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A. Boosting

1. Implement AdaBoost with boosting stumps and apply the algorithm to the
spambase data set of HW2 with the same training and test sets. Plot the av-
erage cross-validation error plus or minus one standard deviation as a func-
tion of the number of rounds of boosting T by selecting the value of this pa-
rameter out of {10, 102, . . . , 10k} for a suitable value of k, as in HW2. Let
T ∗ be the best value found for the parameter. Plot the error on the training
and test set as a function of the number of rounds of boosting for t ∈ [1, T ∗].
Compare your results with those obtained using SVMs in HW2.

Solution:

Figure 1: Cross validation error shown with±1 standard deviation (Figure courtesy
of Chaitanya Rudra).

In figure 1 we see a typical plot of the average cross-validation performance
shown with ±1 standard deviation. Note that the error descreases exponen-
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Figure 2: Test and training error (Figure courtesy of Chaitanya Rudra).

tially and eventually levels out after roughly 400 iterations. In figure 2 we
see the training and test error after T ∗ = 400 rounds. Note that the test error
eventually levels off, while the training error continues to decrease towards
zero. Overall, the AdaBoost algorithm performs only slightly better than
SVM algorithm increasing accuracy by about 1%.

2. Consider the following variant of the classification problem where, in addi-
tion to the positive and negative labels +1 and −1, points may be labeled
with 0. This can correspond to cases where the true label of a point is un-
known, a situation that often arises in practice, or more generally to the fact
that the learning algorithm incurs no loss for predicting −1 or +1 for such
a point. Let X be the input space and let Y = {−1, 0,+1}. As in standard
binary classification, the loss of f : X → R on a pair (x, y) ∈ X × Y is
defined by 1yf(x)<0.

Consider a sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m and a hy-
pothesis set H of base functions taking values in {−1, 0,+1}. For a base
hypothesis ht ∈ H and a distribution Dt over indices i ∈ [1,m], define εst
for s ∈ {−1, 0,+1} by εst = Ei∼Dt [1yiht(xi)=s].

(a) Derive a boosting-style algorithm for this setting in terms of εst s, using
the same objective function as that of AdaBoost. You should carefully
justify the definition of the algorithm.

Solution: Say a ‘boosting-style algorithm’ is just AdaBoost with a pos-
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sibly different step size αt. Recall these definitions from the descrip-
tion of AdaBoost: The final hypothesis is f(x) =

∑
t αtht(x) and the

normalization constant in round t isZt =
∑

iDt(i) exp(−αtyiht(xi)).
We proved in class that

1

m

∑
i

1yif(xi)<0 ≤
1

m

∑
i

exp(−yif(xi)) =
∏
t

Zt

and that AdaBoost’s step size can be derived by minimizing this objec-
tive in each round t. Taking that same approach, observe that

Zt =
∑
i

Dt(i) exp(−αtyiht(xi)) = ε0t + ε−t exp(αt) + ε+t exp(−αt).

Differentiating the right-hand side with respect to αt and setting equal

to zero shows that Zt is minimized by letting αt = 1
2 log

(
ε+t
ε−t

)
.

(b) What is the weak-learning assumption in this setting?

Solution: One possible assumption is ε+t −ε
−
t√

1−ε0t
≥ γ > 0. Informally,

this assumption says that the difference between the accuracy and error
of each weak hypothesis is non-negligible relative to the fraction of
examples on which the hypothesis makes any prediction at all. In part
(d) we will prove that this assumption suffices to drive the training error
to zero.

(c) Write the full pseudocode of the algorithm.

Solution:

1. Given: Training examples ((x1, y1), . . . , (xm, ym)).
2. Initialize D1 to the uniform distribution on training examples.
3. for t = 1, . . . , T :

a. ht ← base classifier in H .

b. αt ← 1
2 log

(
ε+t
ε−t

)
.

c. For each i = 1, . . . ,m: Dt+1(i) ← Dt(i) exp(−αtyiht(xi))
Zt

,
where Zt ←

∑
iDt(i) exp(−αtyiht(xi)) is the normaliza-

tion constant.
i. f ←

∑T
t=1 αtht.

4. Return: sign(f).
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(d) Give an upper bound on the training error of the algorithm as a function
of the number of rounds of boosting and εst s.

Solution: Plug in the value ofαt from part (a) intoZt = ε0t+ε
−
t exp(αt)+

ε+t exp(−αt) to obtain Zt = ε0t + 2
√
ε−t ε

+
t . Therefore

1

m

∑
i

1yif(xi)<0 ≤
∏
t

Zt =
∏
t

(
ε0t + 2

√
ε−t ε

+
t

)
.

Morever, if the weak learning assumption from part (b) is satisfied then

ε0t + 2

√
ε−t ε

+
t = ε0t +

√
(1− ε0t )2 − (ε+t − ε

−
t )2

= ε0t + (1− ε0t )

√
1− (ε+t − ε

−
t )2

(1− ε0t )2

≤

√
1− (ε+t − ε

−
t )2

1− ε0t
≤
√

1− γ2.

The first equality follows from (ε+t + ε−t )2 − (ε+t − ε−t )2 = 4ε+t ε
−
t

(just multiply and gather terms) and ε+t + ε−t = 1 − ε0t . The first
inequality follows from the fact that square root is concave on [0,∞),
and thus λ

√
x + (1 − λ)

√
y ≤

√
λx+ (1− λ)y for λ ∈ [0, 1]. The

last inequality follows from the weak learning assumption.

Therefore we have 1
m

∑
i 1yif(xi)<0 ≤

(√
1− γ2

)T
≤ exp

(
−γ2T

2

)
,

where we used 1 + x ≤ exp(x).

B. On-line learning

The objective of this problem is to show how another regret minimization algorithm
can be defined and studied. Let L be a loss function convex in its first argument
and taking values in [0,M ].

We will adopt the notation used in the lectures and assume N > e2. Addition-
ally, for any expert i ∈ [1, N ], we denote by rt,i the instantaneous regret of that
expert at time t ∈ [1, T ], rt,i = L(ŷt, yt) − L(yt,i, yt), and by Rt,i his cumulative
regret up to time t: Rt,i =

∑t
s=1 rt,i. For convenience, we also define R0,i = 0 for

all i ∈ [1, N ]. For any x ∈ R, (x)+ denotes max(x, 0), that is the positive part of
x, and for x = (x1, . . . , xN )> ∈ RN , (x)+ = ((x1)+, . . . , (xN )+)>.
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Letα > 2 and consider the algorithm that predicts at round t ∈ [1, T ] according
to ŷt =

∑n
i=1 wt,iyt,i∑n
i=1 wt,i

, with the weight wt,i defined based on the αth power of the

regret up to time (t − 1): wt,i = (Rt−1,i)
α−1
+ . The potential function we use to

analyze the algorithm is based on the function Φ defined over RN by Φ: x 7→
‖(x)+‖2α =

[∑N
i=1(xi)

α
+

] 2
α .

1. Show that Φ is twice differentiable over RN − B, where B is defined as
follows:

B = {u ∈ RN : (u)+ = 0}.
Solution: For x 6∈ B, we can write Φ(x) = φ2(

∑N
i=1 φ1(xi)), where

x1, . . . , xN denote the components of x and φ1 : R→ R and φ2 : (0,∞+)→
R are the functions defined by

∀u ∈ R, φ1(u) = (u)α+ (1)

∀u ∈ (0,∞+), φ2(u) = u
2
α . (2)

It is not hard to see that both φ1 and φ2 are twice (continously) differentiable,
which shows, by composition, the same property for Φ over RN −B. ut

2. For any t ∈ [1, T ], let rt denote the vector of instantaneous regrets, rt =
(rt,1, . . . , rt,N )>, and similarly Rt = (Rt,1, . . . , Rt,N )>. We define the
potential function as Φ(Rt) = ‖(Rt)+‖2α. Compute∇Φ(Rt−1) for Rt−1 6∈
B and show that∇Φ(Rt−1) · rt ≤ 0 (hint: use the convexity of the loss with
respect to the first argument).

Solution: For any i ∈ [1, N ],

∂Φ(Rt−1)

∂Rt−1,i
=

2

α
α(Rt−1,i)

α−1
+

[ N∑
i=1

(Rt−1,i)
α
+

] 2−α
α = 2wt,i‖(Rt−1)+‖2−αα .

(3)
Thus, we can write

sign(∇Φ(Rt) · rt) = sign
( N∑
i=1

wt,irt,i
)

= sign
( N∑
i=1

wt,i(L(ŷt, yt)− L(yt,i, yt)
)

= sign
( N∑
i=1

wt,i∑N
i=1wt,i

(L(ŷt, yt)− L(yt,i, yt)
)
.
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Now, by the convexity of the first argument of L, the following holds:

N∑
i=1

wt,i∑N
i=1wt,i

(L(ŷt, yt)− L(yt,i, yt))

= L(ŷt, yt)−
N∑
i=1

wt,i∑N
i=1wt,i

L(yt,i, yt) ≤ 0,

since ŷt =
∑n
i=1 wt,iyt,i∑n
i=1 wt,i

. ut

3. (Bonus question) Prove the inequality r>[∇2Φ(u)]r ≤ 2(α − 1)‖r‖2α valid
for all r ∈ RN and u ∈ RN−B (hint: write the Hessian∇2Φ(u) as a sum of
a diagonal matrix and a positive semi-definite matrix multiplied by (2− α).
Also, use Hölder’s inequality generalizing Cauchy-Schwarz: for any p > 1
and q > 1 with 1

p + 1
q = 1 and u,v ∈ RN , |u · v| ≤ ‖u‖p‖v‖q).

Solution: As already seen, for any i ∈ [1, N ], we have

∂Φ(u)

∂ui
= 2(ui)

α−1
+ ‖(u)+‖2−αα . (4)

For j 6= i, we obtain:

∂2Φ(u)

∂uj∂ui
= 2(2− α)(uj)

α−1
+ (ui)

α−1
+ ‖(u)+‖2(1−α)α . (5)

We also have

∂2Φ(u)

∂u2i
= 2(α−1)(ui)

α−2
+ ‖(u)+‖2−αα +2(2−α)(ui)

2(α−1)
+ ‖(u)+‖2(1−α)α .

(6)
Consider the diagonal matrix D = diag((u1)

α−2
+ , . . . , (uN )α−2+ ) and the

matrix M defined by Mij = (uj)
α−1
+ (ui)

α−1
+ . In view of the previous ex-

pressions, we can write

∇2Φ(u) = 2(α− 1)‖(u)+‖2−αα D + 2(2− α)‖(u)+‖2(1−α)α M. (7)

M is a positive semi-definite matrix since M = vv> with v = (uα−11 , . . . , uα−1N )>.
Thus, for any r, r>Mr ≥ 0. Since 2− α < 0, we can write

r>∇2Φ(u)r ≤ 2(α− 1)‖(u)+‖2−αα r>Dr

= 2(α− 1)‖(u)+‖2−αα

N∑
i=1

(ui)
α−2
+ r2t,i.
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By Hölder’s inequality, the following holds:

N∑
i=1

(ui)
α−2
+ r2t,i ≤

[ N∑
i=1

((ui)
α−2
+ )

α
α−2

]α−2
α
[ N∑
i=1

(r2i )
α
2

] 2
α

= ‖(u)+‖α−2α ‖r‖2α.

This implies that r>∇2Φ(u)r ≤ 2(α− 1)‖r‖2α. ut

4. Using the answers to the two previous questions and Taylor’s formula, show
that for all t ≥ 1, Φ(Rt)−Φ(Rt−1) ≤ (α−1)‖rt‖2α, if γRt−1+(1−γ)Rt 6∈
B for all γ ∈ [0, 1].

Solution: By assumption, the segment [Rt−1,Rt] does not meet B and thus
Φ is twice differentiable over the interior (Rt−1,Rt). Thus, by Taylor’s
formula, there exists u ∈ (Rt−1,Rt) such that

Φ(Rt)− Φ(Rt−1) = ∇(Rt−1) · rt +
1

2
rTt ∇2(u)rt ≤

1

2
rTt ∇2(u)rt

≤ (α− 1)‖rt‖2α,

where we used the inequalities obtained in the two previous questions. ut

5. Suppose there exists γ ∈ [0, 1] such that (1 − γ)Rt−1 + γRt ∈ B. Show
that Φ(Rt) ≤ (α− 1)‖rt‖2α.

Solution: For that γ, by definition, we have (Rt−1 + γrt)+ = 0. Observe
that for any two scalars c and d, (c+ d)+ ≤ c+ + d+ and therefore that

(Rt−1+rt)+ ≤ (Rt−1+γrt)++(1−γ)(rt)+ = (1−γ)(rt)+ ≤ (rt)+. (8)

u 7→ ‖u‖2α is a non-decreasing function of each component ui, thus Φ(Rt) =
Φ(Rt−1 + rt) ≤ ‖(rt)+‖2α. Since α > 2, this implies Φ(Rt) ≤ (α −
1)‖(rt)+‖2α. ut

6. Using the two previous questions, derive an upper bound on Φ(RT ) ex-
pressed in terms of T , N , and M .

Solution: In view of the two previous questions, the inequality Φ(Rt) −
Φ(Rt−1) ≤ (α− 1)‖rt‖2α holds in all cases. Summing up these inequalities
for all t ∈ [1, T ], we obtain

Φ(RT ) = Φ(RT )− Φ(R0) =
T∑
t=1

Φ(Rt)− Φ(Rt−1) ≤ (α− 1)
T∑
t=1

‖rt‖2α.

Since |rt,i| ≤M for all t and i, this yields Φ(RT ) ≤ (α− 1)N
2
αM2T . ut
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7. Show that Φ(RT ) admits as a lower bound the square of the regretRT of the
algorithm.

Solution: By definition of the regret,

RT = max
i∈[1,N ]

RT,i ≤ ‖RT ‖α =
√

Φ(RT ).

Note that this implies that Φ(RT ) ≥ (RT )2+, which is not exactly the state-
ment given in the question. However, it suffices for proving upper bounds
on the regret, which is the motivation behind our construction of Φ.

8. Using the two previous questions give an upper bound on the regret RT . For
what value of α is the bound the most favorable? Give a simple expression
of the upper bound on the regret for a suitable approximation of that optimal
value.

Solution: In view of the inequalities of the two previous questions, we have

RT ≤
√

(α− 1)N
2
αM2T .

For N > e2, the function α 7→ (α − 1)N
2
α reaches its minimum over

(2,+∞) at
(

logN +
√

log2N − logN
)
, which is approximately 2 logN .

Plugging in that value yields the bound

RT ≤M
√

(2 logN − 1)eT .
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