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Abstract

We introduce Gaussian Margin Machines
(GMMs), which maintain a Gaussian distribu-

tion over weight vectors for binary classification.
The learning algorithm for these machines
seeks the least informative distribution that will

classify the training data correctly with high

probability. One formulation can be expressed
as a convex constrained optimization problem
whose solution can be represented linearly
in terms of training instances and their inner
and outer products, supporting kernelization.
The algorithm admits a natural PAC-Bayesian
justification and is shown to minimize a quantity
directly related to a PAC-Bayesian general-
ization bound. A preliminary evaluation on

handwriting recognition data shows that our
algorithm improves on SVMs for the same task,
achieving lower test error and lower test error
variance.
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rule from the prior distribution and the training observa-
tions, and in theory provides for randomized optimal deci-
sions assuming that the prior distribution correctly mod-
els the constraints of the situation. Unfortunately, the
posterior distribution is very complicated even for simple
Bayesian logistic regression [7], requiring approximasio
that limit the applicability and effectiveness of the Bages
approach.

We propose here a learning objective which draws from
both SVMs and Bayesian ideas. As in Bayesian methods,
we maintain a distribution over alternative weight vectors
rather than committing to a single specific one. However,
these distributions are not derived by Bayes’ rule. Instead
they represent our knowledge of the weights given con-
straints imposed by the training examples, expressed as a
Gaussian distribution over weight vectors, learned froen th
training data. The learning algorithm seeks a distribution
with small relative entropy with respect to a fixed isotropic
distribution, such that each training example is correctly
classified by a strict majority of the weight vectors. This
condition can be viewed as a probabilistic version of the ge-
ometric large-margin principle underlying algorithmsisuc
as SVMs.

The learning problem for GMMs is a convex constrained
optimization whose optimal solution is a linear combina-

Linear classifiers learned with support vector machinetion of training instances and their inner and outer prod-
(SVM) methods [4, 2] are widely used and commonly re-ucts, thereby supporting the use of arbitrary Mercer ker-
garded as the state of the art for a variety of learning taskg1els. The form of the algorithm allows us to use directly

SVMs and most other linear classification learners outputhe PAC-Bayesian family of generalization bounds. Alter-

asingleweight vector but they do not supply additional in- natively, a slight variant of the algorithm can be seen as a
formation about alternative weight vectors or a confidenceéobust variant of SVMs.

information associated to the weight vector learned. We compare the performance of GMMs to SVMs on a

Bayesian methods, on the other hand, maintain a distrihandwritten digit classification task, and show that over

bution over weight vectors and do not commit to a sin-random samples of the problem, GMMs achieve improved

gle choice. This posterior distribution follows by Bayes's average performance. We also show that GMMs are more
robust in the sense that they achieve lower test error vari-
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Given a labeled sampl& = ((x1,y1), .- ., (Zn,yn)), the
maximum entropy principle invites us to seek the proba-
bility distribution over weight vectors that is the closest
to an uninformative distribution, e.g., an isotropic Gaus-
sian distribution\/ (0, aI) for some constant scalar> 0,
where closeness is measured by the relative entropy, or the
Kullback-Leibler divergence. The large-margin require-
ment imposes that in the separable case, with high proba-
bility, a weight vector drawn fromV" (., 32) correctly label

the training samples. A relaxed version of this condition is

) ) o ) ) required in the non-separable case. The next two sections
Figure 1: Gaussian distribution over two-dimensionalyesent in detail the optimization problems for both cases.
weight vectors. Green vectors classify incorrectly the ex-

ample((0.5,1),+1), blue vectors. The density around a 21 Optimization in the Separable Case
weight vector is proportional to its relative importancéel

10p

black circle marks the mean of the Gaussian. This section derives the optimization problem for learning
GMMs in the case where the training sample is linearly
2 Gaussian Margin Algorithms separable. In this case, we can require the weight vectors to

correctly classify all training points, with high probabil

Standard linear classification learning algorithms return thatis
single weight vectotw used to predict the label of any test Pr[sign(w - x;) = yi] > 7, 2)

point. We study a generalization of these algorithms whergynerey, « (0.5, 1] is a fixed confidence parameter. In view
hypotheses are probability distributions over weight VEC-of the maximum entropy principle already discussed, the

torsw. Such a hypothesis can be seen as a randomizeghimization problem in this case can thus be written as
linear classifier. To classify an instanega parameter vec-

tor w is drawn according to the hypothesis and predicts the ~ min Dy, (N (w, X) || NV (0, al)) (3)
labelsign(w - ). po2
st Prfsign(w-x;) =y >n i=1,...,n.

One benefit of this randomization is to produce a nmore
bustsolution, as argued by Herbrigt al.in a similar con- ~ We now give a more explicit expression for both the ob-
text [5, 6]. PAC-Bayesian analysis and its generalizatiorjective and the constraints of this optimization problem,
bounds give additional justification to this approach, as westarting with the constraints. The constraint on paint
shall detail in Section 4. i=1,...,n, can be rewritten as

The prob§b|llt¥d|str|butlon over weight ve(_:tors learngd b Prly; (w - 2;) > 0] > 1. @)
our algorithm is selected among the family of full Gaus-

sian distributions\ (u1, %) with meanp € R and covari-  Sincew is drawn from a Gaussian distributiodf (u, %),
ance matriX> € R?*¢. The componen,, of the mean  the signed-margin random variahlé; = y; (w - z;) for
vector and the diagonal terh, ,, of the covariance matrix point (z;, ;) also follows a Gaussian distribution with the
learnedp = 1...d, convey the partial knowledge gained following mean and variance:

about the weight assigned to featprerhe large®, , and

the more diversity is allowed for the weight,. Similarly, i =yi(mn-z;) of =z Yz, . (5)
each covariance teri, , captures the correlation between

featuresp and ¢. Fig. 1 illustrates this in the case of a Let ® denote the standard normal cumulative distribution

simple two-dimensional Gaussian distribution. The multi- function:
variate Gaussian distribution over weight vectaf$u, 3) 1 w2
induces a univariate Gaussian distribution over the signed Vu € R, ®(u) = Wor / e 2dv. (6)
. . i —00
marginM of the hyperplanes they define:
Since (M; — u;) /o, is a standard normal distribution, it
.
M~ N (y(p- =), (z'22)) . (1) follows thatPr[y; (w - «;) > 0] can be written as
At prediction time, the true value gfis of course unknown . .
and should thus be omitted from (1). Pr|(M; — ;) Joi > —ﬂ} =1-9 (—&) .
ag; ag;

The design of our algorithm is guided by both a large- ) )
margin requirement, as with most successful determinisThus, the constraint (4) can be expressed in ternds loy
tic linear discrimination algorithms, and the maximum en-

tropy principle. Mot =07 (y) . (8)

i
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Plugging back the expression@fands; interms ofpand  The optimization problem just presented can be further
Y (5) leads to the following formulation of the constraint simplified via a change of variables to eliminate the vari-
related to poinfx;, y;): ance parameter. Specifically, let and ji be defined by
Y = (¢*/a)T andfp = (1/\/a)u. Then, the objective
yi(p - x;) > ¢y/x] Sx;  wheregp = ®'(n). (9) function can be rewritten as

This can be viewed as a large-margin constraint where the

value of the margin required depends on the example — log det (ig) + lTr (ig) + 1 H\/EﬂHQ
via a quadratic form. Interestingly, the large-margin con- ¢? a ¢? a

straint (9) arises here from a high-confidence probalalisti ~ a 1 ~ 2
constraint (4), rather than from standard geometric censid ~ — log det (E) —dlog P + ETI" (E) +al™,
erations.

We now study the objective function of the optimiza- and the constraints reformulated as
tion problem (3). The relative entropy @¥ (u,Y) and

N (0, al) is given by / a -~
det aI) o)

2 Dyt (N (12, 5) |V (0, ) = log (
det ™ & Y- xi) > z] Sx; — Dig; .

where we absorbed the factbf\/a into the scale factors
whered is the dimension of the space. This can be writ- D, Omitting additive constants and setting = 1/¢?
ten as a sum of two Bregman divergences [3]: the Itakurateads to the following simplified form of the GMMs op-
Saito matrix divergence between the two covariance matimization problem for the non-separable case:

trices [18], and a Euclidean distance between the weight

vectors.

1 2 -
In view of (9) and (10) and disregarding constant terms, we '§! 3 (_ logdet ¥ + ¢Tr (%) + || ) +C Z &i
obtain the following explicit formulation of the optimiza- =1

a

+Tr(22) A+ (u-0) 2 (u-0), (10

tion problem for GMMs in the separable case: s.toyi(p - ;) > /wjgwi —-Di& i=1,...,n
1 1 1 . | —
mm—(—Mgm2+—ﬂQD+—unﬁ =0, &>0 i=1,...,n. (13)
wy 2 a a
. .. T . s
stoyi(p-ai) 2 pyJa;Bes, i=1....n 3 Dual Problem and Representer Theorem

L=0. (11)

o This section derives the dual optimization problem for (13)
2.2 Optimization in the Non-Separable Case and shows that any positive-definite symmetric kernel can

. . be used for GMMs, instead of the dot product in the input
To deal with the more general case of linearly non-

separable samples, we can relax the inequality constraint%)ace'

by introducing a slack variablg for each pointc; and aug- ~ The objective function of (13) is convex both inandX.
menting the objective function with a corresponding slackThe constraints are also lineariand thus convex but they
penalty term, as in the case of support vector machines [4fre concavein . However, the change of variable =

or other similar optimization problems. Proceeding in thisT?, whereY is a PSD matrix whose eigenvalues are the
way, we obtain the following relaxed version of the previ- square roots of those faz, yields a convex optimization

ous optimization problem: problem. The resulting optimization problem is then
i 1( log det ¥ 4+ T (2)+1|u||2)+02n:5 1 n
min — | — —1r - i
2 a a — r;?llr‘l —logdetT—i-%Tr (T2)+§HN||2+CZ&
’ i=1
(1 ms T — D.Es
stoyi(p i) > ¢\ /&) S, — Di&; stoyi(p- @) > ||Tai| — Diti
¥ »0,and¢ >0fori=1,...,n, (12) T=0, T="",&>0 i=1,....,n. (14)
whereC' > 0 is a tradeoff parameter and the;, i =
1,...,n, are non-negative slack scale factors whose posAs we shall see later, the condition @hbeing PSD and

sible values will be discussed later. symmetric can be omitted since it is always satisfied by the
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solution. The Lagrangian of the problem is therefore

1
L(p, Vi) = —logdet T + %Tr (Y?) + = M

2

+ zn:ai (\/ ] YYx; — D& — yi(p - wi))
i=1
+Cz&' — Z%fz‘ .
1=1 =1

At the optimum, the gradient with respect toand Y is
zero:

(15)

n n
V;Lﬁ:ll—zaiyiwi=0=>N=Zaiyifﬂi-

(16)
=1 i=1
Vel =T 49T+ a—ami - 17
. I+ i A
Tml
Z NoL (18)
Let U be defined by
:BT
U= 1/)I+ZQZT7T2 (19)

Then, V£ = 0 can be rewritten a&¥+£ = - Y1 +
YU + LUY = 0 at the optimum. From this, it follows

thatY = U2 at the optimum, that is

(20)

wI—i—Zal\/W.

Note that this implies thaf —2 and thusY is a PSD matrix.
Finally, setting the gradient with respeciido zero yields:

Vgiﬁ =—a;D;i+C—7v=0 = ; < C/Dl . (21)
LetX = [:131
are the training examples, . . ., x,,, and letB be the di-
agonal matrix defined bB = diag(31, . . ., B4) where

def

ﬁi—\/v—i

Denote byK the kernel matrix of the training dat& =
XTX, whereK; ; = x;-x;, and letk; be theith column of
K. Rewriting Equation (20) in matrix form in terms &

and v; =z Tx; . (22)

andB and using the matrix inversion identity (or Sherman-

Morrison-Woodbury formula) to compufé? helps us de-

rive an equivalent expression in terms of the kernel matrix

..z, be the matrix whose column vectors

optimization problem equivalent to (14):
nbax log det (1/11 + \/EK\/E)
1 1 -1
- Eﬂ[( WB) ' + K K)}
. 1
+ Z Pivi — 5 Z BiBiv/vi/ojyiy; Kij
i=1 i,j
st. 0<j3 < C/(Dl\/a) i1=1,....n
_ 1 T -1 1.
=y <K k, ((ZZJB) + K) k) .

Since the dual problem is expressed in terms of the kernel
matrix K, the following result can be shown as for SVMs.

(23)

Theorem 1 The optimal meamn and covarianceX? pa-
rameters of(13) can be written as a linear combination of
the input vectors where the coefficients are dependent only
on inner product of the input vectors.

The dual optimization problem helps us further under-
stand the role of the two paramete&rsand¢ (or ¢)). As
with SVMs, the parameter’ determines the trade-off be-
tween two terms of the primal’'s objective (13): better ac-
curacy on the training data (larger values) versus “simplic
ity” (smaller values). This trade-off translates into apap
bound on the dual parameters (23): with larger values of
C, some examples may significantly affect the optimal so-
lution. The parametep appears only in the constraints of
(11). Forg = 0, the constraints are invariant band lead

to the optimal solutior. = I. As ¢ increases, the stan-
dard deviation of the margig/z; Xz, plays an increas-
ingly important role, producing solutions with smaller ¢an
more skewed) eigenvalues. This can also be observed from
(20): for large values of) (small ¢) the solution is more
similar to the identity matrix, while for smaller values@f

its shape depends on the training examples.

4 Analysis

This section presents generalization bounds for GMMs
both in the separable and non-separable case, based on
a PAC-Bayesian analysis. PAC-Bayesian bounds were
first introduced by McAllester [12], and further refined by
McAllester [13], and Langford and Seeger [10, 16]. They
have been shown to be often quite tight. Langford and
Shawe-Taylor also used PAC-Bayesian methods to analyze
large-margin algorithms [11].

We first introduce some notation needed for the discus-
sion of these bounds. Lé{w, (x,y)) denote the zero-
one loss, that ig(w, (x,y)) = 1 if sign(w - ) # y and
{(w, (x,y)) = 0 otherwise.

K and the new parametefg,;} (see the Appendix for the LetD be adistribution over the labeled examplesy) and
details of this derivation). This leads to the following dua denote by/(w, D) the expected zero-one loss of a linear
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classifier characterized by its weight vector Proof: We give a more explicit expression of the bound
of Theorem 2. Following McAllester [14], we note that
l(w,D)= Pr [sign(w-x)+#vy] for ¢ > p, D1, (pllq) < z impliesq < p + /2pz + 2.
(@y)~D Using the inequality,/pz < %(p—l— x), we obtain:¢g <
= eyt W @] (1+v2/2)p+ 2+ V2/2)x = Cip+ Cor.

To conclude the proof we observe that by the definition of

We denote abusively by/(w,S) the expected loss ¢ (A/(u,¥),5), the following holds:
¢(w,Dg) for the empirical distributiorDg of a sample

S. We also denote by(N (u,X), D) the expectation of n

1
{(w, D) over weight vectorsy drawn from a Gaussian dis- N (1, %), 5) =~ S N (1,8 (1, 3:))
tribution V' (s, X): i=1
1 & 1 < I
W) D= B @) @y~ g Pibiee) o= e (-5)
T,y)~ 1= 1=
w~N(p,X)

_ . _ This last equality was established earlier in Section 2.1 to
We use the following two-sided PAC-Bayesian theo-formulate the GMMs optimization problem in the separa-
rem, which is a Gaussian version of a theorem ofple case. u
McAllester [14, Sec. 2]. The next result states our first generalization bound for the

performance of the GMMs classifier in the separable case.
Theorem 2 Fix a prior distribution over weight vectors

N (pg, Xo). Foranyé € [0,1], with probability at least  Corollary 4 Fix a distribution over weight vectors
1 — 6 over samplesS’ = {(=;,y;)};-, of size n, for all A/ (0,I). Then, for any € [0, 1], with probability at least

posterior distributionsV (u, X) the following holds: 1 — 6 over the choice of a sampkeof sizen, the following
bound holds simultaneously for all distribution§ (1, 3)
Dk (6 (N (1, %), 8) |6 (N (1, %), D)) that satisfyPr., (s [yi(w - ;) > 0] > 7 for some
€ (0.5,1]:
D, OV (1 2) | (1 ) + log 2 1 e 05
< : . (25)
n—

(N (%), D) <Ci(1—n)

The theorem states that the average generalization efrordi 5 (— log (det X) + Tr () + ||| — d) +log 2

verges from the average training error by no more than a2
guantity depending on the divergence between the poste-

rior and prior distributions over weight vectors, where di- Proof: The result follows from Theorem 3. By assump-
vergence is measured by the relative entropy. Thus, to guar ' '
antee a low generalization error, two quantities should be =~
minimized: the training errof (N (u, X), S) and the rel- "
ative entropy between the posterior and prior distribugion Priy; (w-z;) <0] =& (——l) <(1-mn).
over weight vector®xr, (N (u, X) |V (g, Xo)).

Following McAllester [14], we can state the following Using this inequality to bound the first term of the right-
somewhat “weaker but perhaps clearer statement”. hand side of the bound of Theorem 3 and identity (10) to
give an explicit expression of the relative entropy between
Theorem 3 Fix a prior distribution over weight vectors the posterioV" (u, %) and the priorV' (0;T) in the second
N (g, %0). Then, for any € [0, 1], with probability at ~ term yields directly the statement of the corollary. =
least]l — & over samplesS = {(z;,y;)}7_, of size n, for In the separable case, the GMMs optimization problem
all posterior distributions\ (u, %) the following holds: (11) precisely consists of minimizing the bound on the gen-
eralization error given by Corollary 4. Thus, the corollary
1 . gives a strong justification for our algorithm in that case. A
LN (,X),D) <C1— Z @ (_ﬂ) similar analysis holds in the general case of non-separable
g Ti training samples.

n—1

Dxr (N (2, %) |V (10, S0)) + log 22

C.
Tl n—1

, (26)  cCorollary5 Fix a distribution over weight vectors
N (0,1) and lety denotep = ®~!(5). Then, for any
wherew; = y; (- @), 01 = /2] S5, C1 = 14+v/2/2 ~ d € [0,1], with probability at leastl — ¢ over the choice

1.7,andCs = 2 + V/2/2 ~ 2.7, of a sampleS = ((x1,v1),...,(®n,yn)) Of sizen, the
following bound holds simultaneously for all distributen
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N (u,Y) and all values ofy € (0.5, 1]: where, asin 9y = ®(¢).

o) & s The objective function can be replaced with its expectation
N (%), D) < —= > ‘I’(— ¢+ max {¢— ok 0}) E {HwHQ} . This however is not sufficient since the solution
=t ) could then be trivially> = 0. Instead, we can subtract from
: (— log (det ) + Tr (2) + ||ue]|” — d) + log 22 the objective a term proportional to the entropy, to ensure
: that the entropy of the optimal solution is non-zero. The
new objective function is thus:

+Cs

n—1

Proof: The corollary follows from Theorem 3. The rela-

tive entropy appearing in the right-hand side of the bound _ NV (1, 2)] + éE [HWHQ} =

of Theorem 3 can be replaced by a more explicit expres- 2

sion as in Corollary 4. The first term of the right-hand _ ldlog(gﬁ) _ llogdetE i A (Tr (%) + ||M||2) _
side of the bound of Theorem 3 can be bounded using 2 2

—z < —y+max{y —x,0} and the fact tha® is monoton-  Omitting additive constants and relaxing the constraints
ically increasing. This yields the statement of the corglla  ([4]) we obtain the following robust version of SVMs:

[ |

As in the separable case, Corollary 5 provides a theoretical i, — 1 logdet Y + A (Tr (2) + ||N||2) +C Z &
justification for the GMMs algorithm in the non-separable #* 2 2 3
case. Indeed, by definition of thgs in the optimization )

problem (13) for GMMs¢; = max {(¢o; — ;) /D;,0}. styi(p-m) >1-&+¢\/@/Yw i=1...n
Thus, if we setD; = 0;,7 = 1,...,n, the algorithm can be N=0. (29)
viewed as minimizing a monotonic function of the bound

since for our choice ab;, ¢(_¢+max{¢_ Z_7O}> _ The comparisc_)n_ of .this optimization problem (29) and
i the GMMs optimization problem (11) shows that that the

O (= +8&). objectives of the two optimization problems coincide for
Note however that; is a function of the optimal solution A = 1/a. However, the constraints of the problem (11) are
p andy and thus can not be set in advance. Also, replacingfomogeneous while those of (29) are not because of the ad-
the scale parametef3; with o; = \/z/ Xa; in (13) leads  ditional term1. As a result, the three hyperparametérs

to a non-convex optimization problem. In the next section,C' and¢ cannot be reduced to two, unlike what was done
we present results of experiments in which we simply sein deriving (13) from (12).

D; = 1. This choice may not be optimal, yet it allows us to

avoid algorithmic complexities arising from non-convgxit g Experiments

5 Alternative View We implemented in matlab a Hildreth-like algorithm [3] to
solve (13) in the case wher®; = 1 for all 4, which is

The GMMs learning algorithms of Sec. 2 were motivatedthen a well defined convex optimization problem both in

by a generalized maximum entropy principle. However, athe separable and the non-separable cases. Our algorithm

similar optimization problem can be derived starting fromiterates over the training points and for each point updates

the standard optimization problem of SVMs. In the separathe parameters to classify that point optimally. Each itera

ble case, the QP problem for SVMs is the following [2]:  tion requiresD(d?) time to access the covariance matrix.

Hz We evaluated our algorithm using the USPS handwritten
digits dataset. The training set contairie291 training ex-
s.t. yi(w-x;)>1 fori=1,...,n. (27) amples and the test s2f007 examples. Originally, each

. . . instance represented an image of sigex 16 pixels of a
To obtain a robust formulation we can replace the single

iaht vect haG ian distributi aht digit, with ten possible digits. Due to our preliminary im-
weight vectorw with a Laussian distribution over weig plementation’s limitations, we reduced the dimensiogalit
vectorsw ~ N (i, X), and the objective function and con-

) . d I of the data by replacing each four adjacent pixels with their
straints with their probabilistic counterparts. mean, which resulted in image size b 8, thereby re-
The inequality constraints of the SVM optimization prob- ducing the dimensionality fror256 to 64. We repeated the
lem (27) are thus replaced with the requirement thaffollowing process over alt5 pairs of digits10 times: for
the inequality hold with probability at leas, that is  each pair, we randomly selectéd0 examples which were
Pr[y;(w - x;) > 1] > n. This inequality can be equiva- associated with one of the two digits of the current pair, the
lently rewritten as follows, as in Section 2.1: remaining training examples associated with the pair were

used as a validation set. The test set was the standard USPS
yilp-x;) > 1+ ¢\ /xS, (28)  test set restricted to the relevant two digits.

i . |
min — ||w
w 2
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Figure 2: Average (left) and standard deviation (middls} &Fror (< 100) of GMMs (x-axis) vs SVMs (y-axis) for 45
label-pairs of the USPS dataset. A point above thegirex indicates better performance for the GMM algorithm. Right:
Average test error{100) of GMMs (y-axis) using the mean predictogn (i - «) (black squares) and the Gibbs predictor
Pr[y # sign (w - «)] (blue circles) as functions of for 3 vs.8 discrimination.

We trained two algorithms: support vector machinesin which they propose a training approach that maximizes
(SVMs) and Gaussian Margin Machines (GMMs). Forthe relative entropy between a prior distribution over the
SVMs, we experimented with different values of the reg- parameters and some given distribution. However, in that
ularization parameter’, and for the GMMs with 1 values  work, both the prior distribution and the learned distribu-
for ¢ and12 for the regularization parametét. We trained  tion over weight vectors are Gaussian distributions with
each of the algorithms using all these parameter values arftked covariance matrices, while within our formulation the
selected the model with the minimal error over the valida-covariance of the distributions is also learned. Jaakkola
tion set. We then used that model to compute the error ovest al. further propose to make a prediction by taking the
the test set and averaged the results ovet threpeats. sign of the average “margindign E [w - 2], while we pro-
pose to use the probability of error, effectively replading
Ms”. ; . .
and the GMMs. Each point corresponds to one of4he sish _ope_ratorwnrj the ng)ecte_ltmn. Jaakketzal. define a
distribution over “margin” variables as well. Our method

binary classification problems. A point above the line does not provide an explicit notion of margin, instead that
x corresponds to a pair where GMMs performs better than P b gm,

SVMs, and vise-versa. GMMs outperforms SVMs Sincestands out as a.byprod.uct of our derlvatlons. Flnally_, the
. . : dual form of their algorithm [8, Theorem 2] is very sim-
36 of the points are above the ling = x and 9 points

below. We also evaluated the robustness of each method lélglrtrtlz t:lfje?::i/\xs ?I_L:]ael’ dvl\jgr ft;hr(rana:fd(l)tllj?nagoar‘il:h?:ti? rtne(::'r;

computing the standard deviation of the test error over the - : : L
: . : involved, and finding a simple useful equivalent is still an
10 repeats. The results are summarized in the middle pan%l en broblem
of Fig. 2. GMMs seem to be more robust2tpoints are penp '
above the lingy = z while 17 are below. Other previous work related to this topic typically assumes
a Gaussian or uniform distribution over the input data
rather than over the classifiers. Lanckeegl.[9] assume
that the points associated with each of the classes are dis-
tributed according to a class-dependent Gaussian distribu
tion. Nathet al. [15] use a clustering technique to group
data points, and then optimize an SVM-like criterion such
that a large fraction of the points of each cluster be classi-
fied correctly. Niand Zhang [1] assume a uniform-isotropic
oise over input vectors, and modify SVMs to classify well
he worst noise-instance per input vector. Shivaswamy and
Jebara [17] use a geometric motivation to modify SVMs.
That effort and other related ones prepare first the addi-
tional knowledge about the problem (specific covariance
matrix of the input data [17], per class covariance ma-
7 Rdated Work trix [9, 15], or per-point noise level [1]), and keep it fixed
during learning. In contrast, our method learns together th
Flassifier and the additional information.

The left panel of Fig. 2 shows the results for both SV

The right panel of Fig. 2 shows the results of our empiri-
cal study of the effect of the parametgion performance
when using for prediction the meaign (- ) (bottom
black line with squares) or the averaged Gibbs predictio
Pr [y # sign (w - x)] (top blue line with circles). Inter-
estingly, the minimal error of the the Gibbs predictor is
reached fom close tol and its error is close td when

n is close to.5. For the mean predicteign (u - «), the
error values are within a smaller range, with the smalles
error attained for a small value gf These observations
apply also to other digit pairs, with the optimal setting for
all tests being; = 0.54.

The work presented here bears some similarity with tha
of Jaakkolaet al. on maximum entropy discrimination [8]
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8 Conclusion [15] J. Nath, C. Bhattacharyya, and M. Murty. Clustering
based large margin classification: A scalable approach us-

We proposed a new form of linear classifier that extends ing SOCP formulation. IKDD, 2006.

the commonly used large-margin linear classifiers to prob{16] M. Seeger. PAC-Bayesian generalization bounds fosgau
ability distributions over weight vectors. Our learning al sian processesIMLR, 3:233-269, 2002.

gorithm is based on a probabilistic large-margin require{17] P. Shivaswamy and T. Jebara. Ellipsoidal kernel maehin
ment and the maximum entropy principle and benefits from  In Atrtificial Intelligence and Statistics (AISTATSDO07.
strong theoretical guarantees based on tight PAC-Bayesq@S] K. Tsuda, G. Ratsch, and M.K. Warmuth. Matrix exporent

generalization bounds. ated gradient updates for on-line learning and Bregman pro-

o . . jection. JMLR 6:995-1018, 2005.
The preliminary empirical evaluation presented shows that Ject R

our method not only performs favorably with respect to . R

SVMs, but also that it succeeds indeed in constructing éb\ppendlx. Derivation of the Dual Problem
robust classifier with reduced variance. Future largelesca
implementations of our algorithms will help us explore its
properties when applied to a variety of tasks and data set

We start from (22) and supporting definitions. Equa-
tion (20) can be rewritten in matrix notation as follows:
Sp-2 = I + XBXT. Thus, by the matrix inversion iden-
tity, T2 can be written as

T2 = %[I ~X((B)"'+XTX)7'X"].  (30)
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