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Abstract. Composition of weighted transducers is a fundamental al-
gorithm used in many applications, including for computing complex
edit-distances between automata, or string kernels in machine learning,
or to combine different components of a speech recognition, speech syn-
thesis, or information extraction system. We present a generalization of
the composition of weighted transducers, 3-way composition, which is
dramatically faster in practice than the standard composition algorithm
when combining more than two transducers. The worst-case complex-
ity of our algorithm for composing three transducers T1, T2, and T3

resulting in T , is O(|T |Q min(d(T1)d(T3), d(T2)) + |T |E), where | · |Q de-
notes the number of states, | · |E the number of transitions, and d(·)
the maximum out-degree. As in regular composition, the use of perfect
hashing requires a pre-processing step with linear-time expected com-
plexity in the size of the input transducers. In many cases, this approach
significantly improves on the complexity of standard composition. Our
algorithm also leads to a dramatically faster composition in practice. Fur-
thermore, standard composition can be obtained as a special case of our
algorithm. We report the results of several experiments demonstrating
this improvement. These theoretical and empirical improvements signif-
icantly enhance performance in the applications already mentioned.

1 Introduction

Weighted finite-state transducers are widely used in text, speech, and image
processing applications and other related areas such as information extraction
[8, 10, 12, 11, 4]. They are finite automata in which each transition is augmented
with an output label and some weight, in addition to the familiar (input) label
[14, 5, 7]. The weights may represent probabilities, log-likelihoods, or they may
be some other costs used to rank alternatives. They are, more generally, elements
of a semiring [7].

Weighted transducers are used to represent models derived from large data
sets using various statistical learning techniques such as pronunciation dictionar-
ies, statistical grammars, string kernels, or complex edit-distance models [11, 6,
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10011.



2, 3]. These models can be combined to create complex systems such as a speech
recognition or information extraction system using a fundamental transducer al-
gorithm, composition of weighted transducers [12, 11]. Weighted composition is
a generalization of the composition algorithm for unweighted finite-state trans-
ducers which consists of matching the output label of the transitions of one
transducer with the input label of the transitions of another transducer. The
weighted case is however more complex and requires the introduction of an ǫ-
filter to avoid the creation of redundant ǫ-paths and preserve the correct path
multiplicity [12, 11]. The result is a new weighted transducer representing the
relational composition of the two transducers.

Composition is widely used in computational biology, text and speech, and
machine learning applications. In many of these applications, the transducers
used are quite large, they may have as many as several hundred million states or
transitions. A critical problem is thus to devise efficient algorithms for combin-
ing them. This paper presents a generalization of the composition of weighted
transducer, 3-way composition, that is dramatically faster than the standard
composition algorithm when combining more than two transducers. The com-
plexity of composing three transducer T1, T2, and T3, with the standard compo-
sition algorithm is O(|T1||T2||T3|) [12, 11]. Using perfect hashing, the worst-case
complexity of computing T = (T1 ◦ T2) ◦ T3 using standard composition is

O(|T |Q min(d(T3), d(T1 ◦ T2)) + |T |E + |T1 ◦ T2|Q min(d(T1), d(T2)) + |T1 ◦ T2|E), (1)

which may be prohibitive in some cases even when the resulting transducer T

is not large but the intermediate transducer T1 ◦ T2 is.3 Instead, the worst-case
complexity of our algorithm is

O(|T |Q min(d(T1)d(T3), d(T2)) + |T |E). (2)

In both cases, the use of perfect hashing requires a pre-processing step with
linear-time expected complexity in the size of the input transducers.

Our algorithm also leads to a dramatically faster computation of the result
of composition in practice. We report the results of several experiments demon-
strating this improvement. These theoretical and empirical improvements signif-
icantly enhance performance in a series of applications: string kernel-based algo-
rithms in machine learning, the computation of complex edit-distances between
automata, speech recognition and speech synthesis, and information extraction.
Furthermore, as we shall see later, standard composition can be obtained as a
special case of 3-way composition.

The main technical difficulty in the design of our algorithm is the definition
of a filter to deal with a path multiplicity problem that arises in the presence
of the empty string ǫ in the composition of three transducers. This problem,
which we shall describe in detail, leads to a word combinatorial problem [13].
We will present two solutions for this problem: one requiring two ǫ-filters and a
generalization of the ǫ-filters used for standard composition [12, 11]; and another

3 Moreover both T1 ◦ T2 and T2 ◦ T3 may be very large compared to T , hence both
(T1 ◦ T2) ◦ T3 and T1 ◦ (T2 ◦ T3) may be prohibitive.
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Fig. 1. (a) Example of a weighted transducer T . (b) Example of a weighted automaton
A. [[T ]](aab, bba) = [[A]](aab) = .1× .2× .6× .8+ .2× .4× .5× .8. A bold circle indicates
an initial state and a double-circle a final state. The final weight ρ[q] of a final state q

is indicated after the slash symbol representing q.

direct and symmetric solution where a single filter is needed. Remarkably, this
3-way filter can be encoded as a finite automaton and painlessly integrated in
our 3-way composition.

The remainder of the paper is structured as follows. Some preliminary defi-
nitions and terminology are introduced in the next section (Section 2). Section 3
describes our 3-way algorithm in the ǫ-free case. The word combinatorial prob-
lem of ǫ-path multiplicity and our solutions are presented in detail Section 4.
Section 5 reports the results of experiments using the 3-way algorithm and com-
pares them with the standard composition.

2 Preliminaries

This section gives the standard definition and specifies the notation used for
weighted transducers.

Finite-state transducers are finite automata in which each transition is aug-
mented with an output label in addition to the familiar input label [1, 5]. Output
labels are concatenated along a path to form an output sequence and sim-
ilarly with input labels. Weighted transducers are finite-state transducers in
which each transition carries some weight in addition to the input and out-
put labels [14, 7]. The weights are elements of a semiring, that is a ring that
may lack negation [7]. Some familiar semirings are the tropical semiring (R+ ∪
{∞}, min, +,∞, 0) related to classical shortest-paths algorithms, and the proba-
bility semiring (R, +, ·, 0, 1). A semiring is idempotent if for all a ∈ K, a⊕ a = a.
It is commutative when ⊗ is commutative. We will assume in this paper that the
semiring used is commutative, which is a necessary condition for composition to
be an efficient algorithm [10]. The following gives a formal definition of weighted
transducers.

Definition 1. A weighted finite-state transducer T over (K,⊕, ·, 0, 1) is an 8-
tuple T = (Σ, ∆, Q, I, F, E, λ, ρ) where Σ is the finite input alphabet of the trans-
ducer, ∆ is the finite output alphabet, Q is a finite set of states, I ⊆ Q the set of



initial states, F ⊆ Q the set of final states, E ⊆ Q×(Σ∪{ǫ})×(∆∪{ǫ})×K×Q

a finite set of transitions, λ : I → K the initial weight function, and ρ : F → K

the final weight function mapping F to K.

The weight of a path π is obtained by multiplying the weights of its constituent
transitions using the multiplication rule of the semiring and is denoted by w[π].
The weight of a pair of input and output strings (x, y) is obtained by ⊕-summing
the weights of the paths labeled with (x, y) from an initial state to a final state.

For a path π, we denote by p[π] its origin state and by n[π] its destination
state. We also denote by P (I, x, y, F ) the set of paths from the initial states I to
the final states F labeled with input string x and output string y. A transducer
T is regulated if the output weight associated by T to any pair of strings (x, y):

T (x, y) =
M

π∈P (I,x,y,F )

λ(p[π]) · w[π] · ρ[n[π]] (3)

is well-defined and in K. T (x, y) = 0 when P (I, x, y, F ) = ∅. If for all q ∈ Q⊕
π∈P (q,ǫ,ǫ,q) w[π] ∈ K, then T is regulated. In particular, when T does not admit

any ǫ-cycle, it is regulated. The weighted transducers we will be considering in
this paper will be regulated. Figure 1(a) shows an example.

The composition of two weighted transducers T1 and T2 with matching input
and output alphabets Σ, is a weighted transducer denoted by T1 ◦ T2 when the
sum:

(T1 ◦ T2)(x, y) =
M

z∈Σ∗

T1(x, z)⊗ T2(z, y) (4)

is well-defined and in K for all x, y ∈ Σ∗ [14, 7]. Weighted automata can be
defined as weighted transducers A with identical input and output labels, for
any transition. Thus, only pairs of the form (x, x) can have a non-zero weight
by A, which is why the weight associated by A to (x, x) is abusively denoted by
A(x) and identified with the weight associated by A to x. Similarly, in the graph
representation of weighted automata, the output (or input) label is omitted.

3 Epsilon-Free Composition

3.1 Standard Composition

Let us start with a brief description of the standard composition algorithm for
weighted transducers [12, 11]. States in the composition T1 ◦ T2 of two weighted
transducers T1 and T2 are identified with pairs of a state of T1 and a state of T2.
Leaving aside transitions with ǫ inputs or outputs, the following rule specifies
how to compute a transition of T1 ◦ T2 from appropriate transitions of T1 and
T2: (q1, a, b, w1, q2) and (q′1, b, c, w2, q

′

2) =⇒ ((q1, q
′

1), a, c, w1 ⊗ w2, (q2, q
′

2)).
Figure 2 illustrates the algorithm. In the worst case, all transitions of T1

leaving a state q1 match all those of T2 leaving state q′1, thus the space and
time complexity of composition is quadratic: O(|T1||T2|). However, using perfect
hashing on the input transducer with the highest out-degree leads to a worst-case
complexity of O(|T1 ◦ T2|Q min(d(T1), d(T2)) + |T1 ◦ T2|E). The pre-processing
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Fig. 2. Example of transducer composition. (a) Weighted transducer T1 and (b)
Weighted transducer T2 over the probability semiring (R, +, ·, 0, 1). (c) Result of the
composition of T1 and T2.

step required for hashing the transitions of the transducer with the highest out-
degree has an expected complexity in O(|T1|E) if d(T1) > d(T2) and O(|T2|E)
otherwise.

The main problem with the standard composition algorithm is the following.
Assume that one wishes to compute T1 ◦ T2 ◦ T3, say for example by proceeding
left to right. Thus, first T1 and T2 are composed to compute T1 ◦ T2 and then
the result is composed with T3. The worst-case complexity of that computation
is:

O(|T1 ◦ T2 ◦ T3|Q min(d(T1 ◦ T2), d(T3)) + |T1 ◦ T2 ◦ T3|E+

|T1 ◦ T2|Q min(d(T1), d(T2)) + |T1 ◦ T2|E). (5)

But, in many cases, computing T1 ◦ T2 creates a very large number of transi-
tions that may never match any transition of T3. For example, T2 may represent a
complex edit-distance transducer, allowing all possible insertions, deletions, sub-
stitutions and perhaps other operations such as transpositions or more complex
edits in T1 all with different costs. Even when T1 is a simple non-deterministic
finite automaton with ǫ-transitions, which is often the case in the applications
already mentioned, T1 ◦ T2 will then have a very large number of paths, most of
which will not match those of the non-deterministic automaton T3. Both T1 ◦T2

and T2 ◦ T3 would be much larger than T in this example. In other applications
in speech recognition, or for the computation of kernels in machine learning, the
central transducer T2 could be far more complex and the set of transitions or
paths of T1 ◦ T2 not matching those of T3 could be even larger.

3.2 3-Way Composition

The key idea behind our algorithm is precisely to avoid creating these unnec-
essary transitions by directly constructing T1 ◦ T2 ◦ T3, which we refer to as a
3-way composition. Thus, our algorithm does not include the intermediate step
of creating T1 ◦T2 or T2 ◦T3. To do so, we can proceed following a lateral or side-
ways strategy: for each transition e1 in T1 and e3 in T3, we search for matching
transitions in T2.

The pseudocode of the algorithm in the ǫ-free case is given below. The al-
gorithm computes T , the result of the composition T1 ◦ T2 ◦ T3. It uses a queue
S containing the set of pairs of states yet to be examined. The queue discipline



of S can be arbitrarily chosen and does not affect the termination of the algo-
rithm. Using a FIFO or LIFO discipline, the queue operations can be performed
in constant time. We can pre-process the transducer T2 in expected linear time
O(|T2|E) by using perfect hashing so that the transitions G (line 13) can be found
in worst-case linear time O(|G|). Thus, the worst-case running time complexity
of the 3-way composition algorithm is in O(|T |Qd(T1)d(T3) + |T |E), where T is
transducer returned by the algorithm.

Alternatively, depending on the size of the three transducers, it may be ad-
vantageous to direct the 3-way composition from the center, i.e., ask for each
transition e2 in T2 if there are matching transitions e1 in T1 and e3 in T3.
We refer to this as the central strategy for our 3-way composition algorithm.
Pre-processing the transducers T1 and T3 and creating hash tables for the tran-
sitions leaving each state (the expected complexity of this pre-processing being
O(|T1|E + |T3|E)), this strategy leads to a worst-case running time complex-
ity of O(|T |Qd(T2) + |T |E). The lateral and central strategies can be combined
by using, at a state (q1, q2, q3), the lateral strategy if |E[q1]| · |E[q3]| ≤ |E[q2]
and the central strategy otherwise. The algorithm leads to a natural lazy or
on-demand implementation in which the transitions of the resulting transducer
T are generated only as needed by other operations on T . The standard compo-
sition coincides with the 3-way algorithm when using the central strategy with
either T1 or T2 equal to the identity transducer.

3-Way-Composition(T1, T2, T3)

1 Q← I1 × I2 × I3

2 S ← I1 × I2 × I3

3 while S 6= ∅ do

4 (q1, q2, q3)← Head(S)
5 Dequeue(S)
6 if (q1, q2, q3) ∈ I1 × I2 × I3 then

7 I ← I ∪ {(q1, q2, q3)}
8 λ(q1, q2, q3)← λ1(q1)⊗ λ2(q2)⊗ λ3(q3)
9 if (q1, q2, q3) ∈ F1 × F2 × F3 then

10 F ← F ∪ {(q1, q2, q3)}
11 ρ(q1, q2, q3)← ρ1(q1)⊗ ρ2(q2)⊗ ρ3(q3)
12 for each (e1, e3) ∈ E[q1]×E[q3] do

13 G← {e ∈ E[q2] : i[e] = o[e1] ∧ o[e] = i[e3]}
14 for each e2 ∈ G do

15 if (n[e1], n[e2], n[e3]) 6∈ Q then

16 Q← Q ∪ {(n[e1], n[e2], n[e3])}
17 Enqueue(S, (n[e1], n[e2], n[e3]))
18 E ← E ∪ {((q1, q2, q3), i[e1], o[e3], w[e1]⊗ w[e2]⊗w[e3], (n[e1], n[e2], n[e3]))}
19 return T

4 Epsilon filtering

The algorithm described thus far cannot be readily used in most cases found in
practice. In general, a transducer T1 may have transitions with output label ǫ and
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Fig. 3. (a) Redundant ǫ-paths. A straightforward generalization of the ǫ-free case could
generate all the paths from (0, 0) to (2, 2) for example, even when composing just two
simple transducers. (b) Filter transducer M allowing a unique ǫ-path.

T2 transitions with input ǫ. A straightforward generalization of the ǫ-free case
would generate redundant ǫ-paths and, in the case of non-idempotent semirings,
would lead to an incorrect result, even just for composing two transducers. The
weight of two matching ǫ-paths of the original transducers would be counted as
many times as the number of redundant ǫ-paths generated in the result, instead
of one. Thus, a crucial component of our algorithm consists of coping with this
problem.

Figure 3(a) illustrates the problem just mentioned in the simpler case of two
transducers. To match ǫ-paths leaving q1 and those leaving q2, a generalization
of the ǫ-free composition can make the following moves: (1) first move forward
on a transition of q1 with output ǫ, or even a path with output ǫ, and stay at
the same state q2 in T2, with the hope of later finding a transition whose output
label is some label a 6= ǫ matching a transition of q2 with the same input label;
(2) proceed similarly by following a transition or path leaving q2 with input label
ǫ while staying at the same state q1 in T1; or, (3) match a transition of q1 with
output label ǫ with a transition of q2 with input label ǫ.

Let us rename existing output ǫ-labels of T1 as ǫ2, and existing input ǫ-labels
of T2 ǫ1, and let us augment T1 with a self-loop labeled with ǫ1 at all states and
similarly, augment T2 with a self-loop labeled with ǫ2 at all states, as illustrated
by Figures 5(a) and (c). These self-loops correspond to staying at the same state
in that machine while consuming an ǫ-label of the other transition. The three
moves just described now correspond to the matches (1) (ǫ2 :ǫ2), (2) (ǫ1 :ǫ1),
and (3) (ǫ2:ǫ1). The grid of Figure 3(a) shows all the possible ǫ-paths between
composition states. We will denote by T̃1 and T̃2 the transducers obtained after
application of these changes.

For the result of composition to be correct, between any two of these states,
all but one path must be disallowed. There are many possible ways of select-
ing that path. One natural way is to select the shortest path with the diagonal
transitions (ǫ-matching transitions) taken first. Figure 3(a) illustrates in bold-
face the path just described from state (0, 0) to state (1, 2). Remarkably, this
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Fig. 4. (a) Finite automaton A representing the set of disallowed sequences. (b) Au-
tomaton B, result of the determinization of A. Subsets are indicated at each state. (c)
Automaton C obtained from B by complementation, state 3 is not coaccessible.

filtering mechanism itself can be encoded as a finite-state transducer such as the
transducer M of Figure 3(b). We denote by (p, q) � (r, s) to indicate that (r, s)
can be reached from (p, q) in the grid.

Proposition 1. Let M be the transducer of Figure 3(b). M allows a unique
path between any two states (p, q) and (r, s), with (p, q) � (r, s).

Proof. Let a denote (ǫ1:ǫ1), b denote (ǫ2:ǫ2), c denote (ǫ2:ǫ1), and let x stand for
any (x:x), with x ∈ Σ. The following sequences must be disallowed by a shortest-
path filter with matching transitions first: ab, ba, ac, bc. This is because, from any
state, instead of the moves ab or ba, the matching or diagonal transition c can
be taken. Similarly, instead of ac or bc, ca and cb can be taken for an earlier
match. Conversely, it is clear from the grid or an immediate recursion that a
filter disallowing these sequences accepts a unique path between two connected
states of the grid.

Let L be the set of sequences over σ = {a, b, c, x} that contain one of the
disallowed sequence just mentioned as a substring that is L = σ∗(ab + ba + ac +
bc)σ∗. Then L represents exactly the set of paths allowed by that filter and is
thus a regular language. Let A be an automaton representing L (Figure 4(a)).
An automaton representing L can be constructed from A by determinization and
complementation (Figures 4(a)-(c)). The resulting automaton C is equivalent to
the transducer M after removal of the state 3, which does not admit a path to
a final state. ⊓⊔

Thus, to compose two transducers T1 and T2 with ǫ-transitions, it suffices to
compute T̃1 ◦ M ◦ T̃2, using the rules of composition in the ǫ-free case.

The problem of avoiding the creation of redundant ǫ-paths is more complex
in 3-way composition since the ǫ-transitions of all three transducers must be
taken into account. We describe two solutions for this problem, one based on
two filters, another based on a single filter.

4.1 2-way ǫ-Filters.

One way to deal with this problem is to use the 2-way filter M , by first dealing
with matching ǫ-paths in U = (T1 ◦ T2), and then U ◦ T3. However, in 3-way
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Fig. 5. Marking of transducers and 2-way filters. (a) T̃1. Self-loop labeled with ǫ1 added
at all states of T1, regular output ǫs renamed to ǫ2. (b) T̃2. Self-loops with labels (ǫ0:ǫ1)
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T̃3. Self-loop labeled with ǫ2 added at all states of T3, regular input ǫs renamed to ǫ1.
(d) Left-to-right filter M1. (e) Left-to-right filter M2.

composition, it is possible to remain at the same state of T1 and the same state of
T2, and move on an ǫ-transition of T3, which previously was not an option. This
corresponds to staying at the same state of U , while moving on a transition of T3

with input ǫ. To account for this move, we introduce a new symbol ǫ0 matching
ǫ1 in T3. But, we must also ensure the existence of a self-loop with output label
ǫ0 at all states of U . To do so, we augment the filter M with self-loops (ǫ1:ǫ0) and
the transducer T2 with self-loops (ǫ0:ǫ1) (see Figure 5(b)). Figure 5(d) shows the
resulting filter transducer M1. From Figures 5(a)-(c), it is clear that T̃1 ◦M1 ◦ T̃2

will have precisely a self-loop labeled with (ǫ1:ǫ1) at all states.

In the same way, we must allow for moving forward on a transition of T1

with output ǫ, that is consuming ǫ2, while remaining at the same states of T2

and T3. To do so, we introduce again a new symbol ǫ0 this time only relevant
for matching T2 with T3, add self-loops (ǫ2:ǫ0) to T2, and augment the filter M

by adding a transition labeled with (ǫ0:ǫ2) (resp. (ǫ0:ǫ1)) wherever there used to
be one labeled with (ǫ2:ǫ2) (resp. (ǫ2:ǫ1)). Figure 5(e) shows the resulting filter
transducer M2.

Thus, the composition T̃1 ◦ M1 ◦ T̃2 ◦ M2 ◦ T̃3 ensures the uniqueness of
matching ǫ-paths. In practice, the modifications of the transducers T1, T2, and
T3 to generate T̃1, T̃2, and T̃3, as well as the filters M1 and M2 can be directly
simulated or encoded in the 3-way composition algorithm for greater efficiency.
The states in T become quintuples (q1, q2, q3, f1, f2) with f1 and f2 are states
of the filters M1 and M2. The introduction of self-loops and marking of ǫs can
be simulated (line 12-13) and the filter states f1 and f2 taken into account to
compute the set G of the transition matches allowed (line 13).

Note that while 3-way composition is symmetric, the analysis of ǫ-paths just
presented is left-to-right and the filters M1 and M2 are not symmetric. In fact, we
could similarly define right-to-left filters M ′

1 and M ′

2. The advantage of the filters
presented in this section is however that they can help modify easily an existing
implementation of composition into 3-way composition. The filters needed for
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Fig. 6. 3-way matching ǫ-filter W .

the 3-way case are also straightforward generalizations of the ǫ-filter used in
standard composition.

4.2 3-way ǫ-Filter.

There exists however a direct and symmetric method for dealing with ǫ-paths in
3-way composition. Remarkably, this can be done using a single filter automaton
whose labels are 3-dimensional vectors. Figure 6 shows a filter W that can be
used for that purpose. Each transition is labeled with a triplet. The ith element
of the triplet corresponding to the move on the ith transducer. 0 indicates staying
at the same state or not moving, 1 that a move is made reading an ǫ-transition,
and x a move along a matching transition with a non-empty symbol (i.e., non-ǫ
output in T1, non-ǫ input or output in T2 and non-ǫ input in T3).

Matching ǫ-paths now correspond to a three-dimensional grid, which leads
to a more complex word combinatorics problem. As in the two-dimensional case,
(p, q, r) � (s, t, u) indicates that (s, t, u) can be reached from (p, q, r) in the grid.
Several filters are possible, here we will again favor the matching of ǫ-transitions
(i.e. the diagonals on the grid).

Proposition 2. The filter automaton W allows a unique path between any two
states (p, q, r) and (s, t, u) of a three-dimensional grid, with (p, q, r) � (s, t, u).

Proof. Due to lack of space, we give a sketch of the proof, which is similar to
that of Proposition 1. As in that proof, we can enumerate disallowed sequences of
triplets. The triplet (0, 0, 0) is always forbidden since it corresponds to remain-
ing at the same state in all three transducers. Observe that in two consecutive
triplets, for i ∈ [1, 3], 0 in the ith machine of the first triplet cannot be followed
by 1 in the second. Indeed, as in the 2-way case, if we stay at a state, then we
must remain at that state until a match with a non-empty symbol is made. Also,



Table 1. Comparison of 3-way composition with standard composition. The computa-
tion times are reported in seconds, the size of T2 in number of transitions. These exper-
iments were performed on a dual-core AMD Opteron 2.2GHz with 16GB of memory,
using the same software library and basic infrastructure.

n-gram Kernel Edit distance
≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 standard +transpositions

Standard 65.3 68.3 71.0 73.5 76.3 78.3 586.1 913.5
3-way 8.0 8.1 8.2 8.2 8.2 8.2 3.8 5.9

Size of T2 70K 100K 130K 160K 190K 220K 25M 75M

two 0s in adjacent transducers (T1 and T2, or T2 and T3), cannot become both
xs unless all components become xs. For example, the sequence (0, 0, 1)(x, x, 1)
is disallowed since instead (x, x, 1)(0, 0, 1) with an earlier match can be followed.
Similarly, the sequence (0, 0, 1)(x, x, 0) is disallowed since instead the single and
shorter move (x, x, 1) can be taken. Conversely, it is not hard to see that a filter
disallowing these sequences accepts a unique path between two connected states
of the grid.

Thus, a filter can be obtained by taking the complement of the automaton
accepting the sequences admitting such forbidden substrings. The resulting de-
terministic and minimal automaton is exactly the filter W shown in Figure 6. ⊓⊔

The filter W is used as follows. A triplet state (q1, q2, q3) in 3-way composition
is augmented with a state r of the filter automaton W , starting with state 0 of
W . The transitions of the filter W at each state r determine the matches or
moves allowed for that state (q1, q2, q3, r) of the composed machine.

5 Experiments

This section reports the results of experiments carried out in two different ap-
plications: the computation of a complex edit-distance between two automata,
as motivated by applications in text and speech processing [9], and the compu-
tation of kernels between automata needed in spoken-dialog classification and
other machine learning tasks.

In the edit-distance case, the standard transducer T2 used was one based
on all insertions, deletions, and substitutions with different costs [9]. A more
realistic transducer T2 was one augmented with all transpositions, e.g., ab → ba,
with different costs. In the kernel case, n-gram kernels with varying n-gram order
were used [3].

Table 5 shows the results of these experiments. The finite automata T1 and
T3 used were extracted from real text and speech processing tasks. The results
show that in all cases, 3-way composition is orders of magnitude faster than
standard composition.



6 Conclusion

We presented a general algorithm for the composition of weighted finite-state
transducers. In many instances, 3-way composition benefits from a significantly
better time and space complexity. Our experiments with both complex edit-
distance computations arising in a number of applications in text and speech
processing, and with kernel computations, crucial to many machine learning
algorithms applied to sequence prediction, show that our algorithm is also sub-
stantially faster than standard composition in practice. We expect 3-way com-
position to further improve efficiency in a variety of other areas and applications
in which weighted composition of transducers is used.4
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