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Imbalanced data

Let S be a training sample of size m. Let the bias of the data be P[+1]. Give an (unbiased) estimate

p of the bias based on the sample. Show that with probability at least 1 -0, [p—P[+1]| </ %.
How would you use your estimate to design an algorithm? For example, how would you use that to
change the algorithm for learning axis-aligned rectangles?

Suppose we define the bias as Eg[m./m_], where m, is the number of positive examples and m_ is
the number of negative examples. Can you give an estimate of this quantity and show that it is close
to it with high probability? [hint: it might be useful to use E[1/(1 + Binomial(m,p))] < 1/((m + 1)p),
which you would have to prove first.]

PAC learning

. Show that the concept class of the union of two intervals in R is PAC learnable. Give a rigorous

description of the algorithm and the proof.

. The proof of the theorem given in class for a finite hypothesis set in the consistent case is not sufficiently

explicit. What we want to prove is: P[Rs(hs) =0 = R(hg) <€]>1-9. Prove that that is equivalent
to P[Rs(hs) =0Ahg € H.] <. Explain why we then bound P[3h € H.: Rg(h) = 0].

. Suppose we have a sequence of distributions Dq,...,Ds,.... Let S be a sample of m indepen-

dently drawn points with x; ~ D;. We are in a deterministic setting where y; = f(z;) for some
function f. Let 3 be a finite hypothesis set and let ¢ be a loss function taking values in [0,1],
(h(x;),y;) € [0,1]. The loss function ¢ is definite, that is ¢(y,y’) = 0 iff y = y’. Show that:
P[Elh € J{:Ei~Unif{1,...,m},z~Di [E(h(fﬂ),y)] > €N EwNS[E(h(I)’y)] = 0] < ‘:}qe—me'

Bayes classifier

In this problem, we consider the multi-class classification setting where Y = {1,...,k}. Given a hypothesis
set J of functions mapping from X x Y - R, we define the margin as pp(z,y) = h(z,y) - maxy ., h(z,y").
Given a distribution D over X x Y, the Bayes error for a loss function ¢(h,x,y) is defined as the infimum of
the errors achieved by measurable functions h: X x Y - R:

R; = inf Ry(h
¢ h:XxY—R measurable K( )’

where Ry(h) = E( )~ [£(h,2z,y)]. A hypothesis h* with Ry(h*) = R} is called a Bayes classifier. Denote by
p(x,y) =D(Y =y | X = z) the conditional probability of Y =y given X = z.

1. For a labeled example (z,y), the multi-class zero-one loss is defined by £o_1(h,z,y) = 1,, (3,4)<0- Derive

2. For a labeled example (z,y), the multinomial logistic loss is defined by liog(h, 2, y) = - log( >

the Bayes classifier and Bayes error for £g_;.

h(z,y) )
ey (') )
Derive the Bayes classifier and Bayes error for f14.



