
Mehryar Mohri
Foundations of Machine Learning
Courant Institute of Mathematical Sciences
Homework assignment 3
April 5, 2013
Due: April 19, 2013

A. Kernels

1. Let X be a finite set. Show that the kernel K defined over 2X , the set of
subsets of X , by

∀A,B ∈ 2X ,K(A,B) = exp
(
− 1

2
|A∆B|

)
,

where A∆B is the symmetric difference of A and B is PDS (hint: you could
use the fact that K is the result of the normalization of a kernel function
K ′). Note that this could define a similarity measure for documents based
on the set of their common words, or n-grams, or gappy n-grams, or a sim-
ilarity measure for images based on some patterns, or a similarity measure
for graphs based on their commong sub-graphs.

Solution: k : (A,B) 7→ |A ∩ B| is a PDS kernel over 2X since k(A,B) =∑
x∈X 1A(x)1B(x) = Φ(A) · Φ(B), where, for any subset A, Φ(A) ∈

{0, 1}|X | is the vector whose coordinate indexed by x ∈ X is 1 if x ∈ A, 0
otherwise. Since k is PDS, K ′ = exp(k) is also PDS (theorem presented in
class: PDS property preserved by composition with power series). Since K
is the result of the normalization of K ′, it is also PDS. ut

2. Let X be a finite set. Let K0 be a PDS kernel over X , show that K ′ defined
by

∀A,B ∈ 2X ,K ′(A,B) =
∑

x∈A,x′∈B

K0(x, x′)

is a PDS kernel.

Solution: Let Φ0 be a feature mapping associated to k0, then K ′(A,B) =∑
x∈A,x′∈B φ0(x) · φ0(x′) =

(∑
x∈A φ0(x)

)
·
(∑

x′∈B φ0(x′)
)

= Ψ(A) ·
Ψ(B), where for any subset A, Ψ(A) =

∑
x∈A φ0(x). ut

1

3. Show that K defined by K(x, x′) = 1√
1−(x·x′)

for all x,x′ ∈ X = {x ∈

RN : ‖x‖2 < 1} is a PDS kernel. Bonus point: show that the dimension of
the feature space associated to K is infinite (hint: one method to show that
consists of finding an explicit expression of a feature mapping Φ).

Solution: f : x 7→ 1√
1−x

admits the Taylor series expansion

f(x) =
∞∑

n=0

(
1/2
n

)
(−1)nxn

for |x| < 1, where
(
1/2
n

)
=

1
2
(1
2
−1)···(1

2
−n+1)

n! . Observe that
(
1/2
n

)
(−1)n > 0

for all n ≥ 0, thus, the coefficients in the power series expansion are all
positive. Since the radius of the convergence of the series is one and that by
the Cauchy-Schwarz inequality |x′ · x| ≤ ‖x′‖‖x‖ < 1 for x,x′ ∈ X , by
the closure property theorem presented in class, (x,x′) 7→ f(x′ ·x) is a PDS
kernel.

Now, let an =
(
1/2
n

)
(−1)n. Then, for x,x′ ∈ X ,

f(x′ · x) =
∞∑

n=0

an

(N∑
i=1

xix
′
i

)n

=
∞∑

n=0

an

∑
s1+···+sN=n

(
n

s1, . . . , sN

)
(xi1x

′
i1)

s1 · · · (xiN x′iN)sN

=
∑

s1,...,sN≥0

as1+···+sN

(
s1 + · · ·+ sN

s1, . . . , sN

)
(xi1x

′
i1)

s1 · · · (xiN x′iN)sN ,

where the sums can be permuted since the series is absolutely summable.
Thus, we can write f(x′ · x) = Φ(x) · Φ(x′) with

Φ(x) =
(√

as1+···+sN

(
s1 + · · ·+ sN

s1, . . . , sN

)
xs1

i1
· · ·xsN

iN

)
s1,...,sN≥0

.

Φ is a mapping to an infinite-dimensional space. ut

B. Support Vector Machines

1. Download and install the libsvm software library from:

http://www.csie.ntu.edu.tw/˜cjlin/libsvm/ ,

2

and briefly consult the documentation to become more familiar with the
tools.

2. Consider the splice data set

http://www.cs.toronto.edu/˜delve/data/splice/desc.html .

Download the already formatted training and test files of that dataset from
http://www.cs.nyu.edu/˜mohri/ml13/splice.train.txt

http://www.cs.nyu.edu/˜mohri/ml13/splice.test.txt .

Use the libsvm scaling tool to scale the features of all the data. The scaling
parameters should be computed only on the training data and then applied to
the test data.

Solution:

Scale training and test set.
libsvm-3.0/svm-scale -s output/scale.txt \

output/splice.train.txt > output/splice.train.scaled.txt
libsvm-3.0/svm-scale -r output/scale.txt \

output/splice.test.txt > output/splice.test.scaled.txt

3. Consider the corresponding binary classification which consists of distin-
guishing two types of splice junctions in DNA sequences using about 60
features. Use SVMs combined with polynomial kernels to tackle this prob-
lem.

To do that, randomly split the training data into ten equal-sized disjoint sets.
For each value of the polynomial degree, d = 1, 2, 3, 4, plot the average
cross-validation error plus or minus one standard deviation as a function
of C (let other parameters of polynomial kernels in libsvm be equal to
their default values), varying C in powers of 10, starting from a small value
C = 10−k to C = 10k, for some value of k. k should be chosen so that you
see a significant variation in training error, starting from a very high training
error to a low training error. Expect longer training times with libsvm as
the value of C increases.

Solution: Figures in this solution section are courtesy of Jinho Jang.

Figure 1 displays the cross validation error for polynomial kernels of degree
d ∈ {1, 2, 3, 4} as a function of the regularization parameter C. A direct

3

Figure 1: Validation error for SVMs on the DNA data with polynomial kernels
of varying degrees d = {1, 2, 3, 4} and regularization parameter C = 10k; k ∈
{−4,−3, . . . , 4}.

comparison of the mean CV error appears in Figure 2. Generally, we do not
see dramatic differences in performance between values of C > 102 and
d = {1, 2, 4}. As a curiosity, Figure 3 demonstrates that for C = 10, we
eventaully see an overfitting phenomenon as we increase the degree beyond
the scope of the assignment.

4

Figure 2: A direct comparison of the polynomial degrees and the validation
error for SVMs on the DNA data with polynomial kernels of varying degrees
d = {1, 2, 3, 4} and regularization parameter C = 10k; k ∈ {−4,−3, . . . , 4}.
We see that once C ≥ 102, there are not dramatic differences between the settings.

Figure 3: Validation errors for further polynomail degrees beyond those suggested
in the problem statement. The algorithm begins to overfit as the polynomial degree
increases.

5

Figure 4: The test and validation error as a function of degree (left panel) as well
as the number of total and marginal support vectors (right panel).

4. Let (C∗, d∗) be the best pair found previously. Fix C to be C∗. Plot the
ten-fold cross-validation error and the test errors for the hypotheses obtained
as a function of d. Plot the average number of support vectors obtained as
a function of d. How many of the support vectors lie on the margin hyper-
planes?

Solution: The first plot in Figure 4 shows that the test error decreases (slightly)
with an increase in degree and also that the cross-validation error is (slightly)
optimistic when compared to the test error on the held-out dataset.

The second plot shows that the total number of marginal support vectors in-
creases with d (as does the dimension of the feature space) while the total
number of overall support vectors decreases. This also implies that the num-
ber of support vectors due to mistakes is decreasing, which agrees with the
first plot. ut

5. Suppose we replace in the primal optimization problem of SVMs the penalty
term

∑m
i=1 ξi = ‖ξ‖1 with ‖ξ‖22, that is we use the quadratic hinge loss

instead. Give the associated dual optimization problem and compare it with
the dual optimization problems of SVMs.

Solution: The optimization problem for this version of SVMs can be written
as follows:

min
w,b,ξ

1
2
‖w‖2 + C

m∑
i=1

ξ2
i

subject to ∀i ∈ [1,m], yi(w · xi + b) ≥ 1− ξi ∧ ξi ≥ 0.

The objective function is convex as a sum of the two convex function w 7→
‖w‖2 and ξ 7→ ‖ξ‖2 and is infinitely differentiable. The constraints are
affine functions. Slater’s condition holds, the KKT theorem applies, and
strong duality holds. The corresponding Lagrange function can be written as

L =
1
2
‖w‖2 + C

m∑
i=1

ξ2
i −

m∑
i=1

αi[yi(w · xi + b)− 1 + ξi]−
m∑

i=1

βiξi,

with dual variables αi, βi ≥ 0. Differentiating with respect to the primal

6

variables gives:

∇wL = w −
m∑

i=1

αiyixi = 0 =⇒ w =
m∑

i=1

αiyixi

∇bL = −
m∑

i=1

αiyi = 0 =⇒
m∑

i=1

αiyi = 0

∇ξi
L = 2Cξi − αi − βi = 0 =⇒ αi + βi = 2Cξi.

Plugging in these equalities in L yields:

L = −1
2
‖w‖2 +

m∑
i=1

αi − C

m∑
i=1

ξ2
i

=
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαjyiyj(xi · xj)−
1

2C

m∑
i=1

(αi + βi)2.

Thus, this gives the following dual optimization problem:

max
α,β

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyj(xi · xj)−
1

2C

m∑
i=1

(αi + βi)2

subject to (α ≥ 0) ∧ (β ≥ 0) ∧ (
m∑

i=1

αiyi = 0).

The maximization over β clearly gives β = 0. This corresponds to the fact
that the conditions ξi ≥ 0 were in fact not necessary. In view of that, the
dual optimization problem becomes

max
α

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyj(xi · xj)−
1

2C

m∑
i=1

α2
i

subject to (α ≥ 0) ∧ (
m∑

i=1

αiyi = 0).

Let K ∈ Rm×m denote the kernel matrice associated to the sample, Kij =
xi ·xj , and K̃ the kernel matrix defined by K̃ = K+ 1

2C I. Then, the problem
can be equivalently written as

max
α

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjK̃ij

subject to (α ≥ 0) ∧ (
m∑

i=1

αiyi = 0).

7

The dual problem therefore coincides with that of SVMs in the separable
case modulo the change of the kernel matrix. ut

6. In class, we presented margin-based generalization bounds in support of the
SVM algorithm based on the standard hinge loss. Can you derive similar
margin-based generalization bounds when the quadratic hinge loss is used?
To do that, you could use instead of the margin loss function Φρ defined in
class the function Ψρ defined by

Ψρ(u) =


1 if u ≤ 0(

u
ρ − 1

)2 if u ∈ [0, ρ]

0 otherwise,

and show that it is a Lipschitz function. Compare the empirical and com-
plexity term of your generalization bound to those given in class using Φρ.

Solution: Ψρ is differentiable over]0, ρ[and its differential at u is Ψ′
ρ(u) =

2
ρ

(
u
ρ − 1

)
, thus |Ψ′

ρ(u)| ≤ 2
ρ . This can be used to show straightforwardly

that Ψρ is 2
ρ -Lipschitz. In view of that, using the same proof techniques as

those used to prove the general margin bound of slide 34, lecture 4, we can
conclude that for any δ > 0, with probability at least 1− δ,

R(h) ≤ 1
m

m∑
i=1

Ψρ(yih(xi)) +
4
ρ
Rm(H) +

√
log 1

δ

2m
.

Note that Ψρ = Φ2
ρ and that Ψρ ≤ Φρ, thus the empirical term in this bound

is always smaller than the one in the bound presented in class. But, the com-
plexity term is multiplied by a factor of 2: 4

ρRm(H) instead of 2
ρRm(H).

ut

C. Boosting

1. Let Ψ: R→ R denote the function defined by Ψ(u) = (1− u)21u≤1. Show
that Ψ is an upper bound on the binary loss function and that it is convex and
differentiable. Use Ψ to derive a boosting-style algorithm as in the case of the
exponential function used in AdaBoost using coordinate descent. Describe
the algorithm in detail.

Solution: Since Ψ ≥ 0, for u > 0, the inequality Ψ(u) ≥ 1u≤0(u) holds.
For u ≤ 0, (1 − u)2 ≥ (1 − 0)2 = 1u≤0(u). Thus, Ψ is an upper bound on
1u≤0.

8

The functions u 7→ (1− u)2 and u 7→ 0 are both continuously differentiable
and admit the same differential value, 0, at u = 1. Ψ is thus continously
differentiable. For u ≤ 1, Ψ′(u) = −2(1 − u) and for u ≥ u, Ψ′(u) = 0,
thus Ψ′ is non-decreasing and Ψ is convex.

We adopt the notation already used in class. The objective function becomes

F (α) =
m∑

i=1

Ψ(yif(xi)) =
m∑

i=1

Ψ
(
yi

T∑
t=1

αtht(xi)
)
.

We denote by ft the function defined after t rounds of boosting: ft =∑t
s=1 αshs. For convenience, we also define f0 = 0. Note that since

Ψ′ ≤ 0,
∑m

i=1 Ψ′(yift(xi)) = 0 implies that Ψ′(yift(xi)) = 0 for all
i ∈ [1,m], that is yift(xi) ≥ 1. ft is then correctly classifying all points
with margin 1. If that occurs, we can stop boosting. In the following, we
will therefore assume that

∑m
i=1 Ψ′(yift(xi)) 6= 0 for all t ∈ [1, T] where

T is the minimum of a predefined number of rounds and the last round at
which this condition holds.

The original distribution D1 is the uniform distribution over the sample:
D1(i) = 1

m for all i ∈ [1,m]. The distribution Dt at the end of the (t− 1)th
round, t ∈ [2, T] is defined by

Dt(i) =
Ψ′(yift−1(xi))∑m
i=1 Ψ′(yift−1(xi))

.

Let εt denote the coordinate descent direction at time t, which is determined
by et = argmint

dF (αt−1+ηet)
dη

∣∣
η=0

. By definition,

F (αt−1 + ηet) =
m∑

i=1

Ψ
(
− yi

t−1∑
s=1

αshs(xi)− ηyiht(xi)
)
.

Then, we can write

dF (αt−1 + ηet)
dη

∣∣∣∣
η=0

=
m∑

i=1

yiht(xi)Ψ′
(
yi

t−1∑
s=1

αshs(xi)
)

=
m∑

i=1

yiht(xi)Dt(i)
[m∑

i=1

Ψ′(yift−1(xi)
)]

= [(1− εt)− εt]
[m∑

i=1

Ψ′(yift−1(xi)
)]

= [2εt − 1]
[
−

m∑
i=1

Ψ′(yift−1(xi)
)]

,

9

SQUARELOSSBOOST(S =((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 D1(i)← 1

m
3 for t← 1 to T do
4 ht ← base classifier in H with small error εt =PrDt [ht(xi) 6=yi]
5 αt ← η . obtained using search using expression of η.
6 ft ← ft−1 + αtht

7 for i← 1 to m do
8 Dt+1(i)← Ψ′(yift(xi))Pm

i=1 Ψ′(yift(xi))

9 return h = sign(fT)

Figure 5: Pseudocode of the boosting algorithm derived.

where εt = Pri∼Dt [ht(xi) 6= yi]. Since Ψ′ ≤ 0, the base classifier ht chosen
at round t is thus the one with the smallest weighted error εt according to the
distribution Dt.

To determine the step, we search η such that:

dF (αt−1 + ηet)
dη

= 0⇔
m∑

i=1

yiht(xi)Ψ′
(
yift−1(xi) + ηyiht(xi)

)
= 0.

Let J(η) be defined by J(η) = {i : yift−1(xi) + ηyiht(xi) < 1}. Using
(yiht(xi))2 = 1 The condition can then be rewritten as

dF (αt−1 + ηet)
dη

= 0⇔
m∑

i=1

yiht(xi)
(
1− yift−1(xi)− ηyiht(xi)

)
= 0

⇔ η =
1

|J(η)|
∑

i∈J(η)

yiht(xi)− ht(xi)ft−1(xi)

⇔ η =

∑
i∈J(η) ht(xi)(yi − ft−1(xi))

|J(η)|
.

This does not provide a closed form solution, but the best step ηt at time t
can be determined using this formula by varying η. The pseudocode of the
algorithm is given in Figure 1.

2. Implement that algorithm with boosting stumps and apply the algorithm to
the same data set as question B with the same training and test sets. Plot

10

Figure 6: Cross validation error shown with ±1 standard deviation.

the average cross-validation error plus or minus one standard deviation as
a function of the number of rounds of boosting T by selecting the value
of this parameter out of {10, 102, . . . , 10k} for a suitable value of k, as in
question B. Let T ∗ be the best value found for the parameter. Plot the error
on the training and test set as a function of the number of rounds of boosting
for t ∈ [1, T ∗]. Compare your results with those obtained using SVMs in
question B.

Solution:

In figure 6 we see a typical plot of the average cross-validation performance
shown with ±1 standard deviation. Note that the error descreases exponen-
tially and eventually levels out after roughly 150 iterations. In figure ?? we
see the training and test error up to and after T ∗ = 150 rounds. Note that the
test error eventually levels off, while the training error continues to decrease

11

Figure 7: Test and training error for boosting vs number of rounds.

towards zero. Overall, the AdaBoost algorithm performs only slightly better
than SVM algorithm increasing accuracy by about 3%. ut

12

