Rate-Monotonic Analysisin the C++ Type System *

Morgan Deters

Christopher Gill

Ron Cytron

{mdeters,cdgill,cytron}@cs.wustl.edu

Distributed Object Computing L aboratory
Department of Computer Science and Engineering
Washington University in St. Louis
One Brookings Drive, Box #1045

St. Louis, MO

Abstract

We describe an implementation of Rate-Monotonic Analysis
(RMA) within the C++ parametric type system that provides
C++ real-time software developers a good way to reason with
types at the source level about recurrent tasks and deadlines.
Using our approach, a program can be considered incorrect,
raising type errors at compile time, if a given set of tasks is not
statically schedulable. Similarly, this compile-time “metapro-
gram” can adjust a task set so as to become feasible; we per-
form this analysis inside the C++ type system, which allows
a very natural integration into C++ programs. We discuss our
approaches and the applicability of our work to the model-
driven development of real-time embedded systems.

1 Introduction

Real-time embedded systems have specific timeliness require-
ments that result in the necessity of scheduling tasks’ access
to scarce resources. Rate-Monotonic Scheduling (RMS) is
a well-known static scheduling technique in which periodic
tasks are assigned priorities in accordance with their period:
more frequent tasks receive a higher priority. A runtime sched-
ule honoring RMS-assigned priorities is known to be an op-
timal schedule for the fixed-priority scheduling problem [7];
that is, if any assignment of fixed priorities yields a feasible
schedule, the RMS assignment will.> Rate-Monotonic Anal-
ysis (RMA) refers to the computation performed on a set of
periodic tasks to determine whether they may be statically
assigned fixed priorities with RMS (or indeed with any such
scheme, since RMS leads to an optimal schedule with respect
to feasibility) and meet all deadlines.

As originally stated by Liu and Layland [7], a set of m pe-
riodic tasks has utilization:

mCi

*Sponsored by DARPA under contract F33615-00-C-1697.

LIn this paper, we intend “feasible” to mean that all tasks are guaranteed to
meet all deadlines, over all possible task phasings. The deadline of a task in
classical RMS is the start of its next execution period.

63130 USA

where C; is the execution time budget, or cost, of task ¢ on
some machine and T; is the execution period of task 7. A task
set is feasibly schedulable with RMS if

U = é%’ < m(21/m—l)

This is a computationally simple test, and can easily be per-
formed (even manually) for a given set of tasks. However, this
test is pessimistic, disqualifying task sets that are, in fact, fea-
sible. Lehoczky, Ding, and Sha offer a stricter test [6, 9].> A
set of m periodic tasks is feasibly schedulable if and only if

M

Vi, 1<i<m,

dt e {lTk

: t
s.t. ZCJTJ < t.
7j=1

When engineering a real-time system that makes use of
static scheduling, such tests are typically performed on a set of
proposed tasks ahead of time, often long before compilation—
even in the design phase, e.g., through model-integrated com-
puting tools—to secure a guarantee that they will meet their
deadlines. This may be acceptable if the task set is known
in advance and does not change through the software devel-
opment process. However, for purposes of debugging and
design flexibility, a solution that integrates compilation with
RMA task set verification is desired so that the task set can
easily be modified. Further, for retargetable, reconfigurable
real-time systems, software development teams often wish to
provide similar systems meeting slightly different design re-
quirements and manage all such configurations using a mod-
eling tool. Clearly, this goal is unnecessarily complicated if
the software is designed in a rigid manner for a specific set of
tasks.

One solution to this problem would be to compute feasibil-
ity of the task set at runtime. Indeed, this approach is taken
by some systems [4]. However, the main benefit of static

T;
<k<Lj3 <I< |=—=
cecorzie|D])

O]

2The proof is found in [6]; a useful discussion appears in [9].

scheduling over dynamic scheduling is its simplicity and low
overhead. At worst, the only computation required at runtime
for a fixed-priority periodic scheduling mechanism is the com-
parison of eligible tasks’ priorities; at best, the processor is
scheduled in a sequential fashion and scheduling and context
switches are free.3

Because runtime feasibility checks are not required for
many real-time systems, we do not seek to require them in
a new system for real-time software development. At the same
time, we wish to ease the development process by allowing the
task set to change with each compilation, yet require that com-
piled programs are indeed feasible. In Section 2 we propose a
system that uses the C++ compiler to perform feasibility test-
ing as part of program translation. We extend the basic idea
in Section 3 to show that our technique can be used to enforce
that every correct program is feasible—that is, a semantic error
is flagged by a standard-compliant C++ compiler when infea-
sible task sets are specified by the program—and to search a
parameter space of different task rates for feasibility.

This paper is organized as follows. Section 2 explains our
approach, Section 3 discusses some useful extensions to our
base technique, Section 4 points to some related work, and
Section 5 offers some conclusions and our thoughts on future
research directions in this area.

2 Approach

We are prototyping a template metaprogramming frame-
work, coded in C++, that performs rate-monotonic analysis
at compile-time and enables code to reflect at compile-time
upon its task sets and reason about their feasibility. Generally,
we believe compile-time “reflection” of this sort—which does
not require runtime support—to be valuable in C++ real-time
software development. We use the technique to achieve the
following specific requirements:

o Real-time tasks can be specified as optional,

e “Cheap” task sets that have the critical features of stan-
dard task sets can be linked to their more “expensive”
versions,

e The “best-fit” versions of expensive services can be auto-
matically selected and compiled in with no user interven-
tion or runtime penalty in time or space or the size of the
executable, and

e Truly infeasible task sets can be automatically rejected; if
there is no guarantee that a task set can be scheduled, the
compiler can be used signal an error.

We provide details on these particular aspects of our approach
in the rest of Section 2 and in Section 3, but the above list
is not an exhaustive one. First, we specify the base of our
approach, which allows us to construct task sets and perform
basic queries of them.

STask sets are scheduled most easily when the task rates are harmonic;
such task sets also have the benefit of achieving 100% utilization.

struct my_task {

enum { cost = 100,
peri od = 600,
phasi ng = 50,
droppable = 0,
i mportance = 1000 };

static void do_task(const context& c) {
cout << "ny_task::do_task()" << endl;

}
}s

Figure 1: A sample Task.

2.1 Specification

We define a generic-programming concept [3] Task, imple-
mented in C++ as a st r uct , which, along with zero or more
associated TaskTraits providing additional, optional informa-
tion (discussed in Section 3), fully specifies a periodic real-
time task. A Typelist [1, 2] of Tasks then describes a task
set. In addition to the standard parameters that we need to per-
form RMA for each periodic task (i.e., task cost and period),
we include other useful information for scheduling the task. A
sample Task definition is shown in Figure 1.* Its elements are:

cost specifies the logical cost of the Task. This may be a mea-
surement on a particular platform or a theoretical upper-
bound, calibrated to agree with the other time-based pa-
rameters below.

period specifies the logical period of the Task.

phasing specifies the logical phasing of the Task. This is the
offset of the logical clock at which its logical period be-
gins.

droppable is a boolean value indicating whether or not a task
can be dropped if necessary to make its task set feasible—
this value, in effect, declares whether or not the task is
optional.

importance is an integer value specifying the relative will-
ingness of the compile-time scheduling analysis to drop
the task. Tasks with lower importance are dropped before
higher-importance tasks.

do_task is a Functor [3] that specifies the work to be per-
formed by the Task.

Once the basic structures defining tasks have been built, task

sets can be constructed using t ypedef :

typedef TYPELI ST_2(taskA, taskB) ny_tasks;

In this case, a task set type (called ny_t asks) of two inde-
pendent task types is constructed: t askAandt askB.

2.2 Operation

We then wish to perform basic operations on this task set.
These operations include:

“Note: All C++ code examples in this paper have been tested and compile
properly on the GNU C++ compiler v3.2.2 [5].

Sorting the task set by period,

Determining the schedulability of such a task set,

Generating code to schedule the task set at runtime, and

Querying on the task set regarding its constituent tasks,
its feasibility, and its utilization.

Further, we wish to perform these operations at compile-time
to the fullest extent possible. Obviously, the tasks will actually
execute only at runtime, but we wish to perform the queries
and other operations above at compile-time. We also wish to
expand and inline a specialized st ar t () routine specifically
for this task set so that starting the tasks has as little overhead
as possible. Finally, we want the associated structures and
queries to be reasonably easy and intuitive to use. By offering
an interface to user code in the metaprogram, we introduce a
mechanism similar to compile-time structural reflection into a
real-time program. Using this facility, a real-time programmer
can write code that is easy to read and reconfigure despite be-
ing tailored for a particular task set. In effect, the task set intro-
duces various constraints onto the program, and the C++ com-
piler (by evaluating the template metaprogram) is able to re-
solve these constraints and generate a specialized executable,
even though the source code remains modular and generic.
Fortunately, these operations can all be performed by ma-
nipulating the task set with a template metaprogram. In this
paper, we focus on the last operation: determining the feasi-
bility and expected utilization of a task set and integrating this
with the program. We define a Schedul e template, shown
in Figure 2. This template calls an RMA_Feasi bl e template
metaprogram shown in Figure 3. This metaprogram solves
inequality (2) directly, for each 4, by trying different values
of ¢ as necessary. It utilizes the support templates of Figure 4,
which compute the set of all [- T}, and the j-summation.

tenpl ate <cl ass TaskSet> struct Schedul e;

tenpl ate <cl ass Head, class Tail >
struct Schedul e<Typelist<Head, Tail> > {
typedef Typelist<Head, Tail> TL;
enum { feasi bl e=RVA _Feasi bl e<TL>:: Result };
static const double utilization =
Schedul e<Tai | >::utilization +
doubl e(Head: : cost) / Head:: peri od;
static void schedul e(void) {
/* (not shown) */
}
s

tenpl ate <>
struct Schedul e<Nul | Type> {
static const bool Result = true;
static const double utilization =
static void schedul e(void) {
/1 no action necessary

}

0. 0;

}s

Figure 2: The Schedul e template.

tenplate <class TL, int m int i>

struct check i;

tenpl ate <cl ass Head, class Tail,
int m int i>

struct check_i <Typelist<Head, Tail> m
enum{ task_result =
t ask_f easi bl e<Typel i st <Head, Tai | >,
i> :Result,
check_i <Typel i st <Head, Tai | >,
m i+1> :Result
&& task_result };

i>{

Result =

}s

tenpl ate <cl ass Head, class Tail, int np
struct check_i <Typelist<Head, Tail> m e {
enum { Result =
t ask_f easi bl e<Typel i st <Head, Tai | >,
ne::Result };

}s

tenpl ate <cl ass TaskSet >
struct RVA Feasible {
enum { m = Lengt h<TaskSet >: : val ue,
Result = check i <TaskSet,
m 1>::Result };

Figure 3: The main “loop” of the RMA_Feasi bl e template
metaprogram.

Given this metaprogramming mechanism, client code us-
ing our framework can then be specified in a very straightfor-
ward manner (Figure 5). The schedul e() method of the
Schedul e template (implementation not shown in this pa-
per) is used to set up the proper threading mechanism for a
specified compilation target and invokes the do_t ask rou-
tines of the task set’s constituent task types as appropriate. Be-
cause this can be inlined, no runtime overhead need exist for
permitting this flexibility of task types as template parameteri-
zation, as this is sorted out by the C++ compiler at compilation
time. Providing the task-invocation capability in a parameter-
ized fashion (which could automate the choice of threading
model, for example) is the subject of ongoing work and is not
described in this paper. In Section 2.5, we describe a way to
cause a compiler error if an infeasible schedule is encountered.

2.3 A Walkthrough Example

As an example of how this template expansion works,® con-
sider the task set of Figure 6. In this case, tasks t askA and
t askB have only costs and periods—for simplicity of the ex-
ample, other parameters have been omitted from the listing.
In evaluating the RMA_Feasi bl e<ny_t asks> template
instantiation (at the bottom of Figure 6), we must direct the
C++ compiler to check that inequality (2) holds for each task 4
in our example task set. We do this by first counting the

5The discussion of this section is by necessity abbreviated and imprecise.
The reader is referred to [10] for a more careful treatment of this material.

tenplate <class TL, int i, int t,

struct sumj {

int j =0>

typedef typename TypeAt<TL, j>::Result J;
enum{ G = J::cost,
Tj = J::period,
nmy_result =G * ((t9)j >07?21: 0
+(t /1 Tj)),
Result = sumj<TL,i,t,j+1>:Result
+ ny_result };
s
tenplate <class TL, int i, int t>
struct sumj<TL, i, t, i> {
enum{ Result = 0 };
b
tenplate <class TL, int i, int t_ix, int k=0>

struct get_t {

enum{ Ti = TypeAt<TL,i-1>::Result::period,
Tk = TypeAt<TL, k>:: Resul t:: period,
num!| = Ti/Tk,
Result = (t_ix >= numl)
? get _t<TL, i,
t_ix - numl, k+1>::Result
(t_ix + 1) * Tk };
b
tenplate <class TL, int i, int t_ix>
struct get _t<TL, i, t_ix, i>{
enum{ Result = 0 };
b
tenplate <class TL, int i, int t_ix = 0>

struct task_feasible {
typedef get t<TL, i, t_ix> t_type;
enum{ t =t _type::Result,
Result = (t > 0) &&
(sumj<TL, i, t>:Result <=t
| | task_feasible<TL, i,
t_ix + 1> :Result) };
b

tenpl ate <class TL, int i>
struct task_feasible<TL, i,
enum{ Result = 0 };

b

i> {

Figure 4: Supporting templates for the RMA_Feasi bl e tem-
plate metaprogram of Figure 3.

typedef Schedul e<TYPELI ST_3(

taskA, taskB, taskC) > ny_schedul e;
i f(! my_schedul e:: feasible)
cerr << "WARNI NG infeasible!" << endl;

my_schedul e: : schedul e();

Figure 5: Instantiating and using the Schedul e template.

number of tasks in the set, then instantiating another tem-
plate (check_i) to perform these checks individually. The
check_ instantiation is parameterized by the value of 7 it is

to check; but check_i recursively makes another instantia-
tion of check_i with the next value of 7, so RMA_Feasi bl e
only needs to instantiate a single check_i . The result of these
checks are composed together with logical and (A), since each
sub-check must be satisfied for the task set to be feasible. In
this way, the final computed feasibility of the task set is depen-
dent upon the feasibility of each sub-check.

struct taskA { enum{ cost = 5,

peri od =10 }; };
struct taskB { enum{ cost = 5,

peri od =15 }; };
typedef TYPELI ST_2(taskA, taskB) ny_tasks;

int isFeasible =
RMA Feasi bl e<ny_t asks>:: Resul t;

const

Figure 6: An example task set specification and its feasibility
test.

In our example, the “size” of the task set is calculated to
be 2, and check. <mny _t asks, 2, 1> is instantiated. This
instantiation does two things: it computes the check for i =
1 (by instantiating t ask_f easi bl e<ny_t asks, 1>), and,
later, it will compose its result with that of the next check.i .

The t ask_f easi bl e template’s job is to find, given a
fixed ¢ and task set, a value of ¢ for which inequality (2)
holds. To do this, it must try successive values of ¢, chosen
from the appropriate set, and compute the summation over
1 < j <. Ituses two other templates to accomplish this—
get _t <ny_t asks, 1, 0>, which gets the “first” value of ¢
(subject to an arbitrary ordering we impose on the set, dis-
cussed below), and sumj <y _t asks, 1, t > to compute the
summation (once ¢ has been computed).

Therefore, in our running example, we have
at this point RMA_Feasi bl e<ny._tasks> in-
stantiating check. <ny_t asks, 2, 1> instantiat-
ing t ask_f easi bl e<my_t asks, 1> instantiating
get _t <ny_t asks, 1, 0>.

get _t ’s purpose is to compute and return a value of ¢ based
on an index (the t _i x parameter). This indexing scheme is
arbitrary—we choose it to start with (x = 1,/ = 1) and in-
crease to the maximal (k,1) value pair in the set.® The code of
get _t (which has an implicit £ = 0 parameter if unspecified)
first gets the period of tasks ¢ and k& and computes the maxi-
mum value permitted for [for the given & (see inequality (2)).
The value of ¢ is then computed by instantiating get _t to ser-
vice the next-larger value of &, or, if this instantiation has a
sufficient k to service index t _i x, then it returns the value
directly (which correspondsto [- T}, in inequality (2)).

In our running example, get _t <ny_t asks, 1, 0> com-
putes Ti = 10, Tk = 10, numl = 1, and Resul t = 10.
Therefore, t ask _f easi bl e<ny t asks, 1> uses ¢t = 10,
and thus instantiates sumj <ny _t asks, 1, 10>,

The sumj <ny_t asks, 1, 10> instantiation is straight-
forward. First, notice that such an instantiation uses the default
parameter j = 0—the summation will be recursively com-
puted by recursively instantiating sumj , and j = 0 serves

5The implementation actually uses zero-based indexes.

as the entry to this recursion. The jth task (A in our exam-
ple) is given an alias J, and G and Tj get the values for its
cost and period, respectively. my resul t is computed (this
is C; - [t/T}]), and the result is summed together with further
instantiations of sumj .

Finally, task_f easi bl e<ny_t asks, 1>, instantiated
so long ago, performs its computation by checking to see if this
sum is less than or equal to ¢, as required in inequality (2); if
this test fails, it creates another t ask _f easi bl e for another
value of ¢. The computation continues along similar lines, and
the task set is ultimately determined feasible by the compiler.

2.4 Tasks as Types

Our system models tasks as C++ types. Type systems are typi-
cally used in high-level languages to help ensure that the logi-
cal intent of the programmer matches the code as written. Gen-
erally, developers have types in mind when designing and writ-
ing programs, and making this explicit in a language can flag
logical errors that are difficult to track down otherwise. We
provide something analogous for real-time developers; with
our constructs, various nonfunctional aspects of the program
(in this case, task schedulability guarantees) become part of
the structure of the program. The next section demonstrates
how to signal type errors for infeasible task sets.

2.5 Feasibility and Program Correctness

Using techniques developed by Alexandrescu [1] and embod-
ied in the Loki C++ library [2], we can easily require that a
particular task set declared in a program is always feasible.
We do this using the STATI C_CHECK macro of Loki, which
conditionally raises a C++ type error:

typedef Schedul e<TYPELI ST_2(t askA,
my_schedul e;
STATI C_CHECK(ny_schedul e: : f easi bl e,
Schedul e_I nf easi bl e) ;

t askB) >

The Schedul e I nf easi bl e macro parameter is a de-
scription string—typically, compiler output indicates this
description in its error listing. The GNU C++ com-
piler v3.2.2 [5], for example, gives the following useful output
if my_schedul e is infeasible:

nmysched.cc: In function ‘int main(void)':
nmysched. cc: 20: aggregate
‘ Loki : : Conpi | eTi meError <0>
ERROR _Schedul e_I nf easi bl e’ has
inconpl ete type and cannot be defined

Using this technique, a global policy can be enforced
that requires every task set to be feasible. In this case,
the use of the STATI C_CHECK macro is placed in the
Schedul e: : schedul e() method.” This will verify that
every task set that could be scheduled at runtime is feasible.

7 An additional template parameter to the Schedul e template can be used
to achieve maximal flexibility in specifying such a policy.

3 Extensionstothe Base M odel

It is possible to add a number of useful extensions to our
base model. We discuss here our ideas regarding enhanced
tasks. Enhanced tasks are used to specify task dependence and
task alternation.8 By using traits we can make such enhance-
ments without changing our base code or the requirements of
the Task generic-programming concept as specified in Sec-
tion 2.1.

Task dependence refers to interdependence of tasks within
a task set. It is important to note that RMA assumes indepen-
dent tasks. We do not break that assumption here because our
notion of dependence is not a dependence on a particular com-
putational result; rather, a dependence of task A on task B is
merely a requirement that any task set including task A must
also include task B. This can be flexibly used to group tasks
into common configurations, or to model execution depen-
dence loosely. However, since synchronization is not taken
into account in classical RMA, any computational dependence
should only be a dependence upon the generated value guar-
anteed to complete before the start of the task performing the
computation. Dependence is easily represented as a trait (Fig-
ure 7). For each type T' modelling the Task concept that has

/1 default case, no dependencies
tenpl ate <cl ass Task>

struct task_dependencies {

t ypedef Nul | Type dependenci es;

H

/'l sanpl e specialization for My_Task
tenplate <>
struct task_dependenci es<My_Task>
t ypedef TYPELI ST_2(
My_Second_Task,
My_Thi rd_Task) dependenci es;

Figure 7: Specifying traits for task dependence.

one or more task dependencies, a t ask_dependenci es
template specialization is written for the type specifying as a
Typelist the tasks upon which T' depends.

Task alternation allows one task to be readily “swapped
out” for another, cheaper task. This can be quite useful, es-
pecially for optional, debugging, or logging tasks that are not
critical but are nice to include when other tasks do not “starve
them out” of feasibility. Basically, the idea is to check the
programmer-specified task set for feasibility; if the task set is
infeasible, the least important task in the task set is exchanged
for a cheaper alternative or dropped (if the task concept is spec-
ified as droppable). This process continues until either the
task set becomes feasible or an infeasible task set is reached
in which no constituent task can be exchanged or dropped. Al-
ternation is traited simply (Figure 8).

8For brevity, implementation details are not given here.

/1 default case

tenmpl ate <cl ass Task>

struct task_alternative {

/1 "Null Type" means no alternative
typedef Null Type alternative;
enum { inportance = 0 };

H

/'l sanple specialization for My_Task
tenmpl ate <>

struct task_alternative<My_Task> {
typedef My_Cheaper_Task al ternative;
/1 inportance relative to other tasks
enum { inmportance = 100 };

b

Figure 8: Specifying traits for task alternation.

4 Related Work

Template metaprogramming has been used for fast Fourier
transforms [13], prime computation [12], and many other com-
putations. Our work is similar but brings metaprogramming
techniques to the compilation of real-time programs.

Other analysis tools are commercially available for real-
time applications using RMS. TimeWiz [11] from TimeSys
supports graphical modelling, analysis, and simulation of real-
time software, and RapidSched [14] performs its real-time task
analysis in a front-end for TriPacific Software’s PERTS [8].
Our approach is oriented toward analysis rather than graphical
modelling or simulation; however, it does the analysis inside
the language itself and requires no additional tools. Further,
our approach automatically stays in-sync with the program:
it is part of the program. We do not dictate a way of arriv-
ing at an estimate for the execution budget of a task; such an
estimate could certainly be reached using the analysis or sim-
ulation modes of such tools, or by other means.

5 Conclusions

We have described and presented code for a compile-time
Rate-Monotonic Analysis (RMA) computation performed
within the parametric type system of standard C++. We spec-
ify tasks and task sets as types to gain flexibility, and we
leverage template metaprogramming mechanisms to compute
feasibility of these task sets and to perform additional func-
tions. Because our approach is entirely within the C++ lan-
guage itself, we achieve complete integration with the lan-
guage without a requirement of preprocessing or translation
from a higher-level language. Thus, with minimal effort, real-
time software developers implementing periodic task sets in
C++ can apply our techniques to gain flexibility and retar-
getability, organize tasks into groups, easily specify task de-
pendence and alternation, and reason metaprogrammatically
about processor utilization and schedule feasibility, all within
the language.

As future work, we intend to further consider compile-time
precomputation of certain values that could aid in dynamic

scheduling, as well as a compile-time determination as to
whether static or dynamic scheduling is appropriate for the
program being compiled.

Acknowledgments

We would like to thank the anonymous reviewers for their in-
valuable comments and suggestions.

References

[1] A. Alexandrescu. Modern C++ Design: Generic Pro-
gramming and Design Patterns Applied. Addison-
Wesley, Boston, 2001.

[2] A. Alexandrescu. Loki C++ library. sour cef or ge.
net/ projects/loki-1lib/,2003.

[3] M. H. Austern. Generic Programming and the STL: Us-
ing and Extending the C++ Standard. Addison-Wesley,
Reading, MA, 1999.

[4] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and
Turnbull. The Real-Time Specification for Java.
Addison-Wesley, 2000.

[5] Free Software Foundation. GCC Home Page.
gnu. or g, 2003.

[6] J. P. Lehoczky, L. Sha, and Y. Ding. The rate mono-
tonic scheduling algorithm—exact characterization and
average-case behaviour. IEEE Real-Time Systems Sym-
posium, Dec. 1989.

[7] C. LiuandJ. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. JACM,
20(1):46-61, Jan. 1973.

[8] J. W.S. Liu, J.-L. Redondo, Z. Deng, T.-S. Tia, R. Bettati,
A. Silberman, M. Storch, R. Ha, and W.-K. Shih. PERTS:
A prototyping environment for real-time systems. Tech-
nical Report UIUCDCS-R-93-1802, May 1993.

[9] L. Shaand J. B. Goodenough. Real-time scheduling the-
ory and Ada. IEEE Computer, 23(4):53-62, 1990.

[10] B. Stroustrup. The C++ Programming Language, Spe-
cial Edition. Addison-Wesley, Boston, 2000.

[11] TimeSys Corporation. TimeSys TimeWiz.
www. ti nesys. conli ndex. cf n?hdr =t ool s_
header . cf m&bdy=t ool s_bdy nodel . cfm
2003.

[12] E. Unruh. Primzahlen.
prinorig.htmn, 2003.

[13] T. Veldhuizen. Techniques for scientific C++. Technical
Report TR542, Indiana University, Department of Com-
puter Science, Aug. 2000.

[14] V. F. Wolfe, R. Johnston, P. Kortmann, B. Watson,
S. Wohlever, L. C. DiPippo, R. Bethmagalkar, and
G. Cooper. RapidSched: Static scheduling and analy-
sis for Real-Time CORBA. In Proceedings of the 5th In-
ternational Workshop on Real-Time Object-Oriented De-
pendable Systems. IEEE, Jan. 1999.

gcc.

WWW, er wi n- unr uh. de/

