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A Imbalanced data

1. Let S be a training sample of size m. Let the bias of the data be P[+1]. Give an (unbiased) estimate

p̂ of the bias based on the sample. Show that with probability at least 1 − δ, ∣p̂ − P[+1]∣ ≤
√

log(2/δ)
2m

.
How would you use your estimate to design an algorithm? For example, how would you use that to
change the algorithm for learning axis-aligned rectangles?

2. Suppose we define the bias as ES[
m+

m−+γ
], where m+ is the number of positive examples and m− is the

number of negative examples. Can you give an estimate of this quantity and show that it is close to it
with high probability? [hint: it might be useful to use E[1/(1+Binomial(m,p))] ≤ 1/((m+1)p), which
you would have to prove first.]

Solution:

1. Let Sm = ∑
m
k=1Xk. An unbiased estimate is p̂ = Sm

m
. By Hoeffding’s inequality,

P
⎡
⎢
⎢
⎢
⎢
⎣

∣p̂ − P[+1]∣ >
√

log(2/δ)

2m

⎤
⎥
⎥
⎥
⎥
⎦

= P
⎡
⎢
⎢
⎢
⎢
⎣

∣Sm −E[Sm]∣ >

√
m log(2/δ)

2

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2 exp
⎛

⎝
−
2m log(2/δ)

2

m

⎞

⎠
= δ.

Therefore, with probability at least 1 − δ, ∣p̂ − P[+1]∣ ≤
√

log(2/δ)
2m

.

Use the estimate to design an algorithm for learning axis-aligned rectangles: if the estimated value p̂ is
greater than 1

2
, the algorithm may return the largest axis-aligned rectangle that does not contain the

points labeled with −1, in order to minimize the number of false negatives. Conversely, if the estimated
value p̂ is less than or equal to 1

2
, the algorithm may return the tightest axis-aligned rectangle that

contains the points labeled with +1, in order to minimize the number of false positives.

2. To simplify, let us assume that γ =m. The same proof can be applied to other values of γ > 0 as well. Let

f(x1, . . . , xm) =
∑

m
k=1 xk

2m−∑m
k=1 xk

for any points x1, . . . , xm ∈ X. An unbiased estimate is f(S) = ∑
m
k=1 Xk

2m−∑m
k=1 Xk

.

Note that for any i ∈ [m] and any points x1, . . . , xm, x′i ∈ X,

∣f(x1, . . . , xi, . . . , xm) − f(x1, . . . , x
′
i, . . . , xm)∣

= ∣
∑

m
k=1 xk

2m −∑
m
k=1 xk

−
∑

m
k=1 xk + x

′
i − xi

2m −∑
m
k=1 xk + xi − x′i

∣

= ∣
(∑

m
k=1 xk)(2m −∑

m
k=1 xk + xi − x

′
i) − (2m −∑

m
k=1 xk)(∑

m
k=1 xk + x

′
i − xi)

(2m −∑
m
k=1 xk)(2m −∑

m
k=1 xk + xi − x′i)

∣

= ∣
2m(xi − x

′
i)

(2m −∑
m
k=1 xk)(2m −∑

m
k=1 xk + xi − x′i)

∣

≤
2

m
.

By McDiarmid’s inequality,

P
⎡
⎢
⎢
⎢
⎢
⎣

∣f(S) −E[f(S)]∣ >
√

2 log(2/δ)

m

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2 exp
⎛

⎝
−

4 log(2/δ)
m
4
m

⎞

⎠
= δ.

Therefore, with probability at least 1 − δ, ∣f(S) −E[f(S)]∣ ≤
√

2 log(2/δ)
m

.
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B PAC learning

1. Show that the concept class of the union of two intervals in R is PAC learnable. Give a rigorous
description of the algorithm and the proof.

2. The proof of the theorem given in class for a finite hypothesis set in the consistent case is not sufficiently
explicit. What we want to prove is: P[R̂S(hS) = 0⇒ R(hS) ≤ ϵ] ≥ 1 − δ. Prove that that is equivalent
to P[R̂S(hS) = 0 ∧ hS ∈Hϵ] ≤ δ. Explain why we then bound P[∃h ∈Hϵ∶ R̂S(h) = 0].

3. Suppose we have a sequence of distributions D1, . . . ,Dt, . . .. Let S be a sample of m indepen-
dently drawn points with xi ∼ Di. We are in a deterministic setting where yi = f(xi) for some
function f . Let H be a finite hypothesis set and let ℓ be a loss function taking values in [0,1],
ℓ(h(xi), yi) ∈ [0,1]. The loss function ℓ is definite, that is ℓ(y, y′) = 0 iff y = y′. Show that:
P[∃h ∈H∶Ei∼Unif{1,...,m},x∼Di

[ℓ(h(x), y)] > ϵ ∧Ex∼S[ℓ(h(x), y)] = 0] ≤ ∣H∣e
−mϵ.

Solution:

1. Consider the concept class formed by unions of two closed intervals [a, b]⋃[c, d]. We can define a simple
PAC-learning algorithm as follows. For a training sample S, the algorithm returns the hypothesis hS :

• if there are two separate sequences of positively labeled points in the training data (separated

by negative points), then return the union of two intervals [a, b]⋃ [c, d] with [a, b] ⊂ [a, b] and

[c, d] ⊂ [c, d], where [a, b] is the smallest interval containing the first sequence of positive points,

and [c, d] is the smallest interval containing the second sequence of positive points.

• Otherwise, return the smallest interval [a, d] containing all the positive points, which can be
written as the union of two closed intervals.

Let [a, b]⋃[c, d] be the target concept. Let ϵ > 0. We can assume that P[[a, b]] > ϵ/3 and P[[c, d]] > ϵ/3.
Other cases are either trivial or simple to analyze as for what follows. As in the proof for axis-aligned
rectangles, consider four regions r1, r2, r3 and r4 defined as follows. r1 is an interval of the form [a, b],
b ≤ b such that P[[a, b]] > ϵ/6. Similarly, r2, r3 and r4 are regions bordering the endpoints of the two
intervals, each with probability ϵ/6.

Now, by the algorithm’s definition and a geometric argument similar to the case of axis-aligned rect-
angles, if R(hS) > ϵ, then either the union of intervals predicted misses at least one of the regions ri,
i ∈ [1,4], or P[(b, c)] > ϵ/3 and no training point falls in (b, c) (second case of the hypothesis returned
by the algorithm). Thus, using the union bound and considering the probability of each point falling
outside the (b, c) when P[(b, c)] > ϵ/3 is at most (1 − ϵ/3), we have:

P
S∼Dm

[R(hS) > ϵ] ≤ P
S∼Dm

[
4

⋃
i=1

{hS⋂ ri = ∅}] + (1 − ϵ/3)
m

≤
4

∑
i=1

P
S∼Dm

[{hS⋂ ri = ∅}] + (1 − ϵ/3)
m

≤ 4(1 − ϵ/6)m + (1 − ϵ/3)m

≤ 4e−mϵ/6
+ e−mϵ/3

≤ 5e−mϵ/6.

Setting δ > 0 to match the upper bound yields that for m ≥ 6
ϵ
log 5

δ
, with probability at least 1 − δ,

R(hS) ≤ ϵ.

2. We can demonstrate the equivalence as follows:

P[R̂S(hS) = 0⇒ R(hS) ≤ ϵ] ≥ 1 − δ ⇐⇒ P[R̂S(hS) ≠ 0 ∨R(hS) ≤ ϵ] ≥ 1 − δ

⇐⇒ P[R̂S(hS) = 0 ∧R(hS) > ϵ] ≤ δ

⇐⇒ P[R̂S(hS) = 0 ∧ hS ∈Hϵ] ≤ δ.
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However, since we do not know which consistent hypothesis hS ∈Hϵ the algorithm will select, and this
choice depends on the training sample S, we need to provide a uniform convergence bound. In other
words, we require a bound that holds for the set of all consistent hypotheses in Hϵ. Therefore, we will
bound P[∃h ∈Hϵ∶ R̂S(h) = 0], which provides an upper bound of P[R̂S(hS) = 0 ∧ hS ∈Hϵ].

3. For any ϵ > 0, define Hϵ by Hϵ = {h ∈H ∶ Ei∼Unif{1,...,m},x∼Di
[ℓ(h(x), y)] > ϵ}. Since ℓ ∈ [0,1] is definite,

for any i, we have Ex∼Di[ℓ(h(x), y)] ≤ Ex∼Di
[1h(x)≠y] = Px∼Di[h(x) ≠ y]. Thus, by the union bound,

the following holds:

P[∃h ∈H∶ E
i∼Unif{1,...,m},x∼Di

[ℓ(h(x), y)] > ϵ ∧ E
x∼S
[ℓ(h(x), y)] = 0]

= P[ ⋃
h∈Hϵ

{ E
x∼S
[ℓ(h(x), y)] = 0}]

≤ ∑
h∈Hϵ

P[ E
x∼S
[ℓ(h(x), y)] = 0] (union bound)

= ∑
h∈Hϵ

m

∏
i=1

P
xi∼Di

[h(xi) = yi] (ℓ is definite)

= ∑
h∈Hϵ

m

∏
i=1

(1 − P
xi∼Di

[h(xi) ≠ yi])

≤ ∑
h∈Hϵ

(1 −
∑

m
i=1 Pxi∼Di[h(xi) ≠ yi]

m
)

m

(AM–GM inequality)

≤ ∑
h∈Hϵ

(1 −
∑

m
i=1Exi∼Di[ℓ(h(xi), yi)]

m
)

m

(Ex∼Di[ℓ(h(x), y)] ≤ Px∼Di[h(x) ≠ y])

= ∑
h∈Hϵ

(1 − E
i∼Unif{1,...,m},x∼Di

[ℓ(h(x), y)])

m

≤ ∣H∣(1 − ϵ)m

≤ ∣H∣e−mϵ,

where for the last step we used the general inequality 1 − x ≤ e−x valid for all x ∈ R.

C Bayes classifier

In this problem, we consider the multi-class classification setting where Y = {1, . . . , k}. Given a hypothesis
set H of functions mapping from X × Y → R, we define the margin as ρh(x, y) = h(x, y) −maxy′≠y h(x, y

′).
Given a distribution D over X × Y, the Bayes error for a loss function ℓ(h,x, y) is defined as the infimum of
the errors achieved by measurable functions h∶X × Y→ R:

R∗ℓ = inf
h∶X×Y→R measurable

Rℓ(h),

where Rℓ(h) = E(x,y)∼D[ℓ(h,x, y)]. A hypothesis h∗ with Rℓ(h
∗) = R∗ℓ is called a Bayes classifier. Denote by

p(x, y) =D(Y = y ∣X = x) the conditional probability of Y = y given X = x.

1. For a labeled example (x, y), the multi-class zero-one loss is defined by ℓ0−1(h,x, y) = 1ρh(x,y)≤0. Derive
the Bayes classifier and Bayes error for ℓ0−1.

2. For a labeled example (x, y), the multinomial logistic loss is defined by ℓlog(h,x, y) = − log(
eh(x,y)

∑y′∈Y eh(x,y′) ).

Derive the Bayes classifier and Bayes error for ℓlog.
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Solution:

1. By definition, for any hypothesis h,

Rℓ0−1(h) = EX

⎡
⎢
⎢
⎢
⎢
⎣

∑
y∈Y

p(x, y)1ρh(x,y)≤0

⎤
⎥
⎥
⎥
⎥
⎦

≥ EX[1 −max
y∈Y

p(x, y)]

where the equality holds if and only if h satisfies

∀x ∈ X, argmax
y∈Y

h(x, y) ⊂ argmax
y∈Y

p(x, y), max
y∈Y

ρh(x, y) > 0. (1)

Therefore, the Bayes classifier for ℓ0−1 is defined by (1) and the Bayes error is EX[1 −maxy∈Y p(x, y)].

2. Let s(x, y) = eh(x,y)

∑y′∈Y eh(x,y′) . Using the fact that ∑y∈Y s(x, y) = 1 and the method of Lagrange multipliers,

we have that for any hypothesis h,

Rℓlog(h) = EX

⎡
⎢
⎢
⎢
⎢
⎣

−∑
y∈Y

p(x, y) log(s(x, y))

⎤
⎥
⎥
⎥
⎥
⎦

≥ EX

⎡
⎢
⎢
⎢
⎢
⎣

−∑
y∈Y

p(x, y) log(p(x, y))

⎤
⎥
⎥
⎥
⎥
⎦

.

where the equality holds if and only if h satisfies

∀(x, y) ∈ X × Y, s(x, y) =
eh(x,y)

∑y′∈Y e
h(x,y′) = p(x, y). (2)

Therefore, the Bayes classifier is defined by (2) and the Bayes error is EX[−∑y∈Y p(x, y) log(p(x, y))].
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