
Jebara [17] use a geometric motivation to modify SVMs.
That effort and other related ones prepare first the addi-
tional knowledge about the problem (specific covariance
matrix of the input data [17], per class covariance ma-
trix [9, 15], or per-point noise level [1]), and keep it fixed
during learning. In contrast, our method learns together the
classifier and the additional information.
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8 Conclusion

We proposed a new form of linear classifier that extends
the commonly used large-margin linear classifiers to prob-
ability distributions over weight vectors. Our learning al-
gorithm is based on a probabilistic large-margin require-
ment and the maximum entropy principle and benefits from
strong theoretical guarantees based on tight PAC-Bayesian
generalization bounds.

The preliminary empirical evaluation presented shows that
our method not only performs favorably with respect to
SVMs, but also that it succeeds indeed in constructing a
robust classifier with reduced variance. Future larger-scale
implementations of our algorithms will help us explore its
properties when applied to a variety of tasks and data sets.
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Appendix: Derivation of the Dual Problem

We start from (22) and supporting definitions. Equa-
tion (20) can be rewritten in matrix notation as follows:
Υ−2 = ψI + XBX

⊤. Thus, by the matrix inversion iden-
tity, Υ2 can be written as

Υ2 =
1

ψ

[

I − X
(

(ψB)−1 + X
⊤
X

)−1
X

⊤
]

. (30)

In view of (16), (20), (22), and this equation, the optimiza-
tion problem (15) can be rewritten as

L = log det
(

ψI + XBX
⊤

)

+
ψ

2
Tr

[ 1

ψ

(

I − X
(

(ψB)−1 + X
⊤
X

)−1
X

⊤
)]

+
n

∑

i=1

αi

√
vi +

1

2

∑

i,j

αiαjyiyj(xi · xj)

−
∑

i,j

αiαjyiyj(xi · xj) .

Plugging inβi and thevi from (22) and removing additive
constants, the Lagrangian is given by:

log det
(

ψI + XBX
⊤

)

− 1

2
Tr

[

((ψB))
−1

+ K
−1

K
]

+

n
∑

i=1

βivi −
1

2

∑

i,j

βiβj

√
vi
√
vjyiyjKi,j . (31)

For each examplei, the variancevi can be rewritten as fol-
lows:

vi = x⊤
i Υ2xi

=
1

ψ
x⊤

i

(

I − X
(

(ψB)
−1

+ X
⊤
X

)−1
X

⊤
)

x⊤
i

=
1

ψ

(

Ki,i − k
⊤
i

(

(ψB)
−1

+ K
)−1

ki

)

, (32)

that is vi = vi (β1, . . . , βn) = vi (B). Sincedet(I +
A

⊤
A) = det(I + AA

⊤), we get:

log det
(

ψI + XBX
⊤

)

= log det
(

ψI + (
√

BX
⊤)(X

√
B)

)

= log det
(

ψI +
√

BK

√
B

)

.
(33)

Using this identity and substituting the expression forvi in
(31) yields (23).


