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Foundations of Machine Learning 2023
Courant Institute of Mathematical Sciences
Homework assignment 1

February 7, 2023

Due: February 21, 2023

A Imbalanced data

1. Let S be a training sample of size m. Let the bias of the data be P[+1]. Give an (unbiased) estimate

P of the bias based on the sample. Show that with probability at least 1 -4, [p—P[+1]| < v/ logéﬂ.
How would you use your estimate to design an algorithm? For example, how would you use that to
change the algorithm for learning axis-aligned rectangles?
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number of negative examples. Can you give an estimate of this quantity and show that it is close to it
with high probability? [hint: it might be useful to use E[1/(1+ Binomial(m,p))] < 1/((m+1)p), which
you would have to prove first.]

2. Suppose we define the bias as Es[ ], where m, is the number of positive examples and m_ is the
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Therefore, with probability at least 1 -4, [p—P[+1]| </ logz(ﬂ.

Use the estimate to design an algorithm for learning axis-aligned rectangles: if the estimated value 7 is
greater than %, the algorithm may return the largest axis-aligned rectangle that does not contain the

points labeled with —1, in order to minimize the number of false negatives. Conversely, if the estimated
value 7 is less than or equal to %, the algorithm may return the tightest axis-aligned rectangle that
contains the points labeled with +1, in order to minimize the number of false positives.

1. Let Sy, = X7t Xi. An unbiased estimate is p= By Hoeffding’s inequality,

2. To simplify, let us assume that v = m. The same proof can be applied to other values of v > 0 as well. Let

flxy,.. zm) = sz_kzz% for any points z1,...,Z,, € X. An unbiased estimate is f(.5) = %
Note that for any ¢ € [m] and any points z1,...,Zm,z; € X,
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By McDiarmid’s inequality,
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Therefore, with probability at least 1 -0, |f(S) -E[f(S)]| </ 21%(2/6).



B PAC learning

1. Show that the concept class of the union of two intervals in R is PAC learnable. Give a rigorous
description of the algorithm and the proof.

2. The proof of the theorem given in class fgr a finite hypothesis set in the consistent case is not sufficiently
explicit. What we want to prove is: P[Rs(hs) =0 = R(hs) < €] >1-6. Prove that that is equivalent
to P[Rs(hs) =0Ahg € H.] <. Explain why we then bound P[3h € H.: Rg(h) =0].

3. Suppose we have a sequence of distributions Dq,...,Ds,.... Let S be a sample of m indepen-
dently drawn points with x; ~ D;. We are in a deterministic setting where y; = f(z;) for some
function f. Let 3 be a finite hypothesis set and let ¢ be a loss function taking values in [0,1],
(h(x;),y;) € [0,1]. The loss function ¢ is definite, that is ¢(y,y’) = 0 iff y = y’. Show that:
P[Elh € %:Ei~Unif{1,...,m},z~Di [E(h(fﬂ),y)] > €N Ewa[g(h(l‘)’y)] = 0] < ‘:}qe_"w'

Solution:

1. Consider the concept class formed by unions of two closed intervals [a, b] U[c, d]. We can define a simple
PAC-learning algorithm as follows. For a training sample S, the algorithm returns the hypothesis hg:

e if there are two separate sequences of positively labeled points in the training data (separated
by negative points), then return the union of two intervals [a,b]U [c,d] with [a,b] c [a,b] and

[c,d] c [¢,d], where [a,b] is the smallest interval containing the first sequence of positive points,

and [¢,d] is the smallest interval containing the second sequence of positive points.

e Otherwise, return the smallest interval [a,d] containing all the positive points, which can be
written as the union of two closed intervals.

Let [a,b] U[¢,d] be the target concept. Let € > 0. We can assume that P[[a,b]] > ¢/3 and P[[¢,d]] > €/3.
Other cases are either trivial or simple to analyze as for what follows. As in the proof for axis-aligned
rectangles, consider four regions 71, 72, r3 and r4 defined as follows. r; is an interval of the form [a, b],
b < b such that P[[a,g]] > ¢/6. Similarly, ro, 73 and r4 are regions bordering the endpoints of the two
intervals, each with probability /6.

Now, by the algorithm’s definition and a geometric argument similar to the case of axis-aligned rect-
angles, if R(hg) > ¢, then either the union of intervals predicted misses at least one of the regions r;,
i€ [1,4], or P[(b,¢)] > ¢/3 and no training point falls in (b,¢) (second case of the hypothesis returned
by the algorithm). Thus, using the union bound and considering the probability of each point falling
outside the (b,c¢) when P[(b,c)] > €/3 is at most (1 - €/3), we have:
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Setting 6 > 0 to match the upper bound yields that for m > glog g, with probability at least 1 -,
R(hg) <e.
2. We can demonstrate the equivalence as follows:
P[Rs(hs) =0= R(hs) <e]>1-0 > P[Rs(hs) #0v R(hs)<e]>1-6
<~ P[Rs(hs) =0AR(hg)>e] <4
= P[Rg(hs) =0Ahg e H.] <.



However, since we do not know which consistent hypothesis hg € H, the algorithm will select, and this
choice depends on the training sample S, we need to provide a uniform convergence bound. In other
words, we require a bound that holds for the set of all consistent hypotheses in H.. Therefore, we will
bound P[3h € H.: Rg(h) = 0], which provides an upper bound of P[Rs(hs) = 0 A hg € H].

3. For any € > 0, define H, by H, = {h € H: E; unit(1,...m}anm; [L(R(2),y)] > €}. Since € € [0,1] is definite,
for any 4, we have E .p,[£(h(x),y)] < IE%rD,i[ h(x)¢y] =P,.p,[h(z) # y]. Thus, by the union bound,
the following holds:
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where for the last step we used the general inequality 1 —x < e™® valid for all x € R.

C Bayes classifier

In this problem, we consider the multi-class classification setting where Y = {1,...,k}. Given a hypothesis
set H of functions mapping from X x Y - R, we define the margin as pp(z,y) = h(z,y) — max, ., h(z,y").
Given a distribution D over X x Y, the Bayes error for a loss function £(h,x,y) is defined as the infimum of
the errors achieved by measurable functions h: X x Y - R:

RZ h:DCx‘d—ﬁRHrlrfeasurable RZ (h) ’
where Ry(h) = Ez)~o[£(h,2,y)]. A hypothesis h* with R,(h*) = R} is called a Bayes classifier. Denote by

p(x,y) =D(Y =y | X =x) the conditional probability of Y =y given X =z.

1. For a labeled example (,y), the multi-class zero-one loss is defined by £o_1(h,7,y) = 1,, (z,y)<0- Derive
the Bayes classifier and Bayes error for fp_;.

2. For alabeled example (z,y), the multinomial logistic loss is defined by liog (h, z,y) = — log(zehi).

h(w,y’
yley € (z,y")

Derive the Bayes classifier and Bayes error for fio.



Solution:
1. By definition, for any hypothesis h,
Ry, ,(h) = Exlz p(z, y)lph(z’y)sol > Ex[l - max p(z, y)]
yey yey
where the equality holds if and only if h satisfies

Ve eX, argmaxh(x,y)cargmaxp(z,y), maxpy(z,y)>0. (1)
yey yey yey

Therefore, the Bayes classifier for £y_; is defined by (1) and the Bayes error is Ex[1 - maxyey p(z,y)].

2. Let s(zx,y) = 5 ehey)

ey eh(z,y’) "

Using the fact that ¥,y s(x,y) = 1 and the method of Lagrange multipliers,
we have that for any hypothesis h,

Ry, (h) =Ex|- 3 p(z,y)log(s(z, y))] > Exl— > p(z,y)log(p(z,y)) |-
yeY yeY
where the equality holds if and only if h satisfies
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V(z,y)e X xY, 3(%9):W:P(%y)- (2)
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Therefore, the Bayes classifier is defined by (2) and the Bayes error is Ex [— Yyey p(T,y) log(p(x,y))].



