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A Concentration bound

1. We denote by X the input space and S an i.i.d sample of size m.

(a) Show that there does not exist any hypothesis h:X — {0,1} such that the following inequality
holds with probability at least e~™/3:

R(h) - Re(h) > %

(b) Suppose that the target concept to learn is ¢ = 1 and the target distribution D is the uniform
distribution over the interval [0, 1]. Design an algorithm such that for any sample S, the returned
hypothesis hg: X — {0,1} satisfies the following equality:

R(hs) - Rs(hs) = 1.
(¢) Why does part (b) not contradict part (a)?

Solution:

(a) By Hoeffding’s inequality, for any hypothesis h: X — {0, 1}, the following inequality holds:

]P’[R(h) - Rs(h) > %] <e? < em3,

(b) The algorithm returns the hypothesis hg defined by
hs(.%‘) = 1:1;65.

Therefore, we have
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R(hs) = P Ths(z)=0]
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(¢) Because hg is not a fixed hypothesis. It depends on the sample S.



B PAC-Bayesian bound

1. Let H be a hypothesis set of functions mapping X to R and let ¢ be a loss function mapping R x Y
0 [0,1]. Denote the loss of a hypothesis h at point z = (z,y) € X xY = Z by L(h,z) = £(h(x),y).
Let P and @ be probability measures over H. In the PAC-Bayes framework, P represents the prior
probability over the hypothesis class, i.e., the probability that a particular hypothesis is selected by the
learning algorithm. @ represents the posterior probability selected after observing the training sample.
In this exercise, we will derive learning bounds for randomized algorithms, in terms of the relative
entropy of @ and P, denoted by D(Q || P) (See E.2 of the textbook for the definition).

(a) Define G, via G, = {Q € A(H) : D(Q || P) < pu}, where we denote by A(J() the family of distribu-
tions over H. Use the Rademacher complexity bound to show that for any § > 0, with probability
at least 1 -6, the following inequality holds for all @ € G,:
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(b) It can be shown that the following inequality holds:

R (G,) <\ /%’“‘.

Use this information to show that for any § > 0, with probability at least 1 — §, the following
inequality holds for all @ € A(F():

max , log
E L) B 5 10z |+ (10 ;)\/ D@1, floes

~ m 2m

(Hint: use the doubling trick, i.e., for some a > 0, A(H) can be written as the union of
{QeA(H):D(Q||P)<a} and U {Q € A(H) : a2 < D(Q || P) < a2’}. Then, use the union
j=1

bound to extend the result in part (a). Note that va +b < \/a + b and % < ﬁ for t>0.)

Solution:

(a) Note that the function Ej.g[L(h,-)] maps from Z to [0,1]. Then, by the Rademacher complexity
bound, for any § > 0, with probability at least 1 -, the following inequality holds for all @ € G,:
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ZEED[hINEQ[L(h,z)]] < ;;h%[“h’zi)] +29R,,(5,) + zimé'

(b) Part (a) along with the upper bound on fR,,(§,) imply that for any ¢ > 0, with probability at least
1 -4, the following inequality holds for all @ such that D(Q || P) < p:

E [L(h,2)] < [ ZL(h zl):|+2\/7’u \/logé
z~D

For j > 0, define §; = 270*D5. Let Tg = {Q e A(H) : D(Q || P) <a}. For j > 1, let T; = {Q € A(%) :
a2l <D(Q || P) < a27}.



Therefore, by the union bound,
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For j > 1,if Q € Tj, then a2/ < 2D(Q || P) and §; >

- 1
) [2a2i . log 5
m 2m

= 4D(Q||P)

Hence, for j >0, if @ €I';, then

S4\/10f16\><{D(Q||P)aa/Q} L [logmax{dD(Q || P)/a, 2} |
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Therefore, we have
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C Rademacher complexity

1. Let X cRY and let S = ((z1,91),..-
consider the following linear hypothesis set
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(75 <%)

H={zrw-z:|w| <A}

We denote by X the matrix X = [z1, ...,

(T, ym)) € (X xY)™ be a sample of size m. In this problem, we

Zm] whose columns are the sample points. The (p, q)-group

norm of a matrix M is defined as the ¢ norm of the p norm of the columns of M, that is [M], , =



(12 ||p,...,HMNHp) o where M;s are the columns of M. We denote by {o;};-, the Rademacher

variables, that is independent uniform random variables taking values in {-1,+1}.

(a) Show that the empirical Rademacher complexity of 3 admits the following upper bound:
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(Hint: use Massart’s lemma.)

(b) Show that for any 0 < p < oo, there exists a positive constant C), such that the following inequality
holds for all m > 1 and real numbers ay, ..., ayn,.

e[S <o (3)
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(Hint: For p <2, you can use Jensen’s inequality. For p > 2, w.l.o.g., rescale such that Y1y a? = 1,
use the identity E[ X ] = 0+°° P[X > t]dt for X >0.)

(c¢) Show that for any 0 < p < oo, there exists a positive constant ¢, such that the following inequality
holds for all m > 1 and real numbers a1, ..., ay,-
p]

(Hint: For p > 2, you can use Jensen’s inequality. For p < 2, use Holder’s inequality and part (b).)
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(d) Use the inequality shown in part (c), show that the empirical Rademacher complexity of H admits
the following lower bound:
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where ¢; is some positive constant in part (c) for p = 1.

(e) By providing an example, show that the dimension dependence of \/log N in the upper bound in
part (a) is tight (Hint: consider a data set with N =2™).
Solution:
(a) For any i € [m], we denote by z;; the jth component of z;.
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where A denotes the set of vectors {s(z1j,...,2m;)" :j € [N],se{-1,+1}}. For any z € A, we have

sup.ea2fy = [X 7[5 o Thus, by Massart’s lemma, since A contains at most 2IV elements, the following
inequality holds:
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which concludes the proof.

(b) For p <2, we have

m P m 2 2
E[ Z oia; ] < (E Z oia; l) (Jensen’s inequality)
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B ia?r (Eloio;] =E[0;]E[0;] = 0 for i # j)

where €}, = 1. Next we consider the case where p > 2. Without loss of generality, rescale such that
> a? = 1. Use the identity in the hint, we have

el[Siel |- £ 7

p

m
Y oia;
1=1

N

Py
I
[

0iQq

> t]dt (]E[|X|] - fom P[|X|> t]dt)

+00 m .
= [ IP)|: Zaiai >tp]dt
0 i=1
+o00 t% m
<2 f ez dt (Z a? =1, Hoeffding’s inequality)
0 i=1
m 5
= CP(Z azz) )
i=1
%
where C), = 2/0+°° e~ T dt.
(c) For p>2, we have
m p m 21\ 2
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where ¢, = 1. Next we consider the case where p < 2. Use the inequality shown in (b), we have
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< (IE Z 0ia; ]) (IE[ Z oia; ]) (Holder’s inequality)
7Lli=1 7| li=1
[| m p % 1 m 1"%
< (IE > oia; ]) 063—2;)(2 a?) . (by the ineq. shown in (b))
Lli=1 i=1

(a) () sefloe]]

or any vector u, we denote by |u| the vector derived from u by taking the absolute value of each o
d) F t denote b th tor derived fi by taking the absolut 1 f each of
its components.

> oia;
=1

which concludes the proof.
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(e) Consider a data set with N = 2™. Take {x;},", so that the rows of X are the set {-1,+1}"". Then,



| Xl 0o = /m and the empirical Rademacher complexity can be computed as follows.
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Therefore, the dimension dependence of \/log N in the upper bound is tight.



