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Problem 1: VC dimension [75 points]

(1) [25 points]

(a) [5 points] It suffices to show the existence of a set of n + 1 points
in R

n that can be shattered by halfspaces. Let x0 be the origin
and define xi as the point whose ith coordinate is 1 and all others
0. Let y0, y1, . . . , yn ∈ {−1,+1} be an arbitrary set of labels for
x0, . . . , xn. Let w be the vector whose ith coordinate is yi. Then,
the classifier defined by the hyperplane of equation w·x+y0/2 = 0
shatters x0, . . . , xn since:

sign(w · x0 + y0/2) = sign(y0 + y0/2) = y0, and
∀ i ≥ 1, sign(w · xi + y0/2) = sign(yi + y0/2) = yi.

(1)

(b) [10 points] It suffices to show that no set of n + 2 points can
be shattered by halfspaces. Let X be a set of n + 2 points. By
Radon’s theorem, it can be split into two sets X1 and X2 such
that their convex hulls intersect.

Observe that when two sets of points X1 and X2 are separated
by a hyperplane, their convex hulls are also separated by that hy-
perplane. Thus, X1 and X2 cannot be separated by a hyperplane
and X is not shattered.

(c) [10 points] Let I1 = {i ∈ [1, n + 2] : xi ∈ X1} and I2 = {i ∈ [1, n + 2] : xi ∈ X2}.
x is in the convex hull of X1 and X2 iff there exist (αi)i∈I1 and
(αi)i∈I2 such that

x =
∑

i∈I1

αixi with
∑

i∈I1

αi = 1, and

x =
∑

i∈I2

αixi with
∑

i∈I2

αi = 1.
(2)

This leads to the following system of n + 1 equations in n + 2
unknown αi:

{ ∑

i∈I1
αixi −

∑

i∈I2
αixi = 0

∑

i∈I1
αi −

∑

i∈I2
αi = 0,

(3)
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which has a non-trivial solution. This proves Radon’s theorem.

(2) [30 points] Let m ≥ 0. Note the general fact that for any concept class
C = {c1 ∩ c2 : c1 ∈ C1, c2 ∈ C2},

ΠC(m) ≤ ΠC1
(m)ΠC2

(m). (4)

Indeed, fix a set X of m points. Let Y1, . . . , Yk be the traces of C1 on
X. By definition of ΠC1

(X), k ≤ ΠC1
(X) ≤ ΠC1

(m). By definition
of ΠC2

(Yi), The traces of C2 on a subset Yi are at most ΠC2
(Yi) ≤

ΠC2
(m). Thus, the traces of C on X are at most

kΠC2
(Yi) ≤ ΠC1

(m)ΠC2
(m). (5)

For the particular case of Ck, using Sauer’s lemma, this implies that

ΠCk
(m) ≤ (ΠC1

(m))k ≤

(
em

n + 1

)k(n+1)

. (6)

If (em/(n + 1))k(n+1) < 2m, then the VC dimension of Ck is less
than m. If the VC dimension of Ck is m, then ΠCk

(m) = 2m ≤

(em/(n + 1))k(n+1). These inequalities give an upper bound and a
lower bound on VCdim(Ck). As an example, using the identity: ∀x ∈
N − {3} , log2(x) ≤ x/2, one can verify that:

VCdim(Ck) ≤ 2(n + 1)k log(3k). (7)

(3) [20 points]

(a) [5 points] When C = A ∪ B, ΠC(X) ≤ ΠA(X) + ΠB(X) for any
set X since dichotomies in ΠC(X) can be generated by A or by
B. Thus, for all m, ΠC(m) ≤ ΠA(m) + ΠB(m).

(b) [15 points] For m ≥ dA + dB + 2, by Sauer’s lemma,

ΠC(m) ≤

dA∑

i=0

(
m

i

)

+

dB∑

i=0

(
m

i

)

=

dA∑

i=0

(
m

i

)

+

dB∑

i=0

(
m − i

i

)

=

dA∑

i=0

(
m

i

)

+

dB∑

i=m−dB

(
m

i

)

(8)

≤

dA∑

i=0

(
m

i

)

+

dB∑

i=dA+2

(
m

i

)

(9)

<

m∑

i=0

(
m

i

)

= 2m. (10)
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Thus, the VC dimension of C is strictly less than dA + dB + 2:

VCdim(C) ≤ dA + dB + 1. (11)

Is this bound tight (can you show that for any dA and dB , there
exist sets A and B such that equality holds)?

Problem 2: Sample complexity [25 points]

(a) [15 points] For i = 0, . . . , n, let xi ∈ {0, 1}n be defined by xi =
(1, . . . , 1
︸ ︷︷ ︸

i 1’s

, 0, . . . , 0). Then, {x0, . . . , xn} can be shattered by C. Indeed,

let y0, . . . , yn ∈ 0, 1 be an arbitrary labeling of these points. Then, the
function h defined by:

h(x) = yi (12)

for all x with i 1’s is symmetric and h(xi) = yi. Thus, VCdim(C) ≥
n+1. Conversely, a set of n+2 points cannot be shattered by C since
at least two points would then have the same number of 1’s and will
not be distinguishable by C. Thus,

VCdim(C) = n + 1. (13)

(b) [5 points] Thus, in view of the theorems presented in class, a lower
bound on the number of training examples needed to learn symmetric
functions with accuracy 1 − ε and confidence 1 − δ is

Ω(
1

ε
log

1

δ
+

n

ε
), (14)

and an upper bound is:

O(
1

ε
log

1

δ
+

n

ε
log

1

ε
), (15)

which is only within a factor 1
ε

of the lower bound.

(c) [5 points] This is trivial. For a training data (z0, t0), . . . , (zm, tm) ∈
{0, 1}n×{0, 1} define h as the symmetric function such that h(zi) = ti
for all i = 0, . . . ,m.

Can you show that in view of the bounds given in (b), this algorithm
is optimal?
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