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A Boosting

1. Let H and R be two hypothesis sets of functions mapping X to the reals and let ℓ be a loss function
define as

ℓ(yh(x), r(x)) =
⎧⎪⎪⎨⎪⎪⎩

1yh(x)≤0, r(x) > 0,
c, r(x) ≤ 0,

where c is a positive constant less than 1/2. For simplicity, define b = 2
√

1−c
c
.

(a) Let Ψ1 and Ψ2 be two loss functions defined as

Ψ1(yh(x), r(x)) =max{er(x)−yh(x), ce−br(x)},

and
Ψ2(yh(x), r(x)) = er(x)−yh(x) + ce−br(x).

Show that Ψ1 is convex in (yh(x), r(x)) and it upper-bounds ℓ. Show that Ψ2 is convex in
(yh(x), r(x)) and it upper-bounds Ψ1.

(b) Suppose that H = {h1, h2,⋯, hN} and R = {r1, r2,⋯, rN} for some N > 1. We denote by F the
convex hull of the set of base function pairs {(h1, r1), (h2, r2),⋯, (hN , rN)}. Let Ψ1,F be the
family of functions defined by Ψ1,F = {(x, y)↦min{Ψ1(yh(x), r(x)),1}, (h, r) ∈ F}. Show that
the Rademacher complexity of Ψ1,F admits the following upper bound:

Rm(Ψ1,F) ≤Rm(H) + (b + 1)Rm(R).

(Hint : use Talagrand’s lemma.)

(c) Show that for any δ > 0, with probability at least 1 − δ, the following holds for all (h, r) ∈ F:

R(h, r) ∶= E(x,y)∼D[ℓ(yh(x), r(x))] ≤
1

m

m

∑
i=1

Ψ1(yih(xi), r(xi))+2Rm(H)+2(b+1)Rm(R)+
√

log 1
δ

2m
.

(d) Fix ρ > 0. Show that for any δ > 0, with probability at least 1 − δ, the following holds for all
(h, r) ∈ F:

R(h, r) ≤ 1

m

m

∑
i=1

Ψ1(yih(xi)/ρ, r(xi)/ρ) +
2

ρ
Rm(H) +

2(b + 1)
ρ

Rm(R) +
√

log 1
δ

2m
.

Conclude that for any δ > 0, with probability at least 1 − δ, the following holds for all (h, r) ∈ F:

R(h, r) ≤ 1

m

m

∑
i=1

Ψ2(yih(xi)/ρ, r(xi)/ρ) +
2

ρ
Rm(H) +

2(b + 1)
ρ

Rm(R) +
√

log 1
δ

2m
.

(e) Define the objective F (α) for a boosting-type algorithm as

F (α) = 1

m

m

∑
i=1

er(xi)−yih(xi) + ce−br(xi) + β
N

∑
j=1

αj ,

where h = ∑N
j=1 αjhj , r = ∑N

j=1 αjrj , and β is a non-negative constant. Show that it is a convex
function of α. Briefly explain why part (d) suggests that we solve the optimization problem
minα≥0 F (α).
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(f) Determine the best direction at iteration t if you apply coordinate descent to F . You should
adopt a notation similar to the one used in class and define a distribution Dt for any t ∈ [T ] over
the pairs (i, n) with i ∈ [m] and n ∈ {1,2}. Denote by Zt the corresponding normalization factor.
Distributions D1,t and D2,t are defined by Dt(i,1)/Z1,t and Dt(i,2)/Z2,t respectively, where Z1,t

and Z2,t are the normalization factors. For any t ∈ [T ] and j ∈ [N], define

ϵt,j =
1

2
[1 −Ei∼D1,t[yihj(xi)]], r̄j,1 = Ei∼D1,t[rj(xi)], r̄j,2 = Ei∼D2,t[rj(xi)].

Determine the best direction in terms of Z1,t, Z2,t, ϵt,j , r̄j,1, r̄j,2, and c.

(g) Give the pseudocode of the algorithm. The best step η along a given direction that preserves the
non-negativity of α can be found by line search. You do not need to explicitly write down how
to do line search in the pseudocode.

Solution:

(a) We have

ℓ(yh(x), r(x)) =max{1yh(x)≤01−r(x)<0, c1r(x)≤0}
≤max{1max{yh(x),−r(x)}≤0, c1r(x)≤0}

≤max{1 yh(x)−r(x)
2 ≤0

, c1r(x)≤0}

=max{1yh(x)−r(x)≤0, c1br(x)≤0}
≤ Ψ1(yh(x), r(x))
≤ Ψ2(yh(x), r(x)).

The convexity is straightforward since er(x)−yh(x) and e−br(x) are both convex in (yh(x), r(x)).

(b) Observe that

min{Ψ1(yh(x), r(x)),1} =min{max{er(x)−yh(x), ce−br(x)},1}
≤min{er(x)−yh(x),1} +min{ce−br(x),1}.

Note that the function u↦min{eu,1} is 1-Lipschitz and the function u↦min{cebu,1} is b-Lipschitz.
Then, by Talagrand’s lemma,

Rm(Ψ1,F) ≤Rm((x, y)↦ r(x) − yh(x) ∶ (h, r) ∈ F) + bRm((x, y)↦ −r(x) ∶ (h, r) ∈ F).

The first term in the right-hand side satisfies

Rm((x, y)↦ r(x) − yh(x) ∶ (h, r) ∈ F) = ESEσ

⎡⎢⎢⎢⎣
sup
(h,r)∈F

1

m

m

∑
i=1

σi(r(xi) − yih(xi))
⎤⎥⎥⎥⎦

≤ ESEσ

⎡⎢⎢⎢⎣
sup
(h,r)∈F

1

m

m

∑
i=1

σir(xi)
⎤⎥⎥⎥⎦
+ESEσ

⎡⎢⎢⎢⎣
sup
(h,r)∈F

1

m

m

∑
i=1

−σiyih(xi)
⎤⎥⎥⎥⎦

= ESEσ

⎡⎢⎢⎢⎣
sup
(h,r)∈F

1

m

m

∑
i=1

σir(xi)
⎤⎥⎥⎥⎦
+ESEσ

⎡⎢⎢⎢⎣
sup
(h,r)∈F

1

m

m

∑
i=1

σih(xi)
⎤⎥⎥⎥⎦

=Rm(conv(R)) +Rm(conv(H))
=Rm(R) +Rm(H).

Similarly,

Rm((x, y)↦ −r(x) ∶ (h, r) ∈ F) =Rm(R).

Combining the above completes the proof.
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(c) By Rademacher complexity bound and part (b), with probability at least 1− δ, the following holds for
all (h, r) ∈ F:

R(h, r) ≤ E(x,y)∼D[min{Ψ1(yh(x), r(x)),1}]

≤ 1

m

m

∑
i=1

min{Ψ1(yih(xi), r(xi)),1} + 2Rm(Ψ1,F) +
√

log 1
δ

2m

≤ 1

m

m

∑
i=1

min{Ψ1(yih(xi), r(xi)),1} + 2Rm(H) + 2(b + 1)Rm(R) +
√

log 1
δ

2m

≤ 1

m

m

∑
i=1

Ψ1(yih(xi), r(xi)) + 2Rm(H) + 2(b + 1)Rm(R) +
√

log 1
δ

2m
.

(d) Suppose that H̃ = {h1/ρ, h2/ρ,⋯, hN /ρ} and R̃ = {r1/ρ, r2/ρ,⋯, rN /ρ}. We denote by F̃ the convex hull
of the set {(h1/ρ, r1/ρ), (h2/ρ, r2/ρ),⋯, (hN /ρ, rN /ρ)}. Note that (h, r) ∈ F is equivalent to (h/ρ, r/ρ) ∈
F̃

By part (c), for any δ > 0, with probability at least 1 − δ, the following holds for all (h, r) ∈ F:

R(h, r) = R(h/ρ, r/ρ)

≤ 1

m

m

∑
i=1

Ψ1(yih(xi)/ρ, r(xi)/ρ) + 2Rm(H̃) + 2(b + 1)Rm(R̃) +
√

log 1
δ

2m

= 1

m

m

∑
i=1

Ψ1(yih(xi)/ρ, r(xi)/ρ) + 2Rm(H)/ρ + 2(b + 1)Rm(R)/ρ +
√

log 1
δ

2m
.

The conclusion holds since Ψ2 upper-bounds Ψ1.

(e) Observe that

F (α) = 1

m

m

∑
i=1

er(xi)−yih(xi) + ce−br(xi) + β
N

∑
j=1

αj

= 1

m

m

∑
i=1

Ψ2(yih(xi), r(xi)) + β
N

∑
j=1

αj .

This is a convex function of α since Ψ2 is convex and composition with an affine function of α preserves
convexity.

Part (d) suggests to select α as the solution of minα∈∆
1
m ∑

m
i=1Ψ2(yih(xi)/ρ, r(xi)/ρ). Via a change

of variable α ← α/ρ that does not affect the optimization problem, we can equivalently search for
minα≥0

1
m ∑

m
i=1Ψ2(yih(xi), r(xi)) such that ∑N

j=1 αj ≤ 1/ρ. Introducing the Lagrange variable β asso-

ciated to the constraint ∑N
j=1 αj ≤ 1/ρ, the problem can be rewritten as minα≥0 F (α).

(f) Define Dt by Dt(i,1) = ert−1(xi)−yiht−1(xi)

Zt
and Dt(i,2) = e−brt−1(xi)

Zt
. Then, we have

F ′(αt−1,ej)

= 1

m

m

∑
i=1

([rj(xi) − yihj(xi)]ert−1(xi)−yiht−1(xi) − cbrj(xi)e−brt−1(xi)) + β

= Zt

m

m

∑
i=1

([rj(xi) − yihj(xi)]Dt(i,1) − cbrj(xi)Dt(i,2)) + β

= Zt

m
(2Z1,tϵt,j −Z1,t +Z1,tr̄j,1 − cbZ2,tr̄j,2) + β.

Hence, the best direction is

k = argmin
j∈[N]

2Z1,tϵt,j +Z1,tr̄j,1 − cbZ2,tr̄j,2.
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(g) This is straightforward based on the previous results.
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