Spring 2006
Foundations of Machine
Learning
Course#: G22.3033-003
Instructor: Mehryar Mohri
Grades: Chien-I Liao
Mailing
List
Lectures
- Lecture 01: Introduction to machine learning, probability
review
- Lecture 02: PAC model, sample complexity for finite
hypothesis space, general bounds and inequalities
- Lecture 03: VC dimension
- Lecture 04: Support vector machines
- Lecture 05: Support vector machines, kernel methods
- Lecture 06: Perceptron algorithm, quadratic optimization
algorithms
- Lecture 07: Decision trees
- Lecture 08: Boosting, on-line learning algorithms
- Lecture 09: Multi-class classification algorithms
- Lecture 10: Regression problems and algorithms
- Lecture 11: Ranking problems and algorithms
- Lecture 12: Learning automata, Angluin-type
algorithms
- Lecture 13: Reinforcement learning
- Lecture 14: Empirical evaluation
Textbooks
There is no single textbook covering the material presented in this
course. Here is a list of books recommended for further reading:
- Luc Devroye, Laszlo Gyorfi, Gabor Lugosi.
A Probabilistic Theory of Pattern Recognition.
Springer, 1996.
- Michael J. Kearns and Umesh V. Vazirani.
An Introduction to Computational Learning Theory.
MIT Press, 1994.
- Tom M. Mitchell.
Machine learning.
McGraw-Hill, 1997.
- Bernhard Schoelkopf and Alex Smola.
Learning with Kernels.
MIT Press, Cambridge, MA, 2002.
- Vladimir N. Vapnik.
The Nature of Statistical Learning Theory.
Springer, 1995.
- Vladimir N. Vapnik.
Statistical Learning Theory.
Wiley, 1998.
Technical Papers
Here is a list of recommended papers for further reading.
- A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability
and the Vapnik-Chervonenkis dimension. Journal of the ACM,
36(4):929--865, 1989.
- Stephen Boyd and Lieven Vandenberghe, Convex
Optimization, (chapters 4 and 5), Cambridge University Press, 2005.
- Corinna Cortes and Vladimir Vapnik, Support-Vector
Networks, Machine Learning, 20, 1995.
- Corinna Cortes, Patrick Haffner, and Mehryar Mohri, Rational
Kernels: Theory and Algorithms. Journal of Machine Learning
Research, 5:1035-1062, 2004.
- Benjamin Taskar, Carlos Guestrin, Daphne Koller. Max-Margin
Markov Networks. NIPS 2003.
- Leo Breiman, Random forests, Machine Learning, 45,
2001.
- Robert E. Schapire. The
boosting approach to machine learning: An overview. In MSRI
Workshop on Nonlinear Estimation and Classification, 2002.
- Ralf Herbrich, Thore Graepel, Klaus Obermayer, Support
Vector Learning for Ordinal Regression. Proceedings of the
Ninth International Conference on Artificial Neural Networks
97--102, 1999.
- Michael Kearns , Leslie Valiant, Cryptographic
Limitations on Learning Boolean Formulae and Finite Automata,
Journal of the ACM (JACM), v.41 n.1, p.67-95, Jan. 1994.
- Dana Ron, Yoram Singer, and Naftali Tishby. The
power of amnesia: Learning probabilistic automata with variable
memory length. Machine Learning, 25, 1996.
- Jon M. Kleinberg. An
Impossibility Theorem for Clustering.
NIPS 2002.
Homework assignments