Mehryar Mohri Foundations of Machine Learning 2022 Courant Institute of Mathematical Sciences Homework assignment 1 February 8, 2022 Due: February 22, 2022

A Concentration bound

- 1. We denote by X the input space and S an i.i.d sample of size m .
	- (a) Show that there does not exist any hypothesis $h: \mathfrak{X} \to \{0,1\}$ such that the following inequality holds with probability at least $e^{-m/3}$:

$$
R(h) - \widehat{R}_S(h) \ge \frac{1}{2}.
$$

(b) Suppose that the target concept to learn is $c \equiv 1$ and the target distribution D is the uniform distribution over the interval $[0, 1]$. Design an algorithm such that for any sample S , the returned hypothesis $h_S: \mathfrak{X} \to \{0, 1\}$ satisfies the following equality:

$$
R(h_S) - \widehat{R}_S(h_S) = 1.
$$

(c) Why does part (b) not contradict part (a)?

Solution:

(a) By Hoeffding's inequality, for any hypothesis $h: \mathcal{X} \to \{0,1\}$, the following inequality holds:

$$
\mathbb{P}\bigg[R(h) - \widehat{R}_S(h) \ge \frac{1}{2}\bigg] \le e^{-m/2} < e^{-m/3}.
$$

(b) The algorithm returns the hypothesis h_S defined by

$$
h_S(x) = 1_{x \in S}.
$$

Therefore, we have

$$
\widehat{R}_S(h_S) = \frac{1}{m} \sum_{i=1}^m 1_{h_S(x_i)=0}
$$

$$
= \frac{1}{m} \sum_{i=1}^m 1_{x_i \notin S}
$$

$$
= \frac{1}{m} \sum_{i=1}^m 0
$$

$$
= 0,
$$

and

$$
R(h_S) = \mathop{\mathbb{P}}_{x \sim D} [h_S(x) = 0]
$$

$$
= \mathop{\mathbb{P}}_{x \sim D} [x \notin S]
$$

$$
= 1.
$$

(c) Because h_S is not a fixed hypothesis. It depends on the sample S.

B PAC-Bayesian bound

- 1. Let $\mathcal H$ be a hypothesis set of functions mapping $\mathcal X$ to R and let ℓ be a loss function mapping $\mathbb R \times \mathcal Y$ to [0,1]. Denote the loss of a hypothesis h at point $z = (x, y) \in \mathcal{X} \times \mathcal{Y} = \mathcal{Z}$ by $L(h, z) = \ell(h(x), y)$. Let P and Q be probability measures over H . In the PAC-Bayes framework, P represents the prior probability over the hypothesis class, i.e., the probability that a particular hypothesis is selected by the learning algorithm. Q represents the posterior probability selected after observing the training sample. In this exercise, we will derive learning bounds for randomized algorithms, in terms of the relative entropy of Q and P, denoted by $D(Q || P)$ (See E.2 of the textbook for the definition).
	- (a) Define \mathcal{G}_{μ} via $\mathcal{G}_{\mu} = \{Q \in \Delta(\mathcal{H}) : D(Q || P) \leq \mu\}$, where we denote by $\Delta(\mathcal{H})$ the family of distributions over H . Use the Rademacher complexity bound to show that for any $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds for all $Q \in \mathcal{G}_u$:

$$
\mathop{\mathbb{E}}_{\substack{h \sim Q \\ z \sim \mathcal{D}}} [L(h,z)] \leq \mathop{\mathbb{E}}_{h \sim Q} \left[\frac{1}{m} \sum_{i=1}^{m} L(h,z_i) \right] + 2 \Re_m(\mathcal{G}_\mu) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.
$$

(b) It can be shown that the following inequality holds:

$$
\mathfrak{R}_m(\mathcal{G}_\mu) \le \sqrt{\frac{2\mu}{m}}.
$$

Use this information to show that for any $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds for all $Q \in \Delta(\mathcal{H})$:

$$
\mathop{\mathbb{E}}_{h \sim Q}[L(h,z)] \leq \mathop{\mathbb{E}}_{h \sim Q} \left[\frac{1}{m} \sum_{i=1}^{m} L(h,z_i) \right] + \left(4 + \frac{1}{\sqrt{e}} \right) \sqrt{\frac{\max\{D(Q \mid P), 1\}}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.
$$

(Hint: use the doubling trick, i.e., for some $a > 0$, $\Delta(\mathcal{H})$ can be written as the union of ${Q \in \Delta(\mathcal{H}) : D(Q \parallel P) \le a}$ and $\bigcup_{j=1}^{\infty} {Q \in \Delta(\mathcal{H}) : a2^{j-1} < D(Q \parallel P) \le a2^j}$. Then, use the union bound to extend the result in part (a). Note that $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ and $\frac{\log(2t)}{2} \le \frac{t}{e}$ for $t > 0$.)

Solution:

(a) Note that the function $\mathbb{E}_{h\sim Q}[L(h,\cdot)]$ maps from Z to [0,1]. Then, by the Rademacher complexity bound, for any $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds for all $Q \in \mathcal{G}_{\mu}$:

$$
\mathop{\mathbb{E}}_{z \sim \mathcal{D}} \left[\mathop{\mathbb{E}}_{h \sim Q} [L(h,z)] \right] \leq \frac{1}{m} \sum_{i=1}^{m} \mathop{\mathbb{E}}_{h \sim Q} [L(h,z_i)] + 2 \Re_m(\mathcal{G}_\mu) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.
$$

(b) Part (a) along with the upper bound on $\mathfrak{R}_m(\mathcal{G}_\mu)$ imply that for any $\delta > 0$, with probability at least $1-\delta$, the following inequality holds for all Q such that $D(Q || P) \leq \mu$:

$$
\mathop{\mathbb{E}}_{\substack{h \sim Q \\ z \sim \mathcal{D}}} [L(h, z)] \leq \mathop{\mathbb{E}}_{h \sim Q} \left[\frac{1}{m} \sum_{i=1}^{m} L(h, z_i) \right] + 2\sqrt{\frac{2\mu}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}
$$

.

For $j \geq 0$, define $\delta_j = 2^{-(j+1)}\delta$. Let $\Gamma_0 = \{Q \in \Delta(\mathcal{H}) : D(Q \parallel P) \leq a\}$. For $j \geq 1$, let $\Gamma_j = \{Q \in \Delta(\mathcal{H}) : D(Q \parallel P) \leq a\}$. $a2^{j-1} < D(Q || P) \le a2^j$.

Therefore, by the union bound,

$$
\begin{split} &\mathbb{P}\left[\forall j\geq 0,\ \forall Q\in\Gamma_j,\ \mathop{\mathbb{E}}_{h\sim Q}\Big[L(h,z)\Big]\leq \mathop{\mathbb{E}}_{h\sim Q}\Bigg[\frac{1}{m}\sum_{i=1}^m L(h,z_i)\Bigg]+2\sqrt{\frac{2a2^j}{m}}+\sqrt{\frac{\log\frac{1}{\delta_j}}{2m}}\Bigg]\\ &=1-\mathbb{P}\Bigg[\exists j\geq 0,\ \exists Q\in\Gamma_j,\ \mathop{\mathbb{E}}_{h\sim Q}\Big[L(h,z)\Big]>\mathop{\mathbb{E}}_{h\sim Q}\Bigg[\frac{1}{m}\sum_{i=1}^m L(h,z_i)\Big]+2\sqrt{\frac{2a2^j}{m}}+\sqrt{\frac{\log\frac{1}{\delta_j}}{2m}}\Bigg]\\ &\geq 1-\sum_{j=0}^\infty \mathbb{P}\Bigg[\exists Q\in\Gamma_j,\ \mathop{\mathbb{E}}_{h\sim Q}\Big[L(h,z)\Big]>\mathop{\mathbb{E}}_{h\sim Q}\Bigg[\frac{1}{m}\sum_{i=1}^m L(h,z_i)\Big]+2\sqrt{\frac{2a2^j}{m}}+\sqrt{\frac{\log\frac{1}{\delta_j}}{2m}}\Bigg]\\ &=1-\sum_{j=0}^\infty \left(1-\mathbb{P}\Bigg[\forall Q\in\Gamma_j,\ \mathop{\mathbb{E}}_{h\sim Q}\Big[L(h,z)\Big]\leq \mathop{\mathbb{E}}_{h\sim Q}\Bigg[\frac{1}{m}\sum_{i=1}^m L(h,z_i)\Big]+2\sqrt{\frac{2a2^j}{m}}+\sqrt{\frac{\log\frac{1}{\delta_j}}{2m}}\Bigg]\right)\\ &\geq 1-\sum_{j=0}^\infty \delta_j\\ &=1-\delta. \end{split}
$$

For $j \ge 1$, if $Q \in \Gamma_j$, then $a2^j < 2\mathsf{D}(Q \parallel P)$ and $\delta_j \ge \frac{a\delta}{4\mathsf{D}(Q \parallel P)}$. Hence, for $j \ge 0$, if $Q \in \Gamma_j$, then

$$
2\sqrt{\frac{2a^{2j}}{m}} + \sqrt{\frac{\log{\frac{1}{\delta_j}}}{2m}}
$$

\n
$$
\leq 4\sqrt{\frac{\max\{D(Q \mid P), a/2\}}{m}} + \sqrt{\frac{\log{\max\{4D(Q \mid P)/a, 2\}}}{2m}} + \sqrt{\frac{\log{\frac{1}{\delta}}}{2m}}
$$

\n
$$
\leq 4\sqrt{\frac{\max\{D(Q \mid P), 1\}}{m}} + \sqrt{\frac{\log(2\max\{D(Q \mid P), 1\})}{2m}} + \sqrt{\frac{\log{\frac{1}{\delta}}}{2m}}
$$

\n
$$
\leq \left(4 + \frac{1}{\sqrt{e}}\right)\sqrt{\frac{\max\{D(Q \mid P), 1\}}{m}} + \sqrt{\frac{\log{\frac{1}{\delta}}}{2m}}.
$$

\n
$$
\left(\frac{\log(2t)}{2} \leq \frac{t}{e}\right)
$$

Therefore, we have

1 − δ ≤ P ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ∀j ≥ 0, ∀Q ∈ Γ^j , E h∼Q z∼D [L(h, z)] ≤ E h∼Q [1 m m ∑ i=1 L(h, zi)] + 2 √ 2a2 j m + ¿ÁÁÀ log ¹ δj 2m ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ≤ P ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ∀j ≥ 0, ∀Q ∈ Γ^j , E h∼Q z∼D [L(h, z)] ≤ E h∼Q [1 m m ∑ i=1 L(h, zi)] + (4 + 1 √ e) √ max{D(Q ∣∣ P), 1} m + √ log ¹ δ 2m ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = P ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ∀Q ∈ ∆(H), E h∼Q z∼D [L(h, z)] ≤ E h∼Q [1 m m ∑ i=1 L(h, zi)] + (4 + 1 √ e) √ max{D(Q ∣∣ P), 1} m + √ log ¹ δ 2m ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .

C Rademacher complexity

1. Let $\mathfrak{X} \subset \mathbb{R}^N$ and let $S = ((x_1, y_1), \ldots, (x_m, y_m)) \in (\mathfrak{X} \times \mathcal{Y})^m$ be a sample of size m. In this problem, we consider the following linear hypothesis set

$$
\mathcal{H} = \{x \mapsto w \cdot x : ||w||_1 \le \Lambda\}.
$$

We denote by X the matrix $X = [x_1, \ldots, x_m]$ whose columns are the sample points. The (p, q) -group norm of a matrix M is defined as the q norm of the p norm of the columns of M, that is $||M||_{p,q} =$

 $\left\|\left(\|M_1\|_p,\ldots,\|M_N\|_p\right)\right\|_q$, where M_i s are the columns of M. We denote by $\{\sigma_i\}_{i=1}^m$ $\binom{m}{i=1}$ the Rademacher variables, that is independent uniform random variables taking values in $\{-1, +1\}$.

(a) Show that the empirical Rademacher complexity of H admits the following upper bound:

$$
\widehat{\mathfrak{R}}_S\big(\mathcal{H}\big)\leq \frac{\Lambda}{m}\sqrt{2\log(2N)}\big\|X^{\top}\big\|_{2,\infty}.
$$

(Hint: use Massart's lemma.)

(b) Show that for any $0 < p < \infty$, there exists a positive constant C_p such that the following inequality holds for all $m \ge 1$ and real numbers a_1, \ldots, a_m .

$$
\underset{\sigma}{\mathbb{E}}\Biggl[\left|\sum_{i=1}^{m}\sigma_{i}a_{i}\right|^{p}\Biggr]\leq C_{p}\Biggl(\sum_{i=1}^{m}a_{i}^{2}\Biggr)^{\frac{p}{2}}
$$

(*Hint*: For $p \le 2$, you can use Jensen's inequality. For $p > 2$, w.l.o.g., rescale such that $\sum_{i=1}^{m} a_i^2 = 1$, use the identity $\mathbb{E}[X] = \int_0^{+\infty}$ $\int_0^{+\infty} \mathbb{P}[X > t] dt$ for $X \ge 0$.)

(c) Show that for any $0 < p < \infty$, there exists a positive constant c_p such that the following inequality holds for all $m \geq 1$ and real numbers a_1, \ldots, a_m .

$$
c_p\Biggl(\sum_{i=1}^m a_i^2\Biggr)^{\frac{p}{2}} \leq \mathop{\mathbb{E}}_{\sigma}\Biggl[\left|\sum_{i=1}^m \sigma_i a_i\right|^p\Biggr]
$$

(Hint: For $p \ge 2$, you can use Jensen's inequality. For $p < 2$, use Hölder's inequality and part (b).)

(d) Use the inequality shown in part (c) , show that the empirical Rademacher complexity of H admits the following lower bound:

$$
\widehat{\mathfrak{R}}_S(\mathcal{H}) \geq c_1 \frac{\Lambda}{m} \|X^{\top}\|_{2,\infty},
$$

where c_1 is some positive constant in part (c) for $p = 1$.

(e) By providing an example, show that the dimension dependence of $\sqrt{\log N}$ in the upper bound in part (a) is tight (*Hint*: consider a data set with $N = 2^m$).

Solution:

(a) For any $i \in [m]$, we denote by x_{ij} the jth component of x_i .

$$
\widehat{\mathfrak{R}}_{S}(\mathcal{H}) = \frac{1}{m} \mathbb{E} \left[\sup_{\|w\|_{1} \leq \Lambda} \sum_{i=1}^{m} \sigma_{i} w \cdot x_{i} \right]
$$
\n
$$
= \frac{1}{m} \mathbb{E} \left[\sup_{\|w\|_{1} \leq \Lambda} \sum_{i=1}^{m} \sigma_{i} x_{i} \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{\infty} \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{\infty} \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\max_{j \in [N]} \left| \sum_{i=1}^{m} \sigma_{i} x_{ij} \right| \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\max_{j \in [N]} \max_{s \in \{-1, +1\}} s \sum_{i=1}^{m} \sigma_{i} x_{ij} \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\max_{z \in A} \sum_{i=1}^{m} \sigma_{i} z_{i} \right],
$$
\n(by def. of abs. value)

where A denotes the set of vectors $\{s(x_{1j},...,x_{mj})^\top : j \in [N], s \in \{-1,+1\}\}\.$ For any $z \in A$, we have $\sup_{z\in A} \|z\|_2 = \|X^\top\|_{2,\infty}$. Thus, by Massart's lemma, since A contains at most 2N elements, the following inequality holds:

$$
\widehat{\mathfrak{R}}_S\big(\mathcal{H}\big)\leq \Lambda \big\|X^\top\big\|_{2,\infty} \frac{\sqrt{2\log(2N)}}{m},
$$

which concludes the proof.

(b) For $p \leq 2$, we have

$$
\mathbb{E}\left[\left|\sum_{i=1}^{m} \sigma_{i} a_{i}\right|^{p}\right] \leq \left(\mathbb{E}\left[\left|\sum_{i=1}^{m} \sigma_{i} a_{i}\right|^{2}\right]\right)^{\frac{p}{2}}
$$
\n
$$
= \left(\mathbb{E}\left[\sum_{i,j=1}^{m} \sigma_{i} \sigma_{j} (a_{i} a_{j})\right]\right)^{\frac{p}{2}}
$$
\n
$$
= \left(\sum_{i=1}^{m} a_{i}^{2}\right)^{\frac{p}{2}}
$$
\n
$$
= C_{p} \left(\sum_{i=1}^{m} a_{i}^{2}\right)^{\frac{p}{2}},
$$
\n
$$
\mathbb{E}[\sigma_{i}] \mathbb{E}[\sigma_{j}] = \mathbb{E}[\sigma_{i}] \mathbb{E}[\sigma_{j}] = 0 \text{ for } i \neq j
$$

where $C_p = 1$. Next we consider the case where $p > 2$. Without loss of generality, rescale such that $\sum_{i=1}^{m} a_i^2 = 1$. Use the identity in the hint, we have

$$
\mathbb{E}\left[\left|\sum_{i=1}^{m} \sigma_{i} a_{i}\right|^{p}\right] = \int_{0}^{+\infty} \mathbb{P}\left[\left|\sum_{i=1}^{m} \sigma_{i} a_{i}\right|^{p} > t\right] dt \qquad \left(\mathbb{E}[|X|] = \int_{0}^{+\infty} \mathbb{P}[|X| > t] dt\right)
$$
\n
$$
= \int_{0}^{+\infty} \mathbb{P}\left[\left|\sum_{i=1}^{m} \sigma_{i} a_{i}\right| > t^{\frac{1}{p}}\right] dt
$$
\n
$$
\leq 2 \int_{0}^{+\infty} e^{-\frac{t^{\frac{2}{p}}}{2}} dt \qquad \left(\sum_{i=1}^{m} a_{i}^{2} = 1, \text{Hoeffding's inequality}\right)
$$
\n
$$
= C_{p} \left(\sum_{i=1}^{m} a_{i}^{2}\right)^{\frac{p}{2}},
$$

where $C_p = 2 \int_0^{+\infty}$ $\int_0^{+\infty} e^{-\frac{t^{\frac{2}{p}}}{2}} dt$.

(c) For $p \geq 2$, we have

 $\mathbb{E}\Biggl[\Biggl|\sum\limits_{i=1}^m$ $\sigma_i a_i$ | p $\vert \geq \vert$ ⎝ E σ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2$ ∣ m $\sum_{i=1}$ $\sigma_i a_i$ | $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ ⎞ ⎠ $\frac{p}{2}$ (Jensen's inequality) $=\left(\begin{array}{c}\right.$ ⎝ E σ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ m $\sum_{i,j=1}$ $\sigma_i\sigma_j(a_ia_j)$ ⎤ ⎥ ⎥ ⎥ ⎦ λ ⎠ $\frac{p}{2}$ = (m $\sum_{i=1}$ a_i^2 $\frac{p}{2}$ $(\mathbb{E}[\sigma_i \sigma_j] = \mathbb{E}[\sigma_i] \mathbb{E}[\sigma_j] = 0$ for $i \neq j)$ $= c_p$ m $\sum_{i=1}$ a_i^2 $\frac{p}{2}$

where $c_p = 1$. Next we consider the case where $p < 2$. Use the inequality shown in (b), we have

$$
\sum_{i=1}^{m} a_i^2 = \mathbb{E} \left[\left| \sum_{i=1}^{m} \sigma_i a_i \right|^2 \right]
$$
\n
$$
= \mathbb{E} \left[\left| \sum_{i=1}^{m} \sigma_i a_i \right|^2 \right] \sum_{i=1}^{2p} \sigma_i a_i \right]^2 = \frac{2p}{3}
$$
\n
$$
\leq \left(\mathbb{E} \left[\left| \sum_{i=1}^{m} \sigma_i a_i \right|^p \right] \right)^{\frac{2}{3}} \left(\mathbb{E} \left[\left| \sum_{i=1}^{m} \sigma_i a_i \right|^6 \right] \right)^{\frac{1}{3}}
$$
\n
$$
\leq \left(\mathbb{E} \left[\left| \sum_{i=1}^{m} \sigma_i a_i \right|^p \right] \right)^{\frac{2}{3}} \left(\mathbb{E} \left[\left| \sum_{i=1}^{m} \sigma_i a_i \right|^6 \right] \right)^{\frac{1}{3}}
$$
\n
$$
\leq \left(\mathbb{E} \left[\left| \sum_{i=1}^{m} \sigma_i a_i \right|^p \right] \right)^{\frac{2}{3}} C_{6-2p}^{\frac{1}{3}} \left(\sum_{i=1}^{m} a_i^2 \right)^{1-\frac{p}{3}}.
$$
\n(by the ineq. shown in (b))

Rearranging the terms, we obtain

$$
\left(\frac{1}{C_{6-2p}}\right)^{\frac{1}{2}} \left(\sum_{i=1}^{m} a_i^2\right)^{\frac{p}{2}} \leq \mathbb{E}\left[\left|\sum_{i=1}^{m} \sigma_i a_i\right|^p\right],
$$

which concludes the proof.

(d) For any vector u, we denote by ∣u∣ the vector derived from u by taking the absolute value of each of its components.

$$
\widehat{\mathfrak{R}}_{S}(\mathcal{H}) = \frac{1}{m} \mathbb{E} \left[\sup_{\|w\|_{1} \leq \Lambda} \sum_{i=1}^{m} \sigma_{i} w \cdot x_{i} \right]
$$
\n
$$
= \frac{1}{m} \mathbb{E} \left[\sup_{\|w\|_{1} \leq \Lambda} w \sum_{i=1}^{m} \sigma_{i} x_{i} \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{\infty} \right]
$$
\n
$$
\geq \frac{\Lambda}{m} \left\| \mathbb{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\| \right] \right\|_{\infty}
$$
\n
$$
= \frac{\Lambda}{m} \max_{j \in [N]} \mathbb{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\| \right] \right\|_{\infty}
$$
\n
$$
\geq c_{1} \frac{\Lambda}{m} \max_{j \in [N]} \left(\sum_{i=1}^{m} \sigma_{i} x_{i} \right)^{\frac{1}{2}}
$$
\n
$$
\geq c_{1} \frac{\Lambda}{m} \max_{j \in [N]} \left(\sum_{i=1}^{m} x_{i}^{2} \right)^{\frac{1}{2}}
$$
\n
$$
\text{(by the ineq. shown in (c))}
$$
\n
$$
= c_{1} \frac{\Lambda}{m} \left\| X^{\top} \right\|_{2, \infty}.
$$

(e) Consider a data set with $N = 2^m$. Take $\{x_i\}_{i=1}^m$ $_{i=1}^{m}$ so that the rows of X are the set $\{-1,+1\}^{m}$. Then, $||X^{\dagger}||_{2,\infty} = \sqrt{m}$ and the empirical Rademacher complexity can be computed as follows.

$$
\widehat{\mathfrak{R}}_{S}(\mathcal{H}) = \frac{1}{m} \mathbb{E} \left[\sup_{\|w\|_{1} \leq \Lambda} \sum_{i=1}^{m} \sigma_{i} w \cdot x_{i} \right]
$$
\n
$$
= \frac{1}{m} \mathbb{E} \left[\sup_{\|w\|_{1} \leq \Lambda} w \sum_{i=1}^{m} \sigma_{i} x_{i} \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{\infty} \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\max_{j \in [N]} \left| \sum_{i=1}^{m} \sigma_{i} x_{ij} \right| \right]
$$
\n
$$
= \frac{\Lambda}{m} \mathbb{E} \left[\max_{\sigma} \left| \sum_{i=1}^{m} \sigma_{i} x_{ij} \right| \right]
$$
\n
$$
= \frac{\Lambda}{m \sqrt{\log 2}} \sqrt{\log(N)} \|X^{\top}\|_{2, \infty} .
$$
\n
$$
(N = 2^{m}, \|X^{\top}\|_{2, \infty} = \sqrt{m})
$$

Therefore, the dimension dependence of $\sqrt{\log N}$ in the upper bound is tight.