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A Concentration bound

1. We denote by X the input space and S an i.i.d sample of size m.

(a)

(b)

()

Show that there does not exist any hypothesis h:X — {0,1} such that the following inequality
holds with probability at least e™™/3:

R(h) - Re(h) > %

Suppose that the target concept to learn is ¢ = 1 and the target distribution D is the uniform
distribution over the interval [0, 1]. Design an algorithm such that for any sample S, the returned
hypothesis hg: X — {0,1} satisfies the following equality:

R(hs) - Rs(hs) = 1.
Why does part (b) not contradict part (a)?

B PAC-Bayesian bound

1. Let H be a hypothesis set of functions mapping X to R and let £ be a loss function mapping R x Y
o [0,1]. Denote the loss of a hypothesis h at point z = (x,y) € X xY = Z by L(h,z) = {(h(z),y).
Let P and @ be probability measures over H. In the PAC-Bayes framework, P represents the prior
probability over the hypothesis class, i.e., the probability that a particular hypothesis is selected by the
learning algorithm. @ represents the posterior probability selected after observing the training sample.
In this exercise, we will derive learning bounds for randomized algorithms, in terms of the relative
entropy of @ and P, denoted by D(Q || P) (See E.2 of the textbook for the definition).

(a)

Define G, via G, = {Q € A(H) : D(Q || P) < p}, where we denote by A(H) the family of distribu-
tions over H. Use the Rademacher complexity bound to show that for any é > 0, with probability
at least 1 -6, the following inequality holds for all () € G:

E [L(h.2)) <, [ ZL(h zz)]+29‘i (9“)+\/1°i{S

z~D

It can be shown that the following inequality holds:

R (S)) <\ /%".

Use this information to show that for any § > 0, with probability at least 1 — 4, the following
inequality holds for all @ € A(H):

E [L(h,2)] < E[l iL(h Z] ( \;E)\/max{D(Q|P),1}+ 10g%.

~ m 2m

(Hint: use the doubling trick, i.e., for some a > 0, A(H) can be written as the union of
{QeA(H):D(Q || P)<a} and U {Q € A(H):a2"! <D(Q || P) < a27}. Then, use the union
j=1

bound to extend the result in part (a). Note that Va +b < \/a + /b and % <Llfort>0.)



C Rademacher complexity

1. Let XcRY and let S = ((z1,91)s- -+, (T, ¥m)) € (X xY)™ be a sample of size m. In this problem, we
consider the following linear hypothesis set

H={zrw-z:|w| <A}

We denote by X the matrix X = [x1,...,Z, ] whose columns are the sample points. The (p, q)-group
norm of a matrix M is defined as the ¢ norm of the p norm of the columns of M, that is |M], , =

I (121 ”p,...,HMNHp)“q, where M;s are the columns of M. We denote by {o;};"; the Rademacher

variables, that is independent uniform random variables taking values in {-1,+1}.

(a)

(b)

Show that the empirical Rademacher complexity of H admits the following upper bound:

—~ A
Ro(00) < L VTREM,

(Hint: use Massart’s lemma.)

Show that for any 0 < p < oo, there exists a positive constant C), such that the following inequality
holds for all m > 1 and real numbers a1, ..., ap,.

el Jea(Se)

(Hint: For p <2, you can use Jensen’s inequality. For p > 2, w.l.o.g., rescale such that Y, a? =1,
use the identity E[X] = [,"" P[X > ¢]dt for X >0.)

Show that for any 0 < p < co, there exists a positive constant ¢, such that the following inequality
holds for all m > 1 and real numbers aq, ..., an,.
p]
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(Hint: For p > 2, you can use Jensen’s inequality. For p < 2, use Holder’s inequality and part (b).)
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Use the inequality shown in part (c), show that the empirical Rademacher complexity of H admits
the following lower bound:
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Rs(H) 21— | X7, .,
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where ¢; is some positive constant in part (c) for p =1.

By providing an example, show that the dimension dependence of \/log N in the upper bound in
part (a) is tight (Hint: consider a data set with N =2™).



