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A VC dimension

1. We denote by Bn the set of all closed balls in Rn. That is, Bn is the class of all subsets of the form

{x ∈ Rn ∶ ∥x − x0∥2 ≤ r2} for some x0 ∈ Rn and r ≥ 0.

(a) Show that there exists a set of n + 1 points in Rd that can be shattered by Bn. Conclude that
VCdim(Bn) ≥ n + 1.

(b) Show that the VC dimension of Bn is at most equal to the VC dimension of hyperplanes in Rn+1.
Conclude that VCdim(Bn) ≤ n + 2.

(c) Show that VCdim(B2) = 3.

B Maximum Margin Multiple Kernel

1. Let X denote the input space and Y = {1, . . . , c} a set of c ≥ 2 classes. Let S = ((x1, y1), . . . , (xm, ym)) ∈
(X × Y)m be a sample of size m. Assume that p ≥ 1 positive semi-definite (PSD) base kernels over
X ×X are given. Consider a hypothesise set based on a kernel Kµ of the form Kµ = ∑p

k=1 µkKk where

µ = (µ1,⋯, µp)⊺ is chosen from ∆q = {µ ∶ µ ≥ 0, ∥µ∥q = 1} with q ≥ 1. The multi-class maximum margin

multiple kernel (M3K) algorithm [CMR13] is based on the following optimization:

min
µ∈M̂q,w,ξ
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subject to: ∀i ∈ [1,m], ξi ≥ 0, ∀y ≠ yi,
ξi ≥ 1 − (wyi ⋅Φ(xi) −wy ⋅Φ(xi)),

(1)

where ⋅ is defined as Am×n ⋅ Bm×n = ∑i,j A(i, j)B(i, j) for any two matrices A and B with the

same dimension m × n, M̂q ⊂ ∆q is a data-dependent set, C ≥ 0 is a regularization parameter,

wy = (wy,1, . . . ,wy,p)⊺ is the associated hypothesis for any class y ∈ Y, Φ(x) = (ΦK1
(x), . . . ,ΦKp(x))

⊺

and ΦK denotes a feature mapping associated to the kernel K.

(a) Read the Chapter 9.1 - 9.3.1 in the textbook and the paper [CMR13] to understand better the
multi-class maximum margin multiple kernel (M3K) algorithm. Write down the explicit expression
of M̂q and briefly explain each term appearing in that expression.

(b) Show how to derive the dual optimization of M3K (1):

min
µ∈M̂q

max
α∈Rm×c

m

∑
i=1

αi ⋅ eyi −
C

2

m

∑
i,j=1
(αi ⋅αj)

p

∑
k=1

µkKk(xi, xj)

subject to: ∀i ∈ [1,m], αi ≤ eyi ∧αi ⋅ 1 = 0,
(2)

where α ∈ Rm×c is a matrix, αi is its ith row, and el is the lth unit vector in Rc, l ∈ [1, c].
Prove the equivalence of primal (1) and dual (2).

(Note: you should write down every necessary step and rigorously say why the theorems apply.)

1



C SVMs hand-on

(Note: please share a GitHub link to your open source code in the submission. Any submissions that do not
have the code link will obtain a zero point. The graders will check the main lines to ensure that what was
done was conceptually correct. The grade will be based on both the code and the answer.)

1. Download and install the libsvm software library from:

https://www.csie.ntu.edu.tw/~cjlin/libsvm

and briefly consult the documentation to become more familiar with the tools.

2. Download the Abalone data set:

http://archive.ics.uci.edu/ml/datasets/Abalone

Use the libsvm scaling tool to scale the features of all the data. Use the first 3133 examples for
training, the last 1044 for testing. The scaling parameters should be computed only on the training
data and then applied to the test data.

3. Consider the binary classification that consists of distinguishing classes 1 through 9 from the rest. Use
SVMs combined with polynomial kernels to tackle this binary classification problem.

To do that, randomly split the training data into five equal-sized disjoint sets. For each value of the
polynomial degree, d = 1,2,3,4,5, plot the average cross-validation error plus or minus one standard
deviation as a function of C (let other parameters of polynomial kernels in libsvm be equal to their
default values), varying C in powers of 3, starting from a small value C = 3−k to C = 3k, for some value
of k. k should be chosen so that you see a significant variation in training error, starting from a very
high training error to a low training error. Expect longer training times with libsvm as the value of
C increases.

4. Let (C∗, d∗) be the best pair found previously. Fix C to be C∗. Plot the five-fold cross-validation error
and the test errors for the hypotheses obtained as a function of d. Plot the average number of support
vectors obtained as a function of d. How many of the support vectors lie on the margin hyperplanes?

5. Fix (C,d) to be (C∗, d∗). Plot the training and test errors as a function of the training sample.

6. Sparse SVM. One can give two types of arguments in favor of the SVM algorithm: one based on
the sparsity of the support vectors, another based on the notion of margin. Suppose that instead of
maximizing the margin, we choose instead to maximize sparsity by minimizing the L1 norm of the
vector α that defines the weight vector w. This gives the following optimization problem for a kernel
function K:

min
α,b,ξ
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subject to yi
⎛
⎝

m

∑
j=1

αjyjK(xi,xj) + b
⎞
⎠
≥ 1 − ξi, i ∈ [1,m]

ξi, αi ≥ 0, i ∈ [1,m].

(3)

(a) Derive the equivalent dual optimization problem of (3) in terms of the feature mapping Φ asso-
ciated to the kernel K and write the proof clearly.

(b) Derive the equivalent hinge loss minimization problem of (3) and write the proof clearly. Compare
it with an instance of the equivalent hinge loss minimization problem of SVM shown in class.

(c) Apply Stochastic Gradient Descent to solve the optimization problem. Plot the five-fold cross-
validation training and test errors for the hypotheses obtained based on the solution α as a
function of d, for the best value of C measured on the validation set.
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