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A Imbalanced data

1. Let S be a training sample of size m. Let the bias of the data be P[+1]. Give an (unbiased) estimate

p̂ of the bias based on the sample. Show that with probability at least 1 − δ, ∣p̂ − P[+1]∣ ≤
√

log(2/δ)
2m

.
How would you use your estimate to design an algorithm? For example, how would you use that to
change the algorithm for learning axis-aligned rectangles?

2. Suppose we define the bias as ES[m+/m−], where m+ is the number of positive examples and m− is
the number of negative examples. Can you give an estimate of this quantity and show that it is close
to it with high probability? [hint: it might be useful to use E[1/(1 +Binomial(m,p))] ≤ 1/((m + 1)p),
which you would have to prove first.]

B PAC learning

1. Show that the concept class of the union of two intervals in R is PAC learnable. Give a rigorous
description of the algorithm and the proof.

2. The proof of the theorem given in class for a finite hypothesis set in the consistent case is not sufficiently
explicit. What we want to prove is: P[R̂S(hS) = 0⇒ R(hS) ≤ ϵ] ≥ 1 − δ. Prove that that is equivalent
to P[R̂S(hS) = 0 ∧ hS ∈Hϵ] ≤ δ. Explain why we then bound P[∃h ∈Hϵ∶ R̂S(h) = 0].

3. Suppose we have a sequence of distributions D1, . . . ,Dt, . . .. Let S be a sample of m indepen-
dently drawn points with xi ∼ Di. We are in a deterministic setting where yi = f(xi) for some
function f . Let H be a finite hypothesis set and let ℓ be a loss function taking values in [0,1],
ℓ(h(xi), yi) ∈ [0,1]. The loss function ℓ is definite, that is ℓ(y, y′) = 0 iff y = y′. Show that:
P[∃h ∈H∶Ei∼Unif{1,...,m},x∼Di

[ℓ(h(x), y)] > ϵ ∧Ex∼S[ℓ(h(x), y)] = 0] ≤ ∣H∣e
−mϵ.

C Bayes classifier

In this problem, we consider the multi-class classification setting where Y = {1, . . . , k}. Given a hypothesis
set H of functions mapping from X × Y → R, we define the margin as ρh(x, y) = h(x, y) −maxy′≠y h(x, y

′).
Given a distribution D over X × Y, the Bayes error for a loss function ℓ(h,x, y) is defined as the infimum of
the errors achieved by measurable functions h∶X × Y→ R:

R∗ℓ = inf
h∶X×Y→R measurable

Rℓ(h),

where Rℓ(h) = E(x,y)∼D[ℓ(h,x, y)]. A hypothesis h∗ with Rℓ(h
∗) = R∗ℓ is called a Bayes classifier. Denote by

p(x, y) =D(Y = y ∣X = x) the conditional probability of Y = y given X = x.

1. For a labeled example (x, y), the multi-class zero-one loss is defined by ℓ0−1(h,x, y) = 1ρh(x,y)≤0. Derive
the Bayes classifier and Bayes error for ℓ0−1.

2. For a labeled example (x, y), the multinomial logistic loss is defined by ℓlog(h,x, y) = − log(
h(x,y)

∑y′∈Y h(x,y′)).

Derive the Bayes classifier and Bayes error for ℓlog.

1


