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A Concentration bound

1. We denote by X the input space and S an i.i.d sample of size m.

(a) Show that there does not exist any hypothesis h∶X → {0,1} such that the following inequality
holds with probability at least e−m/3:

R(h) − R̂S(h) ≥
1

2
.

(b) Suppose that the target concept to learn is c ≡ 1 and the target distribution D is the uniform
distribution over the interval [0,1]. Design an algorithm such that for any sample S, the returned
hypothesis hS ∶X→ {0,1} satisfies the following equality:

R(hS) − R̂S(hS) = 1.

(c) Why does part (b) not contradict part (a)?

Solution:

(a) By Hoeffding’s inequality, for any hypothesis h∶X→ {0,1}, the following inequality holds:

P[R(h) − R̂S(h) ≥
1

2
] ≤ e−m/2 < e−m/3.

(b) The algorithm returns the hypothesis hS defined by

hS(x) = 1x∈S .

Therefore, we have

R̂S(hS) =
1

m

m

∑
i=1

1hS(xi)=0

= 1

m

m

∑
i=1

1xi∉S

= 1

m

m

∑
i=1

0

= 0,

and

R(hS) = P
x∼D
[hS(x) = 0]

= P
x∼D
[x ∉ S]

= 1.

(c) Because hS is not a fixed hypothesis. It depends on the sample S.
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B PAC-Bayesian bound

1. Let H be a hypothesis set of functions mapping X to R and let ℓ be a loss function mapping R × Y
to [0,1]. Denote the loss of a hypothesis h at point z = (x, y) ∈ X × Y = Z by L(h, z) = ℓ(h(x), y).
Let P and Q be probability measures over H. In the PAC-Bayes framework, P represents the prior
probability over the hypothesis class, i.e., the probability that a particular hypothesis is selected by the
learning algorithm. Q represents the posterior probability selected after observing the training sample.
In this exercise, we will derive learning bounds for randomized algorithms, in terms of the relative
entropy of Q and P , denoted by D(Q ∣∣ P ) (See E.2 of the textbook for the definition).

(a) Define Gµ via Gµ = {Q ∈∆(H) ∶ D(Q ∣∣ P ) ≤ µ}, where we denote by ∆(H) the family of distribu-
tions over H. Use the Rademacher complexity bound to show that for any δ > 0, with probability
at least 1 − δ, the following inequality holds for all Q ∈ Gµ:

E
h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + 2Rm(Gµ) +
√

log 1
δ

2m
.

(b) It can be shown that the following inequality holds:

Rm(Gµ) ≤
√

2µ

m
.

Use this information to show that for any δ > 0, with probability at least 1 − δ, the following
inequality holds for all Q ∈∆(H):

E
h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + (4 +
1√
e
)
√

max{D(Q ∣∣ P ),1}
m

+
√

log 1
δ

2m
.

(Hint : use the doubling trick, i.e., for some a > 0, ∆(H) can be written as the union of

{Q ∈∆(H) ∶ D(Q ∣∣ P ) ≤ a} and
∞

⋃
j=1
{Q ∈ ∆(H) ∶ a2j−1 < D(Q ∣∣ P ) ≤ a2j}. Then, use the union

bound to extend the result in part (a). Note that
√
a + b ≤√a +

√
b and log(2t)

2
≤ t

e
for t > 0. )

Solution:

(a) Note that the function Eh∼Q[L(h, ⋅)] maps from Z to [0,1]. Then, by the Rademacher complexity
bound, for any δ > 0, with probability at least 1 − δ, the following inequality holds for all Q ∈ Gµ:

E
z∼D
[ E
h∼Q
[L(h, z)]] ≤ 1

m

m

∑
i=1

E
h∼Q
[L(h, zi)] + 2Rm(Gµ) +

√
log 1

δ

2m
.

(b) Part (a) along with the upper bound on Rm(Gµ) imply that for any δ > 0, with probability at least
1 − δ, the following inequality holds for all Q such that D(Q ∣∣ P ) ≤ µ:

E
h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + 2
√

2µ

m
+
√

log 1
δ

2m
.

For j ≥ 0, define δj = 2−(j+1)δ. Let Γ0 = {Q ∈∆(H) ∶ D(Q ∣∣ P ) ≤ a}. For j ≥ 1, let Γj = {Q ∈ ∆(H) ∶
a2j−1 < D(Q ∣∣ P ) ≤ a2j}.
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Therefore, by the union bound,

P
⎡⎢⎢⎢⎢⎢⎣
∀j ≥ 0, ∀Q ∈ Γj , E

h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + 2
√

2a2j

m
+

¿
ÁÁÀ log 1

δj

2m

⎤⎥⎥⎥⎥⎥⎦

= 1 − P
⎡⎢⎢⎢⎢⎢⎣
∃j ≥ 0, ∃Q ∈ Γj , E

h∼Q
z∼D

[L(h, z)] > E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + 2
√

2a2j

m
+

¿
ÁÁÀ log 1

δj

2m

⎤⎥⎥⎥⎥⎥⎦

≥ 1 −
∞

∑
j=0

P
⎡⎢⎢⎢⎢⎢⎣
∃Q ∈ Γj , E

h∼Q
z∼D

[L(h, z)] > E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + 2
√

2a2j

m
+

¿
ÁÁÀ log 1

δj

2m

⎤⎥⎥⎥⎥⎥⎦

= 1 −
∞

∑
j=0

⎛
⎜⎜
⎝
1 − P

⎡⎢⎢⎢⎢⎢⎣
∀Q ∈ Γj , E

h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + 2
√

2a2j

m
+

¿
ÁÁÀ log 1

δj

2m

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

≥ 1 −
∞

∑
j=0

δj

= 1 − δ.

For j ≥ 1, if Q ∈ Γj , then a2j < 2D(Q ∣∣ P ) and δj ≥ aδ
4D(Q∣∣P )

. Hence, for j ≥ 0, if Q ∈ Γj , then

2

√
2a2j

m
+

¿
ÁÁÀ log 1

δj

2m

≤ 4
√

max{D(Q ∣∣ P ), a/2}
m

+
√

logmax{4D(Q ∣∣ P )/a,2}
2m

+
√

log 1
δ

2m
(
√
a + b ≤

√
a +
√
b)

≤ 4
√

max{D(Q ∣∣ P ),1}
m

+
√

log(2max{D(Q ∣∣ P ),1})
2m

+
√

log 1
δ

2m
(take a = 2)

≤ (4 + 1√
e
)
√

max{D(Q ∣∣ P ),1}
m

+
√

log 1
δ

2m
. ( log(2t)

2
≤ t

e
)

Therefore, we have

1 − δ ≤ P
⎡⎢⎢⎢⎢⎢⎣
∀j ≥ 0, ∀Q ∈ Γj , E

h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + 2
√

2a2j

m
+

¿
ÁÁÀ log 1

δj

2m

⎤⎥⎥⎥⎥⎥⎦

≤ P
⎡⎢⎢⎢⎢⎢⎣
∀j ≥ 0, ∀Q ∈ Γj , E

h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + (4 +
1√
e
)
√

max{D(Q ∣∣ P ),1}
m

+
√

log 1
δ

2m

⎤⎥⎥⎥⎥⎥⎦

= P
⎡⎢⎢⎢⎢⎢⎣
∀Q ∈∆(H), E

h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q
[ 1
m

m

∑
i=1

L(h, zi)] + (4 +
1√
e
)
√

max{D(Q ∣∣ P ),1}
m

+
√

log 1
δ

2m

⎤⎥⎥⎥⎥⎥⎦
.

C Rademacher complexity

1. Let X ⊂ RN and let S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m be a sample of size m. In this problem, we
consider the following linear hypothesis set

H = {x↦ w ⋅ x ∶ ∥w∥1 ≤ Λ}.

We denote by X the matrix X = [x1, . . . , xm] whose columns are the sample points. The (p, q)-group
norm of a matrix M is defined as the q norm of the p norm of the columns of M , that is ∥M∥p,q =
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∥(∥M1∥p, . . . , ∥MN∥p)∥q, where Mis are the columns of M . We denote by {σi}mi=1 the Rademacher

variables, that is independent uniform random variables taking values in {−1,+1}.

(a) Show that the empirical Rademacher complexity of H admits the following upper bound:

R̂S(H) ≤
Λ

m

√
2 log(2N)∥X⊺∥

2,∞
.

(Hint : use Massart’s lemma.)

(b) Show that for any 0 < p <∞, there exists a positive constant Cp such that the following inequality
holds for all m ≥ 1 and real numbers a1, . . . , am.

E
σ
[∣

m

∑
i=1

σiai∣
p

] ≤ Cp(
m

∑
i=1

a2i)
p
2

(Hint : For p ≤ 2, you can use Jensen’s inequality. For p > 2, w.l.o.g., rescale such that ∑m
i=1 a

2
i = 1,

use the identity E[X] = ∫
+∞

0 P[X > t]dt for X ≥ 0.)
(c) Show that for any 0 < p <∞, there exists a positive constant cp such that the following inequality

holds for all m ≥ 1 and real numbers a1, . . . , am.

cp(
m

∑
i=1

a2i)
p
2

≤ E
σ
[∣

m

∑
i=1

σiai∣
p

]

(Hint : For p ≥ 2, you can use Jensen’s inequality. For p < 2, use Hölder’s inequality and part (b).)

(d) Use the inequality shown in part (c), show that the empirical Rademacher complexity of H admits
the following lower bound:

R̂S(H) ≥ c1
Λ

m
∥X⊺∥

2,∞
,

where c1 is some positive constant in part (c) for p = 1.
(e) By providing an example, show that the dimension dependence of

√
logN in the upper bound in

part (a) is tight (Hint : consider a data set with N = 2m).

Solution:

(a) For any i ∈ [m], we denote by xij the jth component of xi.

R̂S(H) =
1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup
∥w∥1≤Λ

m

∑
i=1

σiw ⋅ xi

⎤⎥⎥⎥⎥⎦

= 1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup
∥w∥1≤Λ

w
m

∑
i=1

σixi

⎤⎥⎥⎥⎥⎦

= Λ

m
E
σ
[∥

m

∑
i=1

σixi∥
∞

] (by def. of the dual norm)

= Λ

m
E
σ
[max
j∈[N]

∣
m

∑
i=1

σixij∣] (by def. of ∥⋅∥
∞
)

= Λ

m
E
σ
[max
j∈[N]

max
s∈{−1,+1}

s
m

∑
i=1

σixij] (by def. of abs. value)

= Λ

m
E
σ
[sup
z∈A

m

∑
i=1

σizi],
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where A denotes the set of vectors {s(x1j , . . . , xmj)⊺ ∶ j ∈ [N], s ∈ {−1,+1}}. For any z ∈ A, we have
supz∈A∥z∥2 = ∥X⊺∥2,∞. Thus, by Massart’s lemma, since A contains at most 2N elements, the following
inequality holds:

R̂S(H) ≤ Λ∥X⊺∥2,∞

√
2 log(2N)

m
,

which concludes the proof.

(b) For p ≤ 2, we have

E
σ
[∣

m

∑
i=1

σiai∣
p

] ≤
⎛
⎝
E
σ

⎡⎢⎢⎢⎢⎣
∣
m

∑
i=1

σiai∣
2⎤⎥⎥⎥⎥⎦

⎞
⎠

p
2

(Jensen’s inequality)

=
⎛
⎝
E
σ

⎡⎢⎢⎢⎣

m

∑
i,j=1

σiσj(aiaj)
⎤⎥⎥⎥⎦
⎞
⎠

p
2

= (
m

∑
i=1

a2i)
p
2

(E[σiσj] = E[σi]E[σj] = 0 for i ≠ j)

= Cp(
m

∑
i=1

a2i)
p
2

,

where Cp = 1. Next we consider the case where p > 2. Without loss of generality, rescale such that

∑m
i=1 a

2
i = 1. Use the identity in the hint, we have

E
σ
[∣

m

∑
i=1

σiai∣
p

] = ∫
+∞

0
P[∣

m

∑
i=1

σiai∣
p

> t]dt (E[∣X ∣] = ∫
+∞

0
P[∣X ∣ > t]dt)

= ∫
+∞

0
P[∣

m

∑
i=1

σiai∣ > t
1
p ]dt

≤ 2∫
+∞

0
e−

t
2
p

2 dt (
m

∑
i=1

a2i = 1, Hoeffding’s inequality)

= Cp(
m

∑
i=1

a2i)
p
2

,

where Cp = 2 ∫
+∞

0 e−
t
2
p

2 dt.

(c) For p ≥ 2, we have

E
σ
[∣

m

∑
i=1

σiai∣
p

] ≥
⎛
⎝
E
σ

⎡⎢⎢⎢⎢⎣
∣
m

∑
i=1

σiai∣
2⎤⎥⎥⎥⎥⎦

⎞
⎠

p
2

(Jensen’s inequality)

=
⎛
⎝
E
σ

⎡⎢⎢⎢⎣

m

∑
i,j=1

σiσj(aiaj)
⎤⎥⎥⎥⎦
⎞
⎠

p
2

= (
m

∑
i=1

a2i)
p
2

(E[σiσj] = E[σi]E[σj] = 0 for i ≠ j)

= cp(
m

∑
i=1

a2i)
p
2
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where cp = 1. Next we consider the case where p < 2. Use the inequality shown in (b), we have

m

∑
i=1

a2i = E
σ

⎡⎢⎢⎢⎢⎣
∣
m

∑
i=1

σiai∣
2⎤⎥⎥⎥⎥⎦

= E
σ

⎡⎢⎢⎢⎢⎣
∣
m

∑
i=1

σiai∣
2p
3

∣
m

∑
i=1

σiai∣
2− 2p

3
⎤⎥⎥⎥⎥⎦

≤ (E
σ
[∣

m

∑
i=1

σiai∣
p

])
2
3⎛
⎝
E
σ

⎡⎢⎢⎢⎢⎣
∣
m

∑
i=1

σiai∣
6−2p⎤⎥⎥⎥⎥⎦

⎞
⎠

1
3

(Hölder’s inequality)

≤ (E
σ
[∣

m

∑
i=1

σiai∣
p

])
2
3

C
1
3

6−2p(
m

∑
i=1

a2i)
1− p

3

. (by the ineq. shown in (b))

Rearranging the terms, we obtain

( 1

C6−2p
)

1
2

(
m

∑
i=1

a2i)
p
2

≤ E
σ
[∣

m

∑
i=1

σiai∣
p

],

which concludes the proof.

(d) For any vector u, we denote by ∣u∣ the vector derived from u by taking the absolute value of each of
its components.

R̂S(H) =
1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup
∥w∥1≤Λ

m

∑
i=1

σiw ⋅ xi

⎤⎥⎥⎥⎥⎦

= 1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup
∥w∥1≤Λ

w
m

∑
i=1

σixi

⎤⎥⎥⎥⎥⎦

= Λ

m
E
σ
[∥

m

∑
i=1

σixi∥
∞

] (by def. of the dual norm)

≥ Λ

m
∥E
σ
[∣

m

∑
i=1

σixi∣]∥
∞

(by sub-additivity of norm)

= Λ

m
max
j∈[N]

E
σ
[∣

m

∑
i=1

σixij∣] (by def. of ∥⋅∥
∞
)

≥ c1
Λ

m
max
j∈[N]

(
m

∑
i=1

x2
ij)

1
2

(by the ineq. shown in (c))

= c1
Λ

m
∥X⊺∥

2,∞
.

(e) Consider a data set with N = 2m. Take {xi}mi=1 so that the rows of X are the set {−1,+1}m. Then,
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∥X⊺∥2,∞ =
√
m and the empirical Rademacher complexity can be computed as follows.

R̂S(H) =
1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup
∥w∥1≤Λ

m

∑
i=1

σiw ⋅ xi

⎤⎥⎥⎥⎥⎦

= 1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup
∥w∥1≤Λ

w
m

∑
i=1

σixi

⎤⎥⎥⎥⎥⎦

= Λ

m
E
σ
[∥

m

∑
i=1

σixi∥
∞

] (by def. of the dual norm)

= Λ

m
E
σ
[max
j∈[N]

∣
m

∑
i=1

σixij∣] (by def. of ∥⋅∥
∞
)

= Λ

m
E
σ
[m]

= Λ

m
√
log 2

√
log(N)∥X⊺∥

2,∞
. (N = 2m, ∥X⊺∥

2,∞
=
√
m)

Therefore, the dimension dependence of
√
logN in the upper bound is tight.
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