Challenge 3: Extending the Web to the Developing World
High School – 60km Outside Nairobi

Extremely low bandwidth connectivity in many parts of the world
Web Page Size

Growth of Average Web Page Size and Number of Objects

(Sources: Domenech 2007, Gomez 2008)

Total Bytes (K)

Average Page Size (K)

Average Number of Objects

Average Number of Objects
2Mbps Connection

![Graph showing recorded download time vs. object size for 2Mbps connection](image)
The Web under Poor Connectivity

- Video + audio + images => web pages are huge
- A couple Kbps per user => User waits indefinitely
- Browsers make too many connections
- Iterative search infeasible!
- TCP itself actually starts breaking down
 • Not designed for these “sub-packet regimes”
How do we fix this?
Towards a Usable Web?

• Interactive
• Works over low bandwidth (without TCP breakdown)
• Intermittent/Delay tolerant
• User feedback (intermittent aware)
• User control
Step 1: Provide connectivity! (or the illusion thereof)
Application Level Solutions

- Use proxies to provide an illusion of Web connectivity
 - One proxy allows users to interact immediately
 - While another proxy works to fetch web pages asynchronously that are queued by the user
- Time Equals Knowledge (TEK) - SMTP as its transport protocol
- RuralCafe – user feedback and control over the content to be downloaded
RuralCafe: Intermittent Web Browsing

Clients → Local Proxy → Bottleneck Link → Remote Proxy → Web Servers

1. Clients request from Local Area Network
2. Local Proxy forwards request
3. Bottleneck Link
4. Remote Proxy receives request
5. Bottleneck Link
6. Local Proxy receives response
7. Clients receive response
RuralCafe User Interface

Positive user experiences from a deployment at Amrita University, India
Step 2: TCP breakdown problem?
The Sub-packet Regime

- Number of competing flows, $N \gg 1$

- Per-flow fair share, $C/N < kS/RTT$, where
 - C is the link capacity,
 - k is a small integer (e.g. less than 3),
 - S is the packet size, and
 - RTT is the round trip time.
Pathological Sharing: A TCP View

- High packet loss rates
- Elongated and highly variable timeout periods
- Extreme unfairness in the “short” and “long” term
- Resulting in unpredictable flow completion times
Loss Rates and Timeouts

![Graph showing TCP sequence numbers against time in seconds, with different markers for TCP flows and drops.]
Fairness

![Graph showing Jain Fairness Index vs. Per-Flow Fair-Share (kbps) for different bitrates and time periods. The graph includes data for 200kbps (long term, 10000 sec), 1Mbps (long term, 10000 sec), 200kbps (20 second slice), 400kbps (20 second slice), 600kbps (20 second slice), 800kbps (20 second slice), 1Mbps (20 second slice), and 2Mbps (20 second slice).]
Why TCP breaks down?
Model

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_5 \rightarrow S_6 \]

\[(1-p)^2 \rightarrow (1-p)^3 \rightarrow (1-p)^4 \rightarrow (1-p)^5 \rightarrow (1-p)^6 \]

\[b^* \rightarrow 2p \rightarrow 1 \rightarrow 1.2p \rightarrow To S_3 \]

\[b^* \rightarrow 1-p \rightarrow (1-p)^2 \rightarrow (1-p)^3 \rightarrow To S_3 \]

\[b^* \rightarrow 2p \rightarrow (1-2p) \rightarrow (1-3p) \rightarrow To S_3 \]

\[b^* \rightarrow 1-p \rightarrow (1-p)^2 \rightarrow (1-p)^3 \rightarrow To S_3 \]

\[b^* \rightarrow 2p \rightarrow (1-2p) \rightarrow (7-6p) \rightarrow To S_3 \]

\[b^* \rightarrow 1-p \rightarrow (1-p)^2 \rightarrow (1-p)^3 \rightarrow To S_3 \]

\[b^* \rightarrow 2p \rightarrow (1-2p) \rightarrow (15-14p) \rightarrow To S_3 \]

remainder probabilities

\[(1-p)^2 \rightarrow (1-p)^3 \rightarrow (1-p)^4 \rightarrow (1-p)^5 \rightarrow (1-p)^6 \]

after at least 1 backoff

after at least 2 backoffs

after at least 3 backoffs
Validating the Model

![Graphs showing stationary probability distribution for different loss probabilities and sentence counts.](image)
Takeaways from the Model

• Beyond a loss rate of 10% the stationary probability of TCP in timeout states rapidly increases.
• Loss of retransmissions incur the high cost of increasing timeout periods (flow shut-off).
• At high contention levels 60-90% of flows are shut-off for elongated time periods.
• TCP waits for a new data packet before updating the RTT estimate.
Fixing the TCP-breakdown problem without Modifying end-hosts:

Key Idea: Avoid the sub-packet regime
Admission Control

• TCP can only handle some number of flows before it breaks down
• Use admission control to keep TCP in the good operating range < 10% loss
• If we preform admission control on a per-flow basis, some applications that require multiple flows to make progress will still fail
Flow Pools

- A collection of inter-related flows from the same source to different destinations that are initiated within a short time-period
- So a single application can make progress with all of its required flows being admitted simultaneously
- A new flow is admitted if:
 - It belongs to a flow pool which has already been admitted
 - It belongs to a new flow pool and the current number of flow pools is below the maximum
Fair Share

• Each flow pool should be isolated from the other so a single flow pool does not consume all of the resources by simply creating more flows
Fine-grained Packet Drops

- Retransmissions are important
- Repeated drops cause TCP to collapse
- Prioritize retransmitted packets
Short-term Fairness

![Graph showing Jain Fairness Index vs Per-Flow Fair-Share (bps) for different algorithms: Droptail, RP + Droptail, SFQ, RP + SFQ. The graph indicates that Droptail generally performs better in terms of fairness, with Jain Fairness Index approaching 1 for lower Per-Flow Fair-Share values.](image)
Overall - Object Download Time

CDF

Download Time (seconds)

10-20KB Objects

100-110KB Objects

Droptail
AC + RP
Key Takeaways

• We've “fixed” TCP for these sub-packet regimes
 • Provided fairness and isolation
 • Improved predictability
 • Allow progress without hangs
 • Improved overall capacity
Step 3: Contextual Web Caching
Getting appropriate content locally?
Content

• How to get appropriate content?
 • In the local spoken language
 • For specific environmental or social settings

• Small communities with very specific information needs: schools, villages, hospitals, NGO offices, kiosks

• But they also have very broad information “wants”
Seachable Contextual Caches

• Build a cache a smart cache that understands 'topics'
 • Allow users to search the cache for the information they need rather than the exact URLs
 • Cache by topic hit rate rather than page hit rate
 • Make each “topic-specific” cache searchable
 • A local Google experience
Building Contextual Caches

• Identify topics
 – queries, content, domains
• Identify cached authorities for each topic
• Popularity-driven focused crawling
 – document classifier for topic
 – vertical crawl
• Local indexing per topic
• Updating topic-specific portals
Takeaways

- RuralCafe
- Sub-packet Regime
- Contextual Caches
Challenge 4: SMS based applications
Existing Systems

• Mainly for Smart Phones

• Rely on GPRS network connectivity

• Rural settings have only voice and SMS.

• Examples: OpenRosa, Voxiva, OpenMRS
SMS apps

• Why SMS based apps are hard to create
 – 140 characters (or bytes)
 – Operational dependencies: need to have carrier permission
 – Examples: Frontline SMS, Rapid SMS
SMS stack

<table>
<thead>
<tr>
<th>Search service (SMSFind)</th>
<th>Drug Tracking (Epothecary)</th>
<th>Medical Records (ELMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMS AppStore</td>
<td>Structured Records</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compression + Reliability layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMS channel</td>
<td></td>
</tr>
</tbody>
</table>
ELMR Challenges & Solutions

- SMS is just 140 bytes
- Each SMS costs
- Reliability is an issue
- Patients want privacy

Restricted Operations Set
Semantic Compression
Lightweight Reliability Layer
Lightweight Privacy Layer
Symptoms Form:

1. Patient ID

2. Do you, or have you ever had tuberculosis? [] Yes [] No

3. Do you sleep with a treated bed net? [] Yes [] No

At any time while being on ARV therapy have you experienced any of the following?

4. Rashes or skin problems anywhere on your body? [] Yes [] No

5. Sensation of burning, stinging, stiffness, tickling or numbness in the feet, toes or hands [] Yes [] No

6. Diarrhea [] Yes [] No

7. Weight Loss [] Yes [] No

8. Do you have pain while swallowing? [] Yes [] No

9. Weakness [] Yes [] No

10. Shortness of breath [] Yes [] No

11. Coughing up blood [] Yes [] No

12. When was the last time you had malaria? [] This year [] Last year

Form having 350 Symptoms questions
SMSAppstore

- SMS based application-store
 - Separate the application from the mobile platform

- Features
 - Automatic semantic compression
 - Standard operations: Fetch, update, create, search, structural data specification
 - Local operations: User defined
 - Bulk update/fetch

- Apps
 - Health records, Drug tracking, Mobile sensing, Mobile Craigslist, SMS-search, Solar monitoring
SMS-Based Search for Low-End Phones
Problem Statement

• “Low-Cost handsets to account for over 50% of mobile phones by 2014” - Juniper Research '09

• These low-end phones will be owned by the world's poor, and only have voice and SMS capabilities, where SMS is the only data channel available.

• For mobile information services, efficient SMS search is critical.

• We seek to: Answer an arbitrary Web search query or question with a single SMS message (140 bytes)
Solution Idea

• Allow the user to explicitly disambiguate their query by including a “hint”

• Using the hint, we tailor existing Information Retrieval

• Techniques to find a short snippet answer (140 bytes long) among relevant documents returned by a search engine

• Conceptually: For the query “barack obama wife” where “wife” is the hint, we find that “michelle obama” often appears near the word “wife” in the top search result pages
Secure Drug Tracking
Epothecary

- Uses camera phones to scan unique glyphs affixed to units at each level of packaging and tags representing transacting parties

- Uses SMS or GPRS as available to convey scan information back to a central authority
What Does It Get Us?

• Fine-grain track and trace of sold pharmaceuticals
• Strong assurances to the consumer of the authenticity of drugs purchased through a participant in the system
• Greatly speeds tracking of problems in the supply chain
Questions?
Challenge 5: Security challenges in the developing world
Security: a hard problem?

• Scenario:
 – Non existence of ID cards
 – Trust is always an issue
 – Constrained resources (infrastructure is sparse, low tech devices)
 – Low connectivity or no connectivity
 – Offline authentication
 – People are street smart!
Security: a hard problem

- Traditional security often fails
 - Constrained resources
 - Human in the loop
 - Low tech devices
- Mobile banking transactions are SMS based!
- Outdated GSM standards
 - How unsecure is that!?
Representative projects

• Secure mobile services
 – Epothecary: Secure drug tracking
 – Signet: Low cost auditable transactions

• Trust and Identity management
 – PaperSpeckle: Paper based secure transactions
 – Secure branchless banking

• Outdated GSM standards
Low-cost Auditable Transactions Using SIMs and Mobile Phones
Problem

- Paper receipts are ubiquitous: used in microfinance, healthcare
- But, extremely unreliable: repudiation, fabrication, damage
- Need a low cost, secure transaction process
Existing approaches

• POS devices: expensive (~ $400)
• Build the network: expensive
• GPRS/SMS: Coverage not completely ubiquitous, high marginal cost relative to transaction value, particularly with SMS, still requires you to trust other people to hold your data
Signet

- Uses secure computational capacity in SIM cards to perform lightweight signing of transactions
- Confirms transactions OOB to ensure tamper evidence
- Uses SMS or GPRS as available or affordable to ‘lazily’ synchronize central server.

<table>
<thead>
<tr>
<th>Amount</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 KSh</td>
<td>925-2-321-1</td>
</tr>
<tr>
<td>20 KSh</td>
<td>129-123876-4</td>
</tr>
<tr>
<td>30 KSh</td>
<td>693-370213-5</td>
</tr>
<tr>
<td>40 KSh</td>
<td>921-963832-6</td>
</tr>
<tr>
<td>50 KSh</td>
<td>613-655325-7</td>
</tr>
<tr>
<td>60 KSh</td>
<td>512-519982-8</td>
</tr>
<tr>
<td>70 KSh</td>
<td>753-618503-9</td>
</tr>
<tr>
<td>80 KSh</td>
<td>768-894816-10</td>
</tr>
<tr>
<td>90 KSh</td>
<td>562-829692-11</td>
</tr>
<tr>
<td>100 KSh</td>
<td>512-183994-12</td>
</tr>
<tr>
<td>110 KSh</td>
<td>213-682391-13</td>
</tr>
<tr>
<td>120 KSh</td>
<td>672-236123-14</td>
</tr>
<tr>
<td>130 KSh</td>
<td>109-296277-15</td>
</tr>
<tr>
<td>140 KSh</td>
<td>969-553258-16</td>
</tr>
<tr>
<td>150 KSh</td>
<td></td>
</tr>
</tbody>
</table>
Protocol: Prerequisites

• Each user of the system receives
 – A (U)SIM card with a signing application installed
 • If the user has his own programmable phone, he also receives the client application, OTA or otherwise
 – A printed booklet containing transaction amounts and associated signatures
Protocol: Transactions

• Each party brings something to transact
 – In the simplest case, some funds or goods and a receipt

• Each party inserts his SIM into a phone
 – One party may supply both phones
Protocol: Transactions

- The two parties agree on terms
- Party A inputs metadata about the transaction into the handset
- The SIM in the handset signs the data it receives and also returns its public key signed by a central authority
Protocol: Transactions

- The handset communicates this to Party B's handset, and B's SIM verifies the relevant signatures, signs the metadata symmetrically, and returns them to A's handset.
Protocol: Transactions

- A’s SIM verifies the signatures, then re-signs the metadata with a different key and displays the last n bits as a number.

- A verifies this number with his printed reference book to ensure that the data he got back was accurate.
Protocol: Transactions

- Once this check passes
 - A surrenders his goods
 - B takes possession
 - And the parties part
Protocol: Communication

• Communication between handsets takes place over Bluetooth or IR

• Transaction metadata are batched by default in order to amortize transmission cost across several transactions when sending to third party storage
Protocol: Verification

• Assuming a well-known third-party keysigner and associated keys
 – Receipts are nonrepudiable as each party’s keys are signed by the keysigner/CA
 – Each party retains an independently verifiable digital copy
Secure Branchless Banking
Rural banking

• ~ 1B people have cell phones but no bank account\(^1\)

• Banking, money transfer a major problem

• Not cost effective both for banks and people

1. CGAP survey June 2009.
Branchless Banking

Use existing retail infrastructure and agents

Use existing technology

Shopkeeper
Setting

- Rural villages have no banks.
- Traveling to a bank is long and arduous.
- Banking is needed – put away harvest money, get money for seeds.
- Banks deputize shopkeepers to act as agents.
- Shopkeepers literate. Farmers can read numbers. Shopkeepers have cellphones.
Trust Relationships

- Shopkeeper trusts bank.
- Farmer trusts bank.
- Shopkeeper does not trust Farmer.
- Farmer does not trust Shopkeeper.
Goals

• Farmer and shopkeepers travel to the bank seldom.
• Farmer can do banking (deposit, withdrawal) with shopkeeper and each can prevent cheating from the other or from intermediaries in the insecure phone line.
Protocol: Withdrawals

- F -> S : X_i, ID_f
- S -> B : Keyin(X_i, Am, ID_f, ID_s, N_s)
- F -> B/S : Voicein(Trans details)
- B -> F/S : $\delta_i | \text{stale}(X_i)$;
 Compute $\delta_i = (Am, Y_i)$; Compare(δ_i, δ_i')
- F -> B/S : Keyin(Z_i)
- B -> F/S : Accept/Reject
- S -> F : Am
- S -> F : Receipt(N_s)
Embodiment: matrix of numbers

• Suppose that F wants to deposit 534 rupees.
• Bank responds with “Y[i]-matrix”
• 5 3 4
 4 7 3
 2 5 6
 8 2 9
 4 9 3
Y[i] is a set of relationships

- $4 + 4 + 9 = 17 = 5 \mod 10 = 6$
- $8 + 9 = 17 = 9$
- $-1 + 6 = 5$

- x means that the value should be x
- $+x$ means to take the value of the transaction digit and add $x \mod 10$
- $-x$, similarly.
Creating the Y[i] matrix

- Start with 5 3 4
- Apply Y[i]:
 \[\begin{align*}
 4 & +4 & +9 \\
 -3 & =5 & =6 \\
 =8 & +9 & =9 \\
 -1 & +6 & -1 \\
 \end{align*}\]
- Result:
- 4 7 3
- 2 5 6
- 8 2 9
- 4 9 3
Existing
(M-Pesa, GCash, WIZZIT)

• Pure cellphones with SMS. All money is electronic.
• But cellphones are not secure.
• Sim card number can easily be hacked. Numbers rerouted.
• Cellphones are often shared.
What Have We Accomplished

• No replay attack, once Z[i] is revealed, the amount of the transaction cannot be changed and X[i] and Z[i] can’t be used later.
• No man in the middle attack – insufficient information.
• No need for crypto.
• No need for secure phone lines.
Questions?