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A VC dimension

1. We denote by Bn the set of all closed balls in Rn. That is, Bn is the class of all subsets of the form

{x ∈ Rn ∶ ∥x − x0∥2 ≤ r2} for some x0 ∈ Rn and r ≥ 0.

(a) Show that there exists a set of n + 1 points in Rn that can be shattered by Bn. Conclude that
VCdim(Bn) ≥ n + 1.

(b) Show that the VC dimension of Bn is at most equal to the VC dimension of hyperplanes in Rn+1.
Conclude that VCdim(Bn) ≤ n + 2.

(c) Show that VCdim(B2) = 3.

Solution:

(a) Let x0 be the origin and define xi, for i ∈ {1, . . . , n}, as the point whose ith coordinate is 1 and all
others are 0. Let y0, y1, . . . , yn ∈ {−1,+1} be an arbitrary set of labels for x0, x1 . . . , xn. Let x∗ be the

vector whose ith coordinate is yi and r =
√

n + y0−1
2

. Then the classifier defined by the closed ball of

form ∥x − x∗∥2 ≤ r2 shatters x0, . . . , xn. Indeed, for i = 0,

sgn(r2 − ∥x0 − x∗∥2) = sign(n +
y0 − 1
2
− n) = sgn(y0 − 1

2
) = y0;

for i ∈ {1, . . . , n},

sgn(r2 − ∥xi − x∗∥2) = sgn(n +
y0 − 1
2
− (n − 1 + (1 − yi)2)) = sgn(

y0 + 1
2
− (1 − yi)2) = yi,

which proves the claim. By definition, the VC dimension of Bn is lower bounded by n + 1.

(b) For any x, x0 ∈ Rn and r ≥ 0, we have

∥x − x0∥2 − r2 ≤ 0 ⇐⇒ w ⋅Φ(x) + b ≤ 0

where w = [ 1
−2x0

] ∈ Rn+1, Φ(x) = [∥x∥
2

x
] ∈ Rn+1 and b = ∥x0∥2 − r2. Therefore, for any m such that

there exist x1, . . . , xm shattered by Bn, Φ(x1), . . . ,Φ(xm) are shattered by hyperplanes in Rn+1. By
definition, the VC dimension of Bn is at most equal to the VC dimension of hyperplanes in Rn+1, that
is n + 2.

(c) By (a), we have VCdim(B2) ≥ 3. To obtain the upper bound VCdim(B2) ≤ 3, it suffices to show that
no set of 4 points can be shattered by B2. By Radon’s theorem, any set of 4 points X in R2 can be
partitioned into two sets X1 and X2 such that their convex hulls intersect. Observe that when two
sets of points X1 and X2 are separated by a closed ball in B2, their convex hulls are also separated by
that closed ball. Thus, X1 and X2 cannot be separated by a closed ball in B2 and X is not shattered.
Therefore, VCdim(B2) = 3.
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B Maximum Margin Multiple Kernel

1. Let X denote the input space and Y = {1, . . . , c} a set of c ≥ 2 classes. Let S = ((x1, y1), . . . , (xm, ym)) ∈
(X × Y)m be a sample of size m. Assume that p ≥ 1 positive semi-definite (PSD) base kernels over
X ×X are given. Consider a hypothesise set based on a kernel Kµ of the form Kµ = ∑p

k=1 µkKk where

µ = (µ1,⋯, µp)⊺ is chosen from ∆q = {µ ∶ µ ≥ 0, ∥µ∥q = 1} with q ≥ 1. The multi-class maximum margin

multiple kernel (M3K) algorithm [CMR13] is based on the following optimization:

min
µ∈M̂q,w,ξ

1

2

c

∑
y=1

p

∑
k=1

∥wy,k∥2

µk
+C

m

∑
i=1

ξi

subject to: ∀i ∈ [1,m], ξi ≥ 0, ∀y ≠ yi,
ξi ≥ 1 − (wyi ⋅Φ(xi) −wy ⋅Φ(xi)),

(1)

where ⋅ is defined as Am×n ⋅ Bm×n = ∑i,j A(i, j)B(i, j) for any two matrices A and B with the

same dimension m × n, M̂q ⊂ ∆q is a data-dependent set, C ≥ 0 is a regularization parameter,

wy = (wy,1, . . . ,wy,p)⊺ is the associated hypothesis for any class y ∈ Y, Φ(x) = (ΦK1(x), . . . ,ΦKp(x))
⊺

and ΦK denotes a feature mapping associated to the kernel K.

(a) Read the Chapter 9.1 - 9.3.1 in the textbook and the paper [CMR13] to understand better the
multi-class maximum margin multiple kernel (M3K) algorithm. Write down the explicit expression
of M̂q and briefly explain each term appearing in that expression.

(b) Show how to derive the dual optimization of M3K (1):

min
µ∈M̂q

max
α∈Rm×c

m

∑
i=1

αi ⋅ eyi −
C

2

m

∑
i,j=1
(αi ⋅αj)

p

∑
k=1

µkKk(xi, xj)

subject to: ∀i ∈ [1,m], αi ≤ eyi ∧αi ⋅ 1 = 0,
(2)

where α ∈ Rm×c is a matrix, αi is its ith row, and el is the lth unit vector in Rc, l ∈ [1, c].
Prove the equivalence of primal (1) and dual (2).

(Note: you should write down every necessary step and rigorously say why the theorems apply.)

Solution:

(a) M̂q = {µ ∶ µ ∈∆q, γ̂Kµ ≥ γ0} where γ̂Kµ = 1
m ∑

m
i=1miny≠yi µ ⋅ η(xi, yi, y) is the empirical multi-class

kernel margin defined in the paper [CMR13] and γ0 is a chosen constant. The additional condition
γ̂Kµ ≥ γ0 in M̂q ensures that µ is selected such that the average empirical kernel margin is at least γ0.

(b) We first derive the dual optimization of (1) without the outer minµ∈M̂q
. Note the constraints in (1)

can be equivalently written as

∀i ∈ [1,m], ∀y ∈ [1, c], ξi ≥ 1 − (wyi ⋅Φ(xi) −wy ⋅Φ(xi)) − δyyi ,

where δyyi =
⎧⎪⎪⎨⎪⎪⎩

1 if y = yi
0 otherwise

. We introduce Lagrange variables α′i = (α′i1, α′i2, . . . α′ic)⊺ ≥ 0 , i ∈ [1,m]

associated to these m × c constraints. Thus the Lagrangian of problem of (1) can then be defined for
all w,ξ,α′, by

L(w,ξ,α′) = 1

2

c

∑
y=1

p

∑
k=1

∥wy,k∥2

µk
+C

m

∑
i=1

ξi −
m

∑
i=1

c

∑
y=1

α′iy[wyi ⋅Φ(xi) −wy ⋅Φ(xi) − 1 + ξi + δyyi] . (3)
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The KKT conditions are obtained by setting the gradient of the Lagrangian with respect to the primal
variables w and ξ to zero and by writing the complementarity conditions:

∀i, ∇ξiL = C −
c

∑
y=1

α′iy = 0⇒
c

∑
y=1

α′iy = C (4)

∀y, k, ∇wy,k
L = wy,k

µk
+

m

∑
i=1

α′iyΦKk
(xi) −

m

∑
i=1

δyyi

c

∑
y′=1

α′iy′ΦKk
(xi) = 0 (5)

⇒wy,k = µk

m

∑
i=1

⎛
⎝
α′iy − δyyi

c

∑
y′=1

α′iy′
⎞
⎠
ΦKk
(xi)⇒wy,k = µk

m

∑
i=1
(α′iy −Cδyyi

)ΦKk
(xi) (6)

∀i, y, α′iy[wyi ⋅Φ(xi) −wy ⋅Φ(xi) − 1 + ξi + δyyi] = 0⇒ α′iy = 0 ∨ (wyi −wy) ⋅Φ(xi) + δyyi = 1 − ξi (7)

To derive the dual optimization of problem of (1) without the outer minµ∈M̂q
, we plug into the La-

grangian the definition of w in terms of the dual variables Eq. (6) and apply the constraints Eq. (4).
This yields

L = −
m

∑
i=1

α′i ⋅ eyi −
1

2

m

∑
i,j=1
(Ceyi −α′i) ⋅ (Ceyj −α′j)

p

∑
k=1

µkKk(xi, xj).

Note here, in addition to α′i ≥ 0, we must impose the constraint ∑c
y=1 α

′
iy = C in Eq. (4). This leads to

the following dual optimization problem of (1) without the outer minµ∈M̂q
:

max
α′∈Rm×c

−
m

∑
i=1

α′i ⋅ eyi −
1

2

m

∑
i,j=1
(Ceyi −α′i) ⋅ (Ceyj −α′j)

p

∑
k=1

µkKk(xi, xj)

subject to: ∀i ∈ [1,m], α′i ≥ 0 ∧α′i ⋅ 1 = C,
(8)

Then by (8), using the change of variable αi = eyi −
α′i
C
, adding back the outer minµ∈M̂q

and omitting
any additive and positive multiplicative constants, we obtain the equivalent dual optimization problem
of (1) as follows:

min
µ∈M̂q

max
α∈Rm×c

m

∑
i=1

αi ⋅ eyi −
C

2

m

∑
i,j=1
(αi ⋅αj)

p

∑
k=1

µkKk(xi, xj)

subject to: ∀i ∈ [1,m], αi ≤ eyi ∧αi ⋅ 1 = 0,
(9)

The equivalence is straightforward by using the facts that the objective function is convex, the con-
strains are affine and thus qualified, the objective and constraint functions are differentiable, and the
KKT conditions hold at the optimum.

C SVMs hand-on

(Note: please share a GitHub link to your open source code in the submission. Any submissions that do not
have the code link will obtain a zero point. The graders will check the main lines to ensure that what was
done was conceptually correct. The grade will be based on both the code and the answer.)

1. Download and install the libsvm software library from:

https://www.csie.ntu.edu.tw/~cjlin/libsvm

and briefly consult the documentation to become more familiar with the tools.

2. Download the Abalone data set:

http://archive.ics.uci.edu/ml/datasets/Abalone
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Use the libsvm scaling tool to scale the features of all the data. Use the first 3133 examples for
training, the last 1044 for testing. The scaling parameters should be computed only on the training
data and then applied to the test data.

3. Consider the binary classification that consists of distinguishing classes 1 through 9 from the rest. Use
SVMs combined with polynomial kernels to tackle this binary classification problem.

To do that, randomly split the training data into five equal-sized disjoint sets. For each value of the
polynomial degree, d = 1,2,3,4,5, plot the average cross-validation error plus or minus one standard
deviation as a function of C (let other parameters of polynomial kernels in libsvm be equal to their
default values), varying C in powers of 3, starting from a small value C = 3−k to C = 3k, for some value
of k. k should be chosen so that you see a significant variation in training error, starting from a very
high training error to a low training error. Expect longer training times with libsvm as the value of
C increases.

4. Let (C∗, d∗) be the best pair found previously. Fix C to be C∗. Plot the five-fold cross-validation error
and the test errors for the hypotheses obtained as a function of d. Plot the average number of support
vectors obtained as a function of d. How many of the support vectors lie on the margin hyperplanes?

5. Fix (C,d) to be (C∗, d∗). Plot the training and test errors as a function of the training sample.

6. Sparse SVM. One can give two types of arguments in favor of the SVM algorithm: one based on
the sparsity of the support vectors, another based on the notion of margin. Suppose that instead of
maximizing the margin, we choose instead to maximize sparsity by minimizing the L1 norm of the
vector α that defines the weight vector w. This gives the following optimization problem for a kernel
function K:

min
α,b,ξ

1

2

m

∑
i=1
∣αi∣ +C

m

∑
i=1

ξi

subject to yi
⎛
⎝

m

∑
j=1

αjyjK(xi,xj) + b
⎞
⎠
≥ 1 − ξi, i ∈ [1,m]

ξi, αi ≥ 0, i ∈ [1,m].

(10)

(a) Derive the equivalent dual optimization problem of (10) in terms of the feature mapping Φ asso-
ciated to the kernel K and write the proof clearly.

(b) Derive the equivalent hinge loss minimization problem of (10) and write the proof clearly. Com-
pare it with an instance of the equivalent hinge loss minimization problem of SVM shown in
class.

(c) Apply Stochastic Gradient Descent to solve the optimization problem. Plot the five-fold cross-
validation training and test errors for the hypotheses obtained based on the solution α as a
function of d, for the best value of C measured on the validation set.

Solution:

3. Take k = 8. Figure 1 shows the average cross-validation error plus or minus one standard deviation,
with different d and C.
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Figure 1: Average cross-validation error plus or minus one standard deviation, with different d and C.

4. We choose (C∗, d∗) = (36,2).
Fix C to be 36, Figure 2 shows the five-fold cross-validation error and the test errors against d.
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Figure 2: Average cross-validation error and test error against d, fixing C to be 36.

Figure 3 shows the number of support vectors against d.
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Figure 3: The number of support vectors against d.

Figure 4 shows the number of support vectors lying on the margin hyperplanes against d.
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Figure 4: The number of support vectors lying on the margin hyperplanes against d.

5. See Figure 5.
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Figure 5: The training and test errors as a function of the training sample.

6. (a) Let x′i = (y1K(xi, x1), . . . , ymK(xi, xm))⊺ ∈ Rm, i = 1, . . . ,m. We introduce Lagrange variables
α′i ≥ 0 , i ∈ [1,m] associated to the first m constraints, βi ≥ 0 , i ∈ [1,m] associated to the non-
negativity constraints of the slack variables and γi ≥ 0 , i ∈ [1,m] associated to the non-negativity
constraints of the α. Thus the Lagrangian of problem of (10) can then be defined for all b ∈ R,
and α, ξ,α′, β, γ ∈ Rm

+ , by

L(α, b, ξ, α′, β, γ) = 1

2

m

∑
i=1

αi +C
m

∑
i=1

ξi −
m

∑
i=1

α′i[yi(α ⋅ x′i + b) − 1 + ξi] −
m

∑
i=1

βiξi −
m

∑
i=1

γiαi . (11)

The KKT conditions are obtained by setting the gradient of the Lagrangian with respect to the
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primal variables α, b, and ξis to zero and by writing the complementarity conditions:

∇αL =
1

2
1 −

m

∑
i=1

α′iyix
′
i − γ = 0⇒

1

2
1 =

m

∑
i=1

α′iyix
′
i + γ (12)

∇bL = −
m

∑
i=1

α′iyi = 0⇒
m

∑
i=1

α′iyi = 0 (13)

∇ξiL = C − α′i − βi = 0⇒ α′i + βi = C (14)

∀i, α′i[yi(α ⋅ x′i + b) − 1 + ξi] = 0⇒ α′i = 0 ∨ yi(α ⋅ x′i + b) = 1 − ξi (15)

∀i, βiξi = 0⇒ βi = o ∨ ξi = 0 (16)

∀i, γiαi = 0⇒ γi = o ∨ αi = 0 (17)

To derive the dual optimization of problem of (10), we plug into the Lagrangian the definition of
α in terms of the dual variables Eq. (12) and apply the constraints Eq. (13) and Eq. (14). This
yields

L = 1

2

m

∑
i=1

αi − α ⋅
m

∑
i=1

α′iyix
′
i −

m

∑
i=1

α′iyib +
m

∑
i=1

α′i −
m

∑
i=1

γiαi (α′i + βi = C)

= 1

2

m

∑
i=1

αi − α ⋅
m

∑
i=1

α′iyix
′
i +

m

∑
i=1

α′i −
m

∑
i=1

γiαi (
m

∑
i=1

α′iyi = 0)

=
m

∑
i=1

α′i (1
2
1 =

m

∑
i=1

α′iyix
′
i + γ)

Note here, in addition to α′i ≥ 0, we must impose the constraint on the Lagrangian variable βi ≥ 0
and γi ≥ 0. In view of Eq. (14), we obtain 0 ≤ α′i ≤ C and γi ≥ 0. This leads to the following dual
optimization problem of (10):

max
α′,γ

m

∑
i=1

α′i

subject to
m

∑
i=1

α′iyix
′
i + γ =

1

2
1

m

∑
i=1

α′iyi = 0

0 ≤ α′i ≤ C, γi ≥ 0, i ∈ [1,m].

(18)

where x′i = (y1K(xi, x1), . . . , ymK(xi, xm))⊺ = (y1Φ(xi)Φ(x1), . . . , ymΦ(xi)Φ(xm))⊺ ∈ Rm, i =
1, . . . ,m.

(b) The equivalent hinge loss minimization problem of (10) can be written as

min
α,b

1

2

m

∑
i=1
∣αi∣ +C

m

∑
i=1

⎛
⎝
1 − yi

⎛
⎝

m

∑
j=1

αjyjK(xi,xj) + b
⎞
⎠
⎞
⎠+

subject to αi ≥ 0, i ∈ [1,m].
(19)

Different from the equivalent hinge loss minimization problem of SVM shown in class, the problem
(19) has the constraint αi ≥ 0 and the L1 norm of the vector α instead of the L2 norm in the
objection function.

(c) See Figure 6.
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Figure 6: The five-fold cross-validation training and test errors.
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