Review: Minimum Spanning Trees (MSTs)

Undirected graph:

Want: Tree connects all vertices, has minimum cost

2 Algorithms: Prim and Kruskal

1. Prim: Pick any node in the graph to be your starting tree T.
 While all nodes not connected:
 Choose edge e from $T \rightarrow G \setminus T$ with min cost and add it to T.

\[
\begin{align*}
A, B, F, C, D, E \\
A-B, A-F, B-C, C-D, D-E
\end{align*}
\]

\[
\text{cost}(T) = 10
\]

2. Kruskal: Start with forest of all (unconnected) nodes.
 While all nodes not connected:
 Choose edge e with min cost that connects two components of the forest.
A-B, C-D, A-E, B-C, D-E

\(\nabla \text{ Minimum Spanning Tree does not need to be unique!} \)

\[
\begin{align*}
\text{MSTs:} & \quad 1 & & 2 \\
1 & & 2 & & 1 \\
2 & & 1 & & 1
\end{align*}
\]

Problem: Does the following algorithm work: start with entire graph \(G \) and while \(3 \) cycles, remove edge with max. cost that does not disconnect graph.

Yes, it does work.

Let \(e \) be edge of max. cost that does not disconnect graph.

\(\Rightarrow \) \text{ 3 MST without } e. \\

Why? \(e \) must be in a cycle (otherwise it would disconnect \(G \)) and it must be heaviest of all edges in all cycles that go through it (because none of these would disconnect graph if removed).
A-C: In a cycle A-C-B, A-C-F, A-C-E-F, etc. Also, heaviest among all edges in these cycles.

Claim: Kruskal's tree does not contain e. Why?

Kruskal adds edge with min cost that does not add cycle. ⇒ Kruskal will select any of other edges in all cycles through e before selecting e (they are valid options because cycle is not complete without e).

At every step of our algorithm, remove e:
\[G \rightarrow G' = G - \{e\} \]

Kruskal produces same MST in G and G'.

When there are no cycles, MST is just that tree.

⇒ our algorithm gives valid MST.

Review: Hashing

Have N elements with large values: \{0, ..., M-1\}
Want to represent them with smaller values.

in \{0, ..., M-1\}, \ M < W

⇒ There will be collisions, want to minimize these.
Hash function: \(h_{\text{key}}(x) = x \)

\[\text{in } \{0, \ldots, W-1\} \quad \text{in } \{0, \ldots, M-1\} \]

\(H = \{ h_{\text{key}} \} \) \hspace{1cm} \text{collection of hash functions}

(\(h \) with different keys)

Definition: It is universal if \(\forall x \neq y \)

\[\Pr_{\text{key}} \left[h_{\text{key}}(x) = h_{\text{key}}(y) \right] \leq \frac{1}{M}. \]

\[\uparrow \quad \text{Collisions are "unlikely".} \]

Example: \(W = 2^w \quad M = 2^m \)

\(\text{key} = (a,b) \) \hspace{1cm} \text{where } a,b \in \{0, \ldots, W-1\}

(chosen at random)

\[h_{a,b}(x) = \left\lfloor \frac{ax + b \pmod{2^w}}{2^{w-m}} \right\rfloor \]

\(w \) bits

\(m \) bits

"Best" method to hash integers \hspace{1cm} \text{(result from 1997)}

- efficient
- easy to implement \hspace{1cm} \text{(multiply & shift)\)
Thm: when \((a, b)\) are random, \(H = \{h_{ab}\}\) is universal.

Problem: S collection of \(N = 2^k\) not necessarily distinct items in \(\{0, \ldots, M-1\}\), with \(M = 2^k\). Give a randomized algorithm for determining if all elements in \(S\) are distinct. Want expected running time \(\Theta(n)\).

Create array \(A[0:n-1]\) use hash function \(h_{ab}(x) = \left[ax+b \pmod{2^k}\right] / 2^{k-k}\) (random \(a, b\)).

Output has \(k\) bits, so value \(\in \{0, \ldots, n-1\}\).

For each item \(x\), compute \(h_{ab}(x)\) and check if \(h_{ab}(x)\) is in \(A[h_{ab}(x)]\). If yes, report "NOT DISTINCT". Otherwise, add \(x\) to \(A[h_{ab}(x)]\).

Suppose e.g. each "bucket" in \(A\) has a linked list.

If at end, haven't reported anything, report "DISTINCT".

Running Time: For each \(x\):

\[O(1 + \text{\# elements in } A[h_{ab}(x)] \text{ that are } x)\]

depends on \(a, b\). What is expected value?
\[
\text{(\# Items in } A[h_{ab}(x)] \text{ that are } \neq x) \\
= \sum_{y \neq x} \mathbb{1}[h_{ab}(x) = h_{ab}(y)]
\]

Notation: counts as 1 if this holds or 0 if not.

\[
\text{(\# expected Items in } A[h_{ab}(x)] \text{ that are } \neq x) \\
= \sum_{y \neq x} \Pr[h_{ab}(x) = h_{ab}(y)]
\]

(by universality)

\[
= \sum_{y \neq x} \frac{1}{n} \leq \frac{n}{n} = 1.
\]

For each x: time = \(\Theta(1)\)

For all x: time = \(\Theta(n)\).