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Abstract

We study the polynomial reconstruction problem for low-degree multivariate polynomials
over finite field F[2]. In this problem, we are given a set of points x ∈ {0, 1}n and target
values f(x) ∈ {0, 1} for each of these points, with the promise that there is a polynomial over
F[2] of degree at most d that agrees with f at 1 − ε fraction of the points. Our goal is to find
a degree d polynomial that has good agreement with f . We show that it is NP-hard to find a
polynomial that agrees with f on more than 1− 2−d+ δ fraction of the points for any ε, δ > 0.
This holds even with the stronger promise that the polynomial that fits the data is in fact linear,
whereas the algorithm is allowed to find a polynomial of degree d. Previously the only known
hardness of approximation (or even NP-completeness) was for the case when d = 1, which
follows from a celebrated result of Håstad [Hås01].

In the setting of Computational Learning, our result shows the hardness of non-proper ag-
nostic learning of parities, where the learner is allowed a low-degree polynomial over F[2] as
a hypothesis. This is the first non-proper hardness result for this central problem in compu-
tational learning. Our results can be extended to multivariate polynomial reconstruction over
any finite field.
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1 Introduction
In the generic polynomial reconstruction problem, we are given points {xi}mi=1 and target values
f(xi) at those points. The goal is to find a low-degree polynomial that has good agreement with
f . In addition to being a very natural problem, polynomial reconstruction has found applications
in several areas of theoretical computer science including computational complexity, coding the-
ory, derandomization and computational learning. Several important advances in Probabilistically
Checkable Proofs (PCPs) and List Decoding rely on highly efficient algorithms to solve the poly-
nomial reconstruction problem.

This work addresses the complexity of the polynomial reconstruction problem for low-degree
multivariate polynomials over finite fields, which is a ubiquitous reconstruction problem encoun-
tered in many scenarios. We show a hardness result for the polynomial reconstruction problem:
given a set of points x ∈ {0, 1}n and target values f(x) ∈ {0, 1} for each of these points, with the
promise that there is a polynomial over F[2] of degree at most d that agrees with f at 1 − ε frac-
tion of the points, we show that it is NP-hard to find a polynomial that agrees with f on more than
1−2−d+δ fraction of the points for any ε, δ > 0. This holds even with the stronger promise that the
polynomial that fits the data is in fact linear, whereas the algorithm is allowed to find a polynomial
of degree d. Our results extend to any finite field with appropriate settings of parameters.

1.1 Applications of the Polynomial Reconstruction Problem.
We elaborate on some of the many applications of polynomial reconstruction in coding theory and
computational learning, and describe the known algorithms and hardness results.

Coding Theory: An important family of error-correcting codes known as Reed-Muller codes
is obtained from low-degree multivariate polynomials over finite fields. In the Reed-Muller code
RM(d, n) over a finite field F, the messages correspond to all polynomials of degree at most d
in n variables, and the encoding is the vector of evaluations of the polynomial at points in n-
dimensional vector space Fn over F. Hadamard codes are a class of Reed-Muller codes obtained
by taking the messages to be all linear functions over Fn. In the Reed-Solomon code RS(d, n), the
messages correspond to degree d univariate polynomials (d is super-constant), and the codewords
are evaluations of the polynomial at some n points in the finite field F. The decoding problems for
all these codes are instances of the polynomial reconstruction problem.

A series of influential results give highly efficient list-decoding algorithms for such codes,
which produce a list of all codewords that have significant agreement with the received word. The
first such algorithm was given for Hadamard codes by Goldreich and Levin [GL89], and sub-
sequently by Kushilevitz and Mansour [KM91] and Goldreich, Rubinfeld and Sudan [GRS00].
List decoding algorithms for Reed-Muller codes were given by Goldreich, Rubinfeld and Sudan
[GRS00], Arora and Sudan [AS03] Sudan, Trevisan and Vadhan [STV01], and by Gopalan, Kli-
vans and Zuckerman [GKZ08]. For Reed-Solomon codes, list decoding algorithms were given
by Sudan [Sud97] and Guruswami and Sudan [GS99]. Recent advances on capacity-achieving
list-decodable codes by Parvaresh and Vardy [PV05] and Guruswami and Rudra [GR06] use vari-
ants of Reed-Solomon codes. These results have had great impact on both coding theory and
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computational complexity. In particular Reed-Muller codes have numerous applications including
proof-checking and the hardness of approximation [ALM+98, AS98, AS03], hardness amplifica-
tion [STV01], cryptography [GL89] and derandomization [TSZS01]; see [Tre04, Gur04] for more
applications. The parameter settings are chosen depending on the application at hand; for instance
in PCPs, on inputs of size N , one takes |F| = (logN)O(1) and n = O( logN

log logN
).

Indeed, known algorithms for some of these codes are believed to be optimal and it is an im-
portant open problem to prove matching computational and combinatorial lower-bounds. The de-
coding problem for a specific code is polynomial reconstruction with an important restriction: the
set of points is known to the algorithm in advance, it is only the labels f(x) that can be generated
adversarially. However, several decoding algorithms do in fact solve the general reconstruction
problem [Sud97, GS99].

Computational Learning: The problem of learning parity functions in the presence of classifi-
cation noise is a central problem in computational learning; this is another instance of multivariate
polynomial reconstruction. It is equivalent to the well-studied problem of decoding random linear
codes in coding theory. In this discussion, we focus on the case when the parity function is over
F[2]. Two kinds of noise models have been studied: in the random classification noise model, the
label of each example is flipped independently with probability η < 1

2
before it is given to the

learner. The agnostic learning model can be thought of as a worst-case noise, where an adversary
changes the labels of some η fraction of the points in {0, 1}n before the points are presented to the
learner (see for instance [FGKP06] for a formal definition).

For random classification noise, the best known algorithm due to Blum, Kalai and Wasser-
man runs in time 2O(n/ logn) for any distribution over the points {0, 1}n [BKW03]. A 2O(n/ logn)

algorithm for agnostically learning parity under the uniform distribution was given recently by
Feldman et al. [FGKP06]. Their algorithm is a proper learning algorithm which produces a parity
as hypothesis. Recently, Kalai et al.[KMV08] gave a 2O(n/ logn) algorithm for agnostically learn-
ing parity under arbitrary distributions, their algorithm however is non-proper and produces a more
complicated hypothesis. On the hardness side, Håstad shows the proper agnostic learning of pari-
ties is NP-complete [Hås01]. Feldman et al. asked whether the same holds true even when using
low-degree F[2] polynomials as hypothesis [FGKP06].

The problem of polynomial reconstruction arises naturally in the context of learning AC0circuits,
which are circuits of AND, OR and NOT gates having polynomial-size and constant-depth. Linial,
Mansour and Nisan showed that AC0circuits are learnable under the uniform distribution in quasi-
polynomial time [LMN93]. The question of whether these circuits are PAC-learnable is open.
A possible approach is suggested by the results of Razborov and Smolensky, who show that
AC0circuits with n inputs can be approximated by multivariate polynomials of degree (log n)O(1)

over F[p], the finite field with p elements, under any distribution [Raz87, Smo87]. Thus even a
weak agnostic learning algorithm for multivariate polynomials of degree (log n)O(1) over F[p] with
adversarial noise under arbitrary distributions would imply a PAC-learning algorithm for AC0, and
in fact for the larger class AC0[p], where MOD-p gates are also allowed. Currently, AC0[p] circuits
are not known to be learnable even under the uniform distribution. This problem of proper agnos-
tic learning of polynomials under arbitrary distributions is a generalization of the reconstruction
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problem which we address.

Hardness Results: In contrast with the tremendous progress on the algorithmic side, relatively
few negative results are known for polynomial reconstruction. For linear polynomials in n vari-
ables, a tight hardness result follows from the celebrated work of Håstad on solving linear equations
over finite fields [Hås01]. For d = 2 and higher, we are unaware of even an NP-completeness re-
sult for F[2] or even polynomial-sized fields. Goldreich et al. show that the polynomial reconstruc-
tion problem is NP-complete for univariate polynomials over exponentially large fields [GRS00].
The problem of Reed-Solomon decoding was recently shown to be NP-complete [GV05] by Gu-
ruswami and Vardy, again over large fields. Cheng and Wan show some connections between
Reed-Solomon decoding and the discrete log problem over finite fields [CW04].

1.2 Our Results
We consider the Polynomial Reconstruction problem POLYREC(d, n) for multivariate polynomials
in n variables over F[2] of degree at most d, for d constant. The input to this problem is a set
of point-value pairs {xi, f(xi)}mi=1 where xi ∈ F[2]n and f(xi) ∈ F[2] and a degree bound d.
Our goal is to find the multivariate polynomial P (X1, . . . , Xn) of degree at most d that satisfies
P (xi) = f(xi) for most points xi. We will allow the possibility that the same vector x is repeated
multiple times (but with the same label f(x)).

If there is a polynomial P (X1, . . . , Xn) such that P (xi) = f(xi) for all i, it can be found using
polynomial interpolation. Assume that some polynomial agrees with f(x) on 1− ε fraction of the
points. Can we find a polynomial with good agreement? Our main result is that this problem is
hard to approximate.

Theorem 1 For any ε, δ > 0, given an instance of POLYREC(d, n) over F[2], it is NP-hard to
distinguish between the following cases:
1. YES INSTANCE: There is a linear polynomial satisfying P (xi) = f(xi) for 1 − ε fraction of
the points.
2. NO INSTANCE: Every polynomial of degree at most d satisfies P (xi) = f(xi) for at most
1− 2−d + δ fraction of the points.

In the case d = 1, our result matches the tight bound of 1
2

+ δ for linear equations which
follows from Håstad’s work [Hås01], but via a very different proof technique. To our knowledge,
for d ≥ 2, this is the first hardness of approximation or even NP-completeness for a fixed field.
Theorem 1 gives a strong guarantee in the YES case: the polynomial fitting the data is linear. This
implies the NP-hardness of agnostic learning of parity even if the learning algorithm is allowed
F[2] polynomials of degree d for any constant d, making significant progress on the problem raised
in [FGKP06].

Theorem 1 suggests limits to PAC-learning AC0 via polynomial reconstruction, by showing
that there are distributions under which the reconstruction problem is NP-hard. It implies the
hardness of proper learning for low-degree polynomials, even if the learning algorithm is allowed
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to ask queries. Recently, Gopalan et al. [GKZ08] have given a list-decoding algorithm that decodes
any RM(d, n) polynomial up to an error-radius 2−d − δ over F[2]n, i.e. even if up to 2−d − δ
fraction of the evaluations of the polynomial are corrupted. This shows that degree d polynomials
can be learnt up to accuracy of 1−2−d+ δ under the uniform distribution with queries. Indeed, the
soundness factor of 1−2−d in our result comes from the minimum distance of order d Reed-Muller
codes over F[2] (which is 2−d). Unlike the case of univariate reconstruction, where the specific
subset of points S ⊆ F[2] (or equivalently, the distribution on points) does not affect the number of
errors that can be corrected by known algorithms [Sud97, GS99], the point-set S ⊆ F[2]n is crucial
in the multivariate case.

Our results can be extended to any finite field F[q]. Let s(d, q) denote the maximum over all
non-zero polynomials P (X1, . . . , Xn) in F[q] of degree d of the probability that P is 0 at a random
point in F[q]n. By the Schwartz-Zippel lemma, if d = a(q − 1) + b for 0 ≤ b ≤ q − 1, then
s(d, q) = 1 − q−b

qa+1 . Note that the minimum distance of the order d Reed-Muller code RMq(d, n)

over F[q] is precisely 1− s(d, q).

Theorem 2 For any ε, δ > 0, given an instance of POLYREC(d, n) over F[q], it is NP-hard to
distinguish between the following cases:
1. YES INSTANCE: There is a linear polynomial satisfying P (xi) = f(xi) for 1 − ε fraction of
the points.
2. NO INSTANCE: Every polynomial of degree d satisfies P (xi) = f(xi) for at most s(d, q) + δ
fraction of the points.

The proof of Theorem 2 is presented in Appendix A. This result should be contrasted with
the results of [STV01] and [GKZ08] for field-sizes larger than 2. Sudan et al.[STV01] show that
Reed-Muller codes can be list-decoded up to a certain coding-theoretic bound called the Johnson
bound. Gopalan et al.[GKZ08] show that if the field-size is constant, then in fact one list-decode
beyond the Johnson bound. The exact list-decoding radius is still open, but [GKZ08] conjectured
that the right bound is the minimum distance, which is 1 − s(d, q). Thus, if their conjecture is
true, then the reconstruction problem with agreement s(d, q) + δ is tractable under the uniform
distribution on Fnq .

We note that the difficulty in proving hardness depends on the relative sizes of d and q. When
d < q − 1, one can prove a hardness of 1− ε versus d+1

q
+ δ using a simple reduction from linear

equations over F[q] which we present in Appendix B.

1.3 Subsequent Work.
The main open problem left in our work was to improve the soundness bounds in Theorem 1 and
2 to 1

2
+ ε and 1

q
+ ε respectively. Proving such a bound using our techniques, or even improv-

ing the soundness of the dictatorship test itself seems a fairly challenging task. Recently, Khot
gave an entirely different reduction with optimal soundness [Kho08]. His result relies on recent
pseudorandom generator constructions for low-degree polynomials [BV07, Lov08, Vio08].

The general technique of consistency testing which we introduce in this paper has been used
in several subsequent hardness results in computational learning. Variants of it have been used
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by Khot and Saket to prove hardness results for learning intersections of halfspaces [KS08b], and
DNF formulas [KS08a], and by Feldman et al.[FGRW09] to prove hardness results for learning
monomials by halfspaces.

2 Overview of the Reduction
The main technical contribution of our work is to apply the machinery of PCPs to the polynomial
reconstruction problem. Our result is proved by a reduction from LABELCOVER (see Section 6
for the definition of LABELCOVER). However, the fact that polynomial reconstruction for d ≥ 2
is not a Constraint Satisfaction Problem (CSP) in the usual sense means that there are several
obstacles to overcome. To do so, we introduce some new primitives such as Dictatorship Testing
for Polynomials and Consistency Testing via Folding which we believe could be useful in other
contexts. For simplicity, let us consider polynomials over F[2].

Dictatorship Testing for low-degree Polynomials: Like most reductions from LABELCOVER

(see, for example [Hås01]), our first goal is to give a dictatorship test for low-degree polynomials,
using constraints of the form 〈x, f(x)〉 for x ∈ {0, 1}k. Our goal is that the dictator polynomial Xi

corresponding to the index i ∈ [k], should pass this test with good probability. On the other hand,
for every polynomial P (X1, . . . , Xk) of degree d which passes the test with good probability, we
wish to decode it to an index in [k]. While this may not always be possible, we will settle for a
(small) list of indices from [k], such that the length of this list is constant (independent of k). Note
that since we require constraints of the form 〈x, f(x)〉 for x ∈ {0, 1}k, the dictatorship test must
involve only one query to the value of the polynomial.

We propose the following test: we sample a random vector η ∈ {0, 1}k where each ηi is 1 with
probability ε, and check that P (η) = 0. Dictatorships pass this test with probability 1 − ε. But
there are several polynomials that will do well, for instanceX1X2 will pass with probability 1−ε2.
While this polynomial is close to a dictatorship, the polynomial X1(X2 + . . .+Xk) which depends
on all k variables passes with probability close to 1 − ε

2
. Indeed, any polynomial which can be

written as
P (X1, . . . , Xn) = X1P1(X1, . . . , Xn) + . . .+XcPc(X1, . . . , Xn)

where the Pis are arbitrary polynomials of degree d− 1 will pass the test with probability 1− cε.
If we view the set of monomials as a hypergraph on [k], it can be seen that polynomials whose
hypergraphs have small vertex covers will pass the test with high probability. We will use this
as our notion of being close to a dictatorship. We prove an inverse theorem: if P (X1, . . . , Xk)
passes our test with good probability, the corresponding hypergraph must have a small maximum
matching, where a hypergraph matching is a set of hyperedges such that no two hyperedges share
a vertex. Consequently, the hypergraph contains a small vertex cover. We view the set of vertices
of this small vertex cover as a list-decoding of P (X1, . . . , Xk).

It is unclear why this decoding should be of any use: indeed running the decoding a second time
on the same hypergraph might produce a different matching. Note however that the vertex sets of
any two maximal matchings must have some intersection. Indeed, the usefulness of this decoding
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procedure stems from the fact that given any d + 1 vertex covers in a d-regular hypergraph, some
two will intersect.

It is interesting to contrast this dictatorship test with Fourier based dictatorship testing [Hås01,
KKMO07]. In those tests, the evaluation of the function is given at each query point, as a Long
Code, and therefore one is allowed to query the function being tested in two or more points. How-
ever, in our case we are “given” the function as a low-degree polynomial as guaranteed but on the
other hand are allowed just one query. In a departure from Fourier based dictatorship testing, our
analysis uses only basic facts about polynomials. What makes this possible is the promise that
the function being tested is a low-degree polynomial, as opposed to an arbitrary Boolean function.
However, giving a test with better guarantees might require new algebraic techniques.

Consistency Testing via Folding: Our strategy for reducing from LABELCOVER is the follow-
ing: to each vertex v in the LABELCOVER instance, we assign variablesXv

1 , . . . , X
v
k where k is the

number of labels possible. In the YES case, if the labeling of vertices is given by l : V → [k], then
we want the polynomial

∑
Xv
l(v) to satisfy most of the constraints. Further, given any polynomial

Q that satisfies sufficiently many constraints, we want to be able to decode it to a label for each
vertex. To assign a label for vertex v, we consider the restriction of Q to the variables Xv

1 , . . . , X
v
k

obtained by setting the other variables to 0, which we denote by Q(Xv). We then run the decoding
procedure for the dictatorship test on it and pick a random label from the list. Our hope is that this
will assign labels in a way that satisfies a constant fraction of the LABELCOVER constraints.

The next gadget we need is a way of testing whether two vertices have been assigned consistent
labels. For this, let us consider a toy problem where there are just two vertices and we want to test
if they are assigned the same label. Following the outline above, we associate them with variables
X1, . . . , Xk and Y1, . . . , Yk respectively. For a labeling to the vertices that assigns the same label
i ∈ [k], we can naturally associate the linear polynomial Xi+Yi. Therefore, want a test that passes
the polynomials Xi + Yi for all i ∈ [k]. Further, we want to assign labels to each vertex based on
U(X1, . . . , Xk) = Q(X1, . . . , Xk,0

k) and V (Y1, . . . , Yk) = Q(0k, Y1, . . . , Yk) respectively. If Q
passes our test, these labels should be the same with constant probability (independent of k). We
can run the dictatorship test on U using vectors of the form (η,0k) and similarly on V . However,
note that even polynomials of the form Xi + Yj , where i 6= j will pass the dictatorship tests on
both U and V , in which case any scheme of assigning labels to the two vertices based on U and V
shall fail to assign the same labels. Therefore, we need to ensure that some form of consistency is
incorporated within the dictatorship test.

Our solution is to enforce the consistency constraints via what we call global folding. Let
us write the vector (x1, . . . , xk, y1, . . . , yk) ∈ {0, 1}2k in a different basis as (x1 + y1, . . . , xk +
yk, y1, . . . , yk). Observe that in this basis, the polynomials Xi + Yi that pass the test only depend
on the first k co-ordinates. We will enforce this condition on every polynomial. In place of the
point-value pair 〈(x,y), f(x,y)〉, we add the point-value pair 〈(x1 + y1, . . . , xk + yk), f(x,y)〉.
Clearly, this does not hurt the completeness of the test. However, one could hope for better sound-
ness, since we have restricted the space of polynomials from all polynomials in Xis and Yjs to
those that only depend on Xi + Yi. Equivalently, we are forcing the adversary to pick a poly-
nomial that is constant on cosets of the subspace H defined by Xi + Yi = 0. To analyze the
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probability that some polynomial P of k variables passes this new test, we unfold it and write it as
Q(X1, . . . , Xk, Y1, . . . , Yk) = P (X1 +Y1, . . . , Xk+Yk). Note that this enforces the constraint that
mapping Xi to Yi sends U to V . Thus in fact, if P passes the dictatorship tests, then our decoding
will assign the same labels to u and v with non-negligible probability.

Similarly, we enforce all the LABELCOVER constraints via a suitable folding. If a solution to
the LABELCOVER instance exists, it will give a linear polynomial that lies in a low dimensional
subspace of all linear functions on {0, 1}nk. This sub-space is defined by linear equations that
encode the constraints of the LABELCOVER instance. We identify this sub-space and perform the
dictatorship test for every vertex after projecting points onto it. Assume that some polynomial P
in this low dimensional subspace passes our tests with good probability. To decode P , we unfold it
to a polynomial Q in nk dimensions. The polynomial Q has some nice symmetry properties which
encode the constraints of the label-cover instance. We exploit these symmetries to show that our
decoding procedure will find a good solution to the LABELCOVER instance. The novelty of our
approach is that the LABELCOVER constraints are enforced via the folding and unfolding, and not
through explicit consistency tests.

This is an idealized view of our reduction, which brushes over several technical issues. The
constraints that we must enforce are more complicated than equality constraints (or even permu-
tations), they are defined in terms of projection maps. For technical reasons, we use a hypergraph
version of LABELCOVER, as opposed to the usual bipartite graph version. Also, we need to ensure
that the polynomials passing our dictatorship tests are not 0, this is done by an additional folding
which we call local folding. It essentially stems from the fact that if the polynomial P (X1, . . . , Xk)
is a dictatorship, i.e. of the form Xi for some i ∈ [k], then P (x + 1k) = 1 + P (x) for any
x ∈ {0, 1}k. If P is written in over an orthogonal basis of {0, 1}k, consisting of 1k as a basis vec-
tor, then we can enforce via folding that the polynomial P be linear with respect to the indicator of
1k. While we defer further details for later, readers familiar with Håstad’s PCP [Hås01] will note
the similarity between the folding used there and the local folding in our reduction.

3 Dictatorship Testing for Low-Degree Polynomials
We begin this section with a few preliminaries.

Linear polynomials are polynomials of degree 1 with no constant. By degree d multivariate
polynomials, we mean all polynomials of degree at most d. In particular it includes linear poly-
nomials. Over F[2] we assume that all polynomials are multilinear. Let 0k and 1k denote the all
0s and all 1s vector respectively. We use η ε←− {0, 1}k to denote sampling η from the ε-noise
distribution, where each ηi = 1 independently with probability ε. We will use η ←− {0, 1}k to
denote sampling from the uniform distribution. In general the notation a←− A would denote that
the element a is sampled uniformly at random from the set A.

We analyze the following test on polynomials P (X1, . . . , Xk) of degree at most d:
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Algorithm 1 BASIC DICTATORSHIP TEST:
Pick η

ε←− {0, 1}k and test if P (η) = 0.

Note that the zero polynomial passes the present test with probability 1; later we will modify
the test to ensure that the polynomial is non-zero. We use the following fact about low-degree
polynomials:

Fact 3 Let P (X1, . . . , Xk) be a non-zero polynomial of degree d over F[2]. Then

Pr
η←−{0,1}k

[P (η) = 0] ≤ 1− 2−d.

Given a polynomial P (X1, . . . , Xk), we will associate it with a hypergraph Hyp(P ), with
vertex set [k] and edge set E. E contains the hyperedge e ⊂ [k] if the monomial

∏
i∈eXi is

present in Hyp(P ). The degree bound of d implies that |e| ≤ d. If we denote the constant term
by c ∈ {0, 1}, then P (X1, . . . , Xk) =

∑
e∈E
∏

i∈eXi + c. A matching in a hypergraph is a set
of independent edges (with no common vertices). It is easy to see that taking all the vertices in a
maximal matching gives a vertex cover for the hypergraph.

Theorem 4 Let P (X1, . . . , Xk) be a degree d polynomial over F[2] that passes the Basic Dicta-
torship Test (Algorithm 1) with probability 1− 2−d + δ for some δ > 0. Then the largest matching
in the hypergraph Hyp(P ) is of size C

(2ε)d where C depends only on d and δ. Further the constant
term c in P (X1, . . . , Xk) is 0.

Proof: Rather than setting each Xi to 1 with probability ε, we will do a two-step sampling
procedure, which will have the same effect:

• Set every variable Xi to 0 independently with probability 1− 2ε.

• Independently set each remaining variable to a random {0, 1} value.

It is clear that this induces the ε-noise distribution on η. Let S ⊂ [k] be the set of indices
corresponding to variables that are not set to 0 in step 1. Let XS denote the set of these variables.
The resulting polynomial P ′(XS) is given by the hypergraph induced by the vertex set S. Also

Pr
η

ε←−{0,1}k
[P (η) = 1] = Pr

η′←−{0,1}|S|
[P ′(η′) = 1]

If P ′(XS) is non-zero, then since it has degree at most d, Pr[P ′(η′) = 1] ≥ 2−d. Now if
c = 1, then P ′ also has the constant term 1, hence it is a non-zero polynomial, so Pr[P (η) = 1] =
Pr[P ′(η′) = 1] ≥ 2−d, which is a contradiction.

Now assume that the hypergraph Hyp(P ) contains a matching M of size |M | ≥ C
(2ε)d where

the constant C will be fixed later. For each hyperedge e ∈ M , the probability that all its vertices
are chosen to be in S is (2ε)|e|. Also, since M is a matching, these events are independent for
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various edges. Thus the probability that none of these edges occurs in the hypergraph induced by
S is bounded by ∏

e∈M

(1− (2ε)|e|) ≤ (1− (2ε)d)
C

(2ε)d < e−C .

Hence, with probability 1 − e−C , the subgraph induced by S is non-empty. Conditioned on this
event, P ′(XS) is a non-zero polynomial of degree at most d, hence P ′(η′) = 1 with probability at
least 2−d. Thus

Pr[P (η) = 1] ≥ (1− e−C) · 2−d

For sufficiently large C, this contradicts the fact that Pr[P (η) = 1] ≤ 2−d − δ.
Theorem 4 suggests the following decoding procedure:

Algorithm 2 DECODING PROCEDURE FOR THE BASIC DICTATORSHIP TEST:
1. Pick a maximal matching M in Hyp(P ).
2. Output a list L of all vertices in this matching.

Clearly the set L is a small vertex cover forHyp(P ). The usefulness of this decoding procedure
is because of the following simple lemma.

Lemma 5 Let Hyp(P ) be a non-empty hypergraph with some edge of size d. Let L1, . . . , Ld+1 be
d+ 1 vertex covers for Hyp(P ). Then some pair Li, Lj where i 6= j has a non-empty intersection.

Proof: Let the edge e = (v1, . . . , vd) in Hyp(P ). Each vertex cover contains some vi. There are
d+ 1 of them, hence two of them must pick the same vertex.

If all the vertex covers are obtained by taking all the vertices of some maximal matching, then in
fact any two of them have non-empty intersection. This is implied by the following Lemma:

Lemma 6 Let Hyp(P ) be a non-empty hypergraph. Let M1 and M2 be maximal matchings in
Hyp(P ). Then the vertex sets of M1 and M2 must intersect.

Proof: Pick e ∈ M1. Assume that the vertex set of M2 does not intersect the edge e. Then
M2 ∪ {e} is a matching in Hyp(P ), which contradicts the maximality of M2.

To see why the set L is useful in the decoding procedure, consider the following toy problem:
Graph Decoding: Carol has a graph G on k vertices. She relabels the vertices σ(1), . . . , σ(k)
for some permutation σ ∈ Sk and gives the (relabeled) graph σ(G) to Alice. She relabels vertices
according to π ∈ Sk and gives π(G) to Bob. Alice and Bob need to produce vertices i and j so that
σ−1(i) = π−1(j). They do not know σ and π, and they are not allowed to communicate.

While in general, it is hard for Alice and Bob to succeed, suppose they are promised that the
maximum matching in the graph G is at most C for C << k. Then Alice and Bob can each pick
a maximal matching A and B respectively in their graphs and output a random vertex from the
vertex set. It is easy to see from Lemma 6 that the strategy succeeds with probability at least 1

4C2 .
To relate this scenario to the problem at hand, we can associate Alice and Bob with two vertices

which have a permutation constraint between their label sets [k]. The task of Alice and Bob is to
choose a label for their respective vertices in order to satisfy the permutation constraint.
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4 Consistency Testing via Folding
In this section, we introduce the technique of folding polynomials over affine subspaces, which we
use to enforce the label-cover constraints.

Definition 1 P (X1, . . . , Xk) is 0-folded over h ∈ {0, 1}k if for all x ∈ {0, 1}n, P (x+h) = P (x).

Every polynomial is 0-folded over 0. It is clear that the set of all such vectors h forms a subspace
of {0, 1}k which we denote by H . We say that P (X1, . . . , Xk) is 0-folded over H .

Lemma 7 Let dim(H) = t. A polynomial Q(X1, . . . , Xk) is 0-folded over H iff it can be written
as P (λ1, . . . , λk−t) where λi = λi(X1, . . . , Xk) is a linear polynomial and

H = {x ∈ {0, 1}k|λi(x) = 0 for 1 ≤ i ≤ k − t}.

Proof: Firstly, consider a polynomial of the above form. Note that λi(h) = 0, so by linearity
λi(x + h) = λi(x) for all h ∈ H . Hence

Q(x + h) = P (λ1(x + h), . . . , λk−t(x + h)) = P (λ1(x), . . . , λk−t(x)) = Q(x).

For the converse, assume Q is 0-folded over H . Pick a basis h(1) . . . ,h(t) for H . Complete
this to a basis F for {0, 1}k by adding k − t vectors f(1), . . . , f(k − t). We can write every
x ∈ {0, 1}k as

x =
k−t∑
i=1

λif(i) +
t∑

j=1

µjh(j).

The co-ordinates (λ1, . . . , λk−t) specify the coset of H in which x lies, while µ1, . . . , µt specify its
position inside the coset. We can rewriteQ as a polynomial in these new variables. We claim thatQ
is equivalent to a polynomial P (λ1, . . . , λk−t) independent of µ1, . . . , µt . Assume for contradiction
that P depends on µ1. Then we can find a point x written as (λ1, . . . , λk−t, µ1, . . . , µt) in the basis
F , where P is sensitive to µ1, meaning that

P (λ1, . . . , λk−t, µ1, . . . , µt) = 1 + P (λ1, . . . , λk−t, 1 + µ1, . . . , µt)

Adding h(1) in the standard basis is equivalent to flipping µ1 in the new basis. Thus we have
Q(x) 6= Q(x + h(1)) which is a contradiction.

Definition 2 P (X1, . . . , Xk) is 1-folded over g ∈ {0, 1}k if for all x ∈ {0, 1}k, P (x + g) =
1 + P (x).

It is easy to see that the set of all such g (if it is non-empty) is a coset of H , if P is 0-folded
over H . Therefore we say P is 1-folded over g + H to mean P is 1-folded over all vectors in
the coset g + H . Conversely, if P is 1-folded over g and g′, then it is 0-folded over g + g′ since
P (x + g + g′) = 1 + P (x + g) = P (x).

For convenience, henceforth when we say P is folded over H , we mean that P is 0-folded over
H . Similarly, when we say that if P is folded over a vector g, it implies that P is 1-folded over
g and when we say that P is folded over g +H , we mean that it is 0-folded over H and 1-folded
over g +H .

10



Lemma 8 A polynomial Q(X1, . . . , Xk) is folded over g +H iff it can be written as
P (λ1, . . . , λk−t−1) + λk−t where λi = λi(X1, . . . , Xk) is a linear polynomial and

g +H = {x ∈ {0, 1}k|λi(x) = 0 for 1 ≤ i ≤ k − t− 1 and λk−t(x) = 1} (1)
H = {x ∈ {0, 1}k|λi(x) = 0 for 1 ≤ i ≤ k − t} (2)

Proof: Given a polynomial of this form, it is easy to see that Q(x + h) = 0 for h ∈ H , whereas
Q(x + g′) = 1 +Q(x) for any g′ in g +H .

For the converse, assume Q is folded over g +H . Pick a basis h(1) . . . ,h(t) for H . Complete
this to a basis for {0, 1}k by adding g and k − t− 1 vectors f(1), . . . , f(k − t− 1). We can write
x ∈ {0, 1}k as

x =
k−t−1∑
i=1

λif(i) + λk−tg +
t∑

j=1

µjh(j).

It is clear that in this basis, g + H and H are described by Equations 1 and 2 respectively. By
Lemma 7, Q can be written as P ′(λ1, . . . , λk−t). Further, the condition Q(x + g) = Q(x) + 1
implies that

P ′(λ1, . . . , λk−t) = P ′(λ1, . . . , λk−t−1, 0) + λk−t.

We can check this by substituting the values 0 and 1 for λk−t. Setting P (λ1, . . . , λk−t−1) =
P ′(λ1, . . . , λk−t−1, 0) proves the claim.

4.1 Testing Equality via Folding
Our next goal is to design a test to check if two vertices have been assigned the same label. We will
do this using folding. Given vertices u and v, each with a label in [k], we wish to check if they have
the same label. We assign variables X1, . . . , Xk to vertex u, Y1, . . . , Yk to v. If both vertices have
the label i assigned to them we expect the polynomial Xi + Yi; so our test should accept all such
polynomials. The decoding procedure labels u by looking at the restriction of Q to X1, . . . , Xk,
and labels v by looking at the restriction to Y1, . . . , Yk. If the test accepts some polynomial Q with
non-trivial probability, we want the same label assigned to both the vertices.

Define the polynomial Di = Xi + Yi and let D denote the set of all such polynomials. These
polynomials are 0-folded over the subspace H of {0, 1}2k which is defined by Xi + Yi = 0 for all
i, which consists of the vectors (z, z) for z ∈ {0, 1}k Note that the subspace is pre-determined and
can be computed before making any tests. We want to enforce the condition on the polynomials
being tested that they should have the form stated in Lemma 7.

This is done by a suitable projection. Pick a basis h(1), . . . ,h(k) for H and complete it to
a basis F of {0, 1}2k by adding f(1), . . . , f(k). We can write (x,y) ∈ {0, 1}2k in this basis as
(λ1, . . . , λk, µ1, . . . , µk). For convenience of notation we shall say a ≡F b if a vector a in the
standard basis is the vector b in the basis F .

Our test will be on polynomials P (λ1, . . . , λk) of degree d. We will run the Basic Dictatorship
Test (Algorithm 1) on each vertex. Our test proceeds by generating points in {0, 1}2k, writing
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them in the F -basis and projecting onto (λ1, . . . , λk) and testing the polynomial P at these points
in {0, 1}k.

Algorithm 3 EQUALITY TEST:
1. For vertex u, pick η

ε←− {0, 1}k.
2. Let (η,0k) ≡F (λ1, . . . , λk, µ1, . . . , µk) and test if P (λ1, . . . , λk) = 0.
3. For vertex v, pick η′

ε←− {0, 1}k.
4. Let (0k, η′) ≡F (λ1, . . . , λk, µ1, . . . , µk) and test if P (λ1, . . . , λk) = 0.

In order to analyze the test, we rewrite P as a polynomial Q in X1, . . . , Xk, Y1, . . . , Yk by
substituting for each λi. We observe that folding enforces the following symmetry on Q:

Claim 9 The polynomial Q satisfies Q(x,y) = Q(y,x) for x,y ∈ {0, 1}k.

Proof: By Lemma 7, P and therefore Q, is folded over H , and (x,y)+(y,x) = (x+y,x+y) ∈
H . Hence (x,y) and (y,x) lie in the same coset of H .

Algorithm 4 DECODING PROCEDURE FOR THE EQUALITY TEST:
1. Rewrite P (λ1, . . . , λk) as a polynomial Q in X1, . . . , Xk, Y1, . . . , Yk.
2. Run Algorithm 2 on Q(X1, . . . , Xk,0

k) to get list L(u).
3. Run Algorithm 2 on Q(0k, Y1, . . . , Yk) to get list L(v).
4. Assign l(u)←− L(u) and l(v)←− L(v).

Note that the notation a ←− A, used in the above description, denotes that the element a is
sampled uniformly at random from the set A. In order to analyze this procedure, let us define the
polynomials U(X1, . . . , Xk) = Q(X1, . . . , Xk,0

k), and V (Y1, . . . , Yk) = Q(0k, Y1, . . . , Yk). The
key observation is that P being independent of H forces the polynomials U and V to be identical.

Lemma 10 The polynomials U(Z1, . . . , Zk) and V (Z1, . . . , Zk) have identical coefficients for
each monomial.

Proof: The polynomials U and V each define functions U, V : {0, 1}k → {0, 1} given by

U(z) = Q(z,0k), V (z) = Q(0k, z).

By Claim 9,Q(z,0k) = Q(0k, z), hence U = V as functions, and hence have the same coefficients
for each monomial.
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Theorem 11 Let P (λ1, . . . , λk) be a degree d polynomial that passes the Equality Test (Algorithm
3) for both u and v with probability at least 1−2−d+δ. Then l(u) = l(v) with constant probability
(depending on d, δ).

Proof: Recall that for Q′(X1, . . . , Xk), Hyp(Q′) denotes the hypergraph on [k] corresponding to
the monomials in Q′. By Lemma 10, Hyp(U) = Hyp(V ). Performing the Basic Dictatorship
Test (Algorithm 1) on U(X1, . . . , Xk) is equivalent to testing if Q(η,0k) = 0, which is the same
as testing P (λ1, . . . , λk) = 0 for (η,0k) ≡F (λ1, . . . , λk, µ1, . . . , µk). Similarly, the Basic Dic-
tatorship Test on V (Y1, . . . , Yk) is the same as testing whether Q(0k, η′) = 0. Since both these
tests succeed with probability 1 − 2−d + δ, by Theorem 4, each of L(U) and L(V ) is a maximal
matching in Hyp(U) = Hyp(V ) of constant size. Thus by Lemma 6 choosing a random label
from each results in a common label with constant probability.

4.2 Enforcing non-Emptiness
We show how one can use folding to ensure that the polynomials that pass the dictatorship test and
the equality test are non-zero.

For the dictatorship test, observe that the polynomials Xi are 1-folded over g = 1k. To enforce
this condition on every polynomial, choose a basis F ′ = {f(1), . . . , f(k − 1),g} for {0, 1}k. We
write vectors in this basis as

x =
k−1∑
i=1

λif(i) + λkg.

By definition, polynomials which are 1-folded over g can be written as P (λ1, . . . , λk−1)+λk. This
suggests the following test:

Algorithm 5 FOLDED DICTATORSHIP TEST:
1. Sample η

ε←− {0, 1}k, and let η ≡F ′ (λ1, . . . , λk).
2. Test if P (λ1, . . . , λk−1) = λk.

To analyze this test, we define the polynomial Q(X1, . . . , Xk) = P (λ1, . . . , λk−1) + λk.

Theorem 12 The polynomial Q(X1, . . . , Xk) is folded over g = 1k. The probability that
P (λ1, . . . , λk−1) passes the Folded Dictatorship Test (Algorithm 5) equals the probability that
Q(X1, . . . , Xk) passes the Basic Dictatorship Test (Algorithm 1).

Proof: If x ≡F ′ (λ1, . . . , λk), then x + 1k ≡F ′ (λ1, . . . , λk−1, 1 + λk). Hence

Q(x + 1k) = (1 + λk) + P (λ1, . . . , λk−1) = 1 +Q(x)

so Q is folded over 1k.
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To see that Q passes the Basic Dictatorship Test with the same probability as P passes the
Folded Dictatorship test, note that

P (λ1, . . . , λk−1) = λk ⇐⇒ P (λ1, . . . , λk−1) + λk = 0 ⇐⇒ Q(η) = 0.

In the Equality test (Algorithm 3), we want to ensure that the polynomials U(X1, . . . , Xk)
and V (Y1, . . . , Yk) are both non-zero. Define the subspace H = {(z, z) | z ∈ {0, 1}k} as
before and let g = (1k,0k). Clearly, the dimension of H is k. The polynomials Xi + Yi are
folded over the coset g + H . We wish to enforce this condition on the polynomials that are
being tested, which means they should have the form stated in Lemma 8. Pick a basis F =
{f(1), . . . , f(k − 1),g,h(1), . . . ,h(k)} for {0, 1}2k where {h(1), . . . ,h(k)} is a basis for H and
for any (x,y) ∈ {0, 1}2k,

(x,y) =
k−1∑
i=1

λifi + λkg +
k∑
j=1

µjh(j).

Given a point (λ1, . . . , λk, µ1, . . . , µk) in this basis, we test if P (λ1, . . . , λk−1) = λk. Thus the test
is on polynomials in k − 1 variables.

Algorithm 6 FOLDED EQUALITY TEST:
1. For vertex u, pick η

ε←− {0, 1}k.
2. Let (η,0k) ≡F (λ1, . . . , λk, µ1, . . . , µk) and test if P (λ1, . . . , λk−1) = λk.
3. For vertex v, pick η′

ε←− {0, 1}k.
4. Let (0k, η′) ≡F (λ′1, . . . , λ

′
k, µ

′
1, . . . , µ

′
k) and test if P (λ′1, . . . , λ

′
k−1) = λ′k.

Define the polynomial Q(X1, . . . , Xk, Y1, . . . , Yk) = P (λ1, . . . , λk−1) + λk. We denote the
restriction of Q to X1, . . . , Xk by U and Y1, . . . , Yk by V .

Theorem 13 The polynomials U(X1, . . . , Xk) and V (Y1, . . . , Yk) are both folded over 1k. If
P (λ1, . . . , λk−1) passes the Folded Equality Test (Algorithm 6) for both u and v with probabil-
ity 1 − 2−d + δ, then both U(X1, . . . , Xk) and V (Y1, . . . , Yk) pass the Basic Dictatorship Test
(Algorithm 1) with probability 1− 2−d + δ.

Proof: Observe that the polynomialQ is folded over g+H , which contains the points g = (1k,0k)
and g′ = (0k,1k). Thus

U(x + 1k) = Q((x,0k) + g) = 1 +Q((x,0k)) = 1 + U(x).

Similarly one can use g′ to show that V is folded over 1k.
For the second part we observe that Theorem 12 implies U and V each pass the Basic Dictator-

ship Test with the same probability as P (λ1, . . . , λk−1) passes the Folded Equality Test for u and
v.
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5 Consistency Testing
In the previous section we designed a test to check if two vertices have been assigned the same
labels, by testing a given polynomial. Eventually, we wish to combine such a test with (a version
of) LABELCOVER to obtain the desired hardness result. However, the constraints we would have
to work with in general are more complicated than equality, i.e. whether the labels assigned to
both the vertices are the same. In this section we build upon the previous sections to check the
consistency of the so called projection constraints.

We will consider the following consistency problem: there are two vertices u and v, each of
them is assigned a label l(u), l(v) ∈ [k] respectively. The vertex u is assigned a projection function
π : [k] → [t], while the vertex v is assigned a projection function σ : [k] → [t]. The goal is to
check whether the labels l(u) and l(v) satisfy π(l(u)) = σ(l(v)). We want a test that accepts all
polynomials of the form Xi + Yj where π(i) = σ(j). Let us denote the set of all such polynomials
by D. The test will specify target values for points of the form (x,y) ∈ {0, 1}2k projected onto a
certain lower dimensional subspace.

We start by constructing a subspace H on which every polynomial inD vanishes. Consider the
subspace H defined by the equations

Xi + Yj = 0, ∀i, j ∈ [k] s.t π(i) = σ(j) (3)

We would like a parametric description of this subspace, for which we need the following definition
[Hås01].

Definition 3 Given a projection function π : [k] → [t], for z ∈ {0, 1}t, we define the vector
z ◦ π ∈ {0, 1}k by (z ◦ π)i = zπ(i).

This gives a linear map from {0, 1}t → {0, 1}k since

(z1 + z2) ◦ π = z1 ◦ π + z2 ◦ π.

Lemma 14 The subspace H contains the vectors (z ◦ π, z ◦ σ) for z ∈ {0, 1}t.

Proof: We need to check that (x,y) = (z ◦ π, z ◦ σ) satisfies xi + yj = 0 for all π(i) = σ(j). But

xi = (z ◦ π)i = zπ(i), yj = (z ◦ σ)j = zσ(j) hence xi = yj.

In fact a simple dimension argument shows that H = {(z ◦ π, z ◦ σ) | z ∈ {0, 1}t} but we will not
need this fact.

Let g = (1k,0k). Every polynomial in D is folded over g +H . We pick a basis h(1), . . . ,h(t)
forH and complete this to a basisF of F[2]2k given byF = {f(1), . . . , f(2k−t−1),g,h(1), . . . ,h(t)}
for some suitable choice of f(i)s. Set g = 2k − t. Then

(x,y) =

g−1∑
i=1

λif(i) + λgg +
t∑

j=1

µjh(j).
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Algorithm 7 FOLDED CONSISTENCY TEST:
1. For vertex u, pick η

ε←− {0, 1}k.
2. Let (η,0k) ≡F (λ1, . . . , λg, µ1, . . . , µt) and test if P (λ1, . . . , λg−1) = λg.

3. For vertex v, pick η′
ε←− {0, 1}k.

4. Let (0k, η′) ≡F (λ′1, . . . , λ
′
g, µ

′
1, . . . , µ

′
t) and test if P (λ′1, . . . , λ

′
g−1) = λ′g.

Algorithm 8 DECODING PROCEDURE FOR THE FOLDED CONSISTENCY TEST:
1. Let Q(X1, . . . , Xk, Y1, . . . , Yk) = P (λ1, . . . , λg−1) + λg.
2. Run Algorithm 2 on Q(X1, . . . , Xk,0

k) to get list L(u).
3. Run Algorithm 2 on Q(0k, Y1, . . . , Yk) to get list L(v).
4. Assign l(u)←− L(u) and l(v)←− L(v).

As before we define the polynomialsU(X1, . . . , Xk) = Q(X1, . . . , Xk,0
k) and V (Y1, . . . , Yk) =

Q(0k, Y1, . . . , Yk). The relation between the two polynomials enforced by folding is a bit more in-
tricate. The key observation is that their projections in Z1, . . . , Zt obtained by replacing Xi by
Zπ(i) in U and Yj by Zσ(j) in V are the same.

Lemma 15 Define the projected polynomials

Uπ(Z1, . . . , Zt) = U(Zπ(1), . . . , Zπ(k)), Vσ(Z1, . . . , Zt) = U(Zσ(1), . . . , Zσ(k)).

Then Uπ(Z1, . . . , Zt) = Vσ(Z1, . . . , Zt).

Proof: We can view Uπ and Vσ as functions {0, 1}t → {0, 1} given by

Uπ(z) = Q(z ◦ π,0k), Vσ(z) = Q(0k, z ◦ σ).

Since the polynomial Q is folded over H , it satisfies Q(z ◦ π,0k) = Q(0k, z ◦ σ) since

(z ◦ π,0k) + (0k, z ◦ σ) = (z ◦ π, z ◦ σ) ∈ H.

Hence Uπ(z) = Vσ(z) as functions, hence Uπ(Z1, . . . , Zt) = Vσ(Z1, . . . , Zt) as polynomials.

We can now analyze Algorithm 8.

Theorem 16 Define the projections of the lists L(u) and L(v) as Lπ(u) = {π(i) | i ∈ L(u)} and
Lσ(v) = {σ(j) | j ∈ L(v)}.

1. Both Lπ(u) and Lσ(v) are vertex covers for the hypergraph Hyp(Uπ) = Hyp(Vσ).

2. The polynomials Uπ and Vσ are each folded over 1t.
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3. The probability that P (λ1, . . . , λg−1) passes the Folded Consistency Test (Algorithm 7) for
vertex u equals the probability that U(X1, . . . , Xk) passes the Basic Dictatorship Test (Al-
gorithm 1).

Proof: The hypergraph Hyp(Uπ) is obtained from Hyp(U) by identifying the vertices in π−1(`)
for each ` ∈ [t]. The edges in this hypergraph are those which have an odd number of pre-images in
Hyp(U). Thus the projection of any vertex cover for Hyp(U) is also a vertex cover for Hyp(Uπ).
From Algorithm 2, L(u) is a vertex cover for Hyp(U), so Lπ(u) is a vertex cover for Hyp(Uπ).
Similarly Lσ(v) is a vertex cover for Hyp(Vσ). By Lemma 15, since Uπ = Vσ, both polynomials
define the same hypergraph.

By the same argument used for Theorem 13, we can show that U and V are folded over 1k.
But

Uπ(z + 1t) = U((z + 1t) ◦ π) = U(z ◦ π + 1k) = 1 + U(z ◦ π) = 1 + Uπ(z).

So Uπ is folded over 1t and similarly for Vσ. This shows that the hypergraphHyp(Uπ) = Hyp(Vσ)
is non-empty.

For the proof of Part 3, note that the probability that P passes the Folded Consistency Test for
vertex u is equal to the following probability,

Pr
η

ε←−{0,1}k
[Q(η,0k) = 0] = Pr

η
ε←−{0,1}k

[U(η) = 0],

which completes the proof.

Thus, if P passes the test then L(u) and L(v) are small in size, their projections are vertex-
covers for the same (non-empty) hypergraph. It is natural to ask if choosing l(u) ←− L(u) and
l(v) ←− L(v) gives π(l(u)) = σ(l(v)) with some probability. This might not be the case. The
reason is that while the vertex coverL(u) obtained by taking all the vertices of a maximal matching,
the projection Lπ(u) need not have this structure. Thus Lπ(u) and Lσ(v) might be disjoint vertex
covers of the same hypergraph. However, the fact that they are both vertex covers together with
Lemma 5 will suffice for our analysis. We note however that if d = 1, then the vertex covers will
intersect, so the random decoding succeeds.

6 The Reduction from Label Cover
An instance of LABELCOVER(d + 1) for d ≥ 1 consists of a d + 1-regular hypergraph (V,E)
with vertex set V = {vi}ni=1 and an edge set E = {ej}mj=1, where |ej| = d + 1. The hypergraph
is connected, and any S ⊂ V of size δn induces a constant fraction γ(δ)m of edges, where the
function γ depends only on d. Every vertex in V is to be assigned a label l(v) ∈ [k]. Every
hyperedge e = (ve1, . . . , v

e
d+1) is associated with a (d + 1)-tuple of projection functions {πi}d+1

i=1

where πi : [k]→ [t] and t < k. A vertex labeling strongly satisfies edge e if πi(l(vei )) = πj(l(v
e
j ))

for every vei , v
e
j ∈ e. A vertex labeling weakly satisfies edge e if πi(l(vei )) = πj(l(v

e
j )) for some

pair vei , v
e
j ∈ e.

This is a slightly non-standard hypergraph version of label cover. A similar kind of accep-
tance predicate is used by Feige in proving the hardness of set-cover [Fei98]. The only reason we
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cannot use his result directly is because we need to condition that large subsets of vertices induce
many edges. The following theorem is proved using a simple reduction from the standard bipartite
version of LABELCOVER. We give a proof in Appendix C for completeness.

Theorem 17 For any α > 0, given an instance of LABELCOVER(d + 1), it is NP-hard to distin-
guish between the following cases:
1. YES INSTANCE : There is some vertex labeling that strongly satisfies every edge.
2. NO INSTANCE : There is no vertex labeling that weakly satisfies α fraction of the edges.

We need some notation in order to describe the reduction to POLYREC(d, n). To each vertex
v ∈ V , we assign k variables Xv

1 , . . . , X
v
k . Since there are a total of nk variables Xv1

1 , . . . , X
vn
k ,

our points will be in nk dimensions, partitioned into n groups, one for each vertex, and each group
having k dimensions, one for each possible vertex label. Given x ∈ {0, 1}nk, we use xv to denote
the vector in {0, 1}k obtained by projecting onto the co-ordinates assigned to vertex v. Therefore,
x = (xv1 , . . . ,xvn). To a labeling l of vertices, we associate the polynomial Ql(X

v1
1 , . . . , X

vn
k ) =∑

vX
v
l(v).

Our first goal is to identify a subspace H such that if l satisfies all the LABELCOVER con-
straints, then Ql is 0-folded over H . Unlike for the simple tests considered so far, we do not know
what the set of polynomials Ql is, or whether it is non-empty. However, one can identify vectors
that must lie in H from the constraints of the LABELCOVER instance.

Lemma 18 Consider an edge e ∈ E and pair of vertices u,w that lie in e. Suppose the projections
associated with them by e are π and σ respectively. Given z ∈ {0, 1}t, define the vector h =
h(z, e, u, w) ∈ {0, 1}nk where

hv =


z ◦ π if v = u

z ◦ σ if v = w

0k otherwise.
(4)

If l satisfies π(l(u)) = σ(l(v)) then Ql(h) = 0 where h = h(z, e, u, w), for all z ∈ {0, 1}t.

Proof: Note that
Ql(h) =

∑
v∈V

hvl(v) = hul(u) + hwl(w).

Also
hul(u) = (z ◦ π)l(u) = zπ(l(u)), h

w
l(w) = (z ◦ σ)l(w) = zσ(l(w)).

But π(l(u)) = σ(l(w)), hence hul(u) + hwl(w) = 0.

We take H to be the span of all the vectors h above, over all choices of e ∈ E, u,w ∈ e and
z ∈ {0, 1}t.

Let g(v) ∈ {0, 1}nk be a vector such that g(v)v = 1k, and for all v′ ∈ V such that v′ 6= v,
g(v)v

′
= 0k. Essentially, g(v) is the indicator for the block of k co-ordinates corresponding

to vertex v. Let g = g(v1). Observe that every polynomial associated to a labeling satisfies
Ql(g(v)) = 1.
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Lemma 19 The affine subspace g +H contains the vectors g(v) for all v ∈ V .

Proof: Assume that u,w ∈ e for some e ∈ E. Let π and σ denote the associated projections.
Then g(u) + g(w) = h(1t, e, u, w) ∈ H , since h(1t, e, u, w) is 1 in exactly the k coordinates
corresponding to u and the k coordinates corresponding to w, and 0 in all other coordinates. Since
the hypergraph is connected, it follows that all the vectors g(v) lie in the same coset of H .

We will ensure that the polynomials we test are folded over g + H . Let the dimension of the
space H be h, and select a basis {h(j)}hj=1 for it. Complete this to a basis F of {0, 1}nk by adding
g and some other vectors f(1), . . . , f(nk−h−1). Let g = nk−h. One can write any x ∈ {0, 1}nk
as

x =

g−1∑
i=1

λif(i) + λgg +
h∑
j=1

µjh(j).

As before, we shall require that the candidate polynomial P we test be written as polynomial of
degree at most d over the co-ordinates λi (1 ≤ i ≤ g − 1).

Let η(v) denote the random variable where each co-ordinate corresponding to vertex v is sam-
pled from the ε-noise distribution and all other co-ordinates as 0. We now state the reduction, which
is (essentially) the following test on a polynomial P of degree at most d over the co-ordinates λi
(1 ≤ i ≤ g − 1).

Algorithm 9 LABELCOVER TEST

1. Compute the basis F described above.
2. Pick a vertex v ←− V and sample the vector η(v).
3. Let η(v) ≡F (λ1, . . . , λg, µ1, . . . , µh).
4. Test if P (λ1, . . . , λg−1) = λg.

We have the following theorem for a YES instance of LABELCOVER(d+ 1).

Theorem 20 If the instance of LABELCOVER(d + 1) is a YES instance, and l is a labeling to the
vertices that strongly satisfies all the edges, then the polynomial Ql passes the LABELCOVERtest
with probability at least 1− ε.

Proof: We first note that from Lemma 18 and the subsequent discussion,Ql is 0-folded overH and
1-folded over g. Therefore, Ql(X

v1
1 , . . . , X

vn
k ) can be written as a polynomial P ′(λ1, . . . , λg−1) +

λg. The LABELCOVER test accepts iff P ′(λ1, . . . , λg−1) = λg ⇐⇒ P ′(λ1, . . . , λg−1) + λg =
0 ⇐⇒ Ql(η(v)) = 0. Clearly, this condition is satisfied with probability 1− ε.

We now give a decoding procedure that uses the polynomial P to assign labels to every vertex.
If P passes the test with good probability, then the resulting labeling is guaranteed to weakly satisfy
a good fraction of constraints. This implies that if we reduce from a NO instance of LABELCOVER

then no polynomial passes the test. Given a polynomial Q(Xv1
1 , . . . , X

vn
k ), for each vertex v ∈ V ,

we use Q(Xv) to denote the restriction of Q to the variables {Xv
i }ki=1, obtained by setting all other

variables to 0.
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Algorithm 10 DECODING PROCEDURE FOR THE LABELCOVER TEST

1. Set Q(Xv1
1 , . . . , X

vn
k ) = P (λ1, . . . , λg−1) + λg.

2. For every vertex v ∈ V ,
2a. Run Algorithm 2 on Q(Xv) to get list L(v).
2b. Set l(v)←− L(v).

Theorem 21 Assume that P (λ1, . . . , λg−1) passes the LABELCOVER test with probability 1 −
2−d + 2δ for δ > 0. Then the labeling l(v) weakly satisfies γ′ fraction of the constraints in
expectation for some γ′(ε, δ, d).

Proof: By an averaging argument, for a δ fraction of vertices in V , the probability of passing the
LABELCOVER test is at least 1 − 2−d + δ; denote this set by S and call such vertices good. The
good set of edges E(S) induced by S is at least a γ fraction of all edges for some constant γ(δ).

Pick an edge e ∈ E(S), and pick any two vertices u,w ∈ e. Both these will be good ver-
tices. Let Q(Xu, Xw) denote the restriction of the polynomial Q(Xv1

1 , . . . , X
vn
k ) to the variables

{Xu
i , X

w
j }ki,j=1 obtained by setting the other variables to 0. This polynomial is 0-folded over the

set of vectors H ′ = (z ◦ π, z ◦ σ). It is folded over g +H ′ where g = (1k,0k). So we can apply
Theorem 16 to conclude that the projections of the polynomials Q(Xu) and Q(Xw) under π and σ
respectively are identical, and π(L(u)) and σ(L(w)) each give a vertex cover for the (non-empty)
hypergraph Hyp of this projected polynomial. Further, since u and w are good vertices, by The-
orem 4 both L(u) and L(w) are small, i.e. their sizes are bounded by some fixed function of ε, δ
and d only (independent of k). Hence their projections Lπ(u) and Lσ(w) are also small.

Since this is true for any pair of vertices in e, we have d + 1 vertex covers of Hyp. But each
edge of Hyp has size at most d, so by Lemma 5 some two of them intersect, assume that these
are π(L(u)) and σ(L(v)). In other words, there are labels `1 ∈ L(u) and `2 ∈ L(v) so that
π(`1) = σ(`2). Since each of these lists is of constant size (depending only on ε, δ, d), there is a
constant probability p = p(ε, δ, d) that these are the labels chosen for u and v respectively by the
random decoding in Step 2b. In this case, the constraint is weakly satisfied. Thus the expected
number of satisfied constraints is γ′(ε, δ, d) = p · γ.

Finally, we need to massage the LABELCOVER test to produce an instance of POLYREC(d, n).
The LABELCOVER test produces a distribution D on polynomially many constraints of the form
〈x, f(x)〉. It may happen that for some x, 〈x, 0〉 and 〈x, 1〉 each occur with non-zero probability.
Let p(〈x, y〉) be the probability mass (under D) of the constraint 〈x, y〉 for y ∈ {0, 1}. Let p(x) =
p(〈x, 0〉) + p(〈x, 1〉). Let the point x be called ‘good’ if,

max

{
p(〈x, 0〉)
p(x)

,
p(〈x, 1〉)
p(x)

}
≥ 1−

√
ε.

In the YES case, since the LABELCOVER test passes with probability at least 1−ε, by an averaging
argument it must be that the total probability mass of the ‘good’ points x is at least 1 −

√
ε. This

can be checked efficiently as the support of the distribution D is polynomial in size. Hence, we
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can assume that this is always the case for the hard instances of LABELCOVER. Therefore, we
may transfer all the probability mass for x to the label 0/1 that has more weight under D. It is
easy to see that the completeness and soundness can only change by O(

√
ε). We now repeat each

x sufficiently many times to simulate the distribution, to get an instance of POLYREC(d, n).
Combining the above with Theorem 20 we get that if the instance of LABELCOVER(d+1) was

a YES instance then for a labeling l that srongly satisfied all the hyperedges of E, the polynomial
Ql satisfies 1 − O(

√
ε) fraction of the constraints of the instance of POLYREC(d, n) obtained

via the reduction in this section. This proves the YES case of Theorem 1. Also, from Theorem
21 we have that if the instance of LABELCOVER(d + 1) was a NO instance, with a sufficiently
small soundness α, then there is no polynomial that satisfies 1− 2−d + O(δ +

√
ε) fraction of the

constraints of instance of POLYREC(d, n). Since δ and ε can be chosen to be arbitrarily small, this
proves Theorem 1.
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A Extension to Arbitrary Finite Fields
We now sketch the proof of Theorem 2. The reduction follows the same scheme as in the case
of polynomials over F[2]. Here we describe the Dictatorship Test and the Consistency Test for
polynomials over F[q].

Dictatorship Testing: Analogous to the F[2] case, we use η ε←− F[q]k to denote sampling
η from the distribution, where each ηi is independently set to 0 with probability 1 − ε and with
probability ε is selected uniformly from F[q]− {0}. The Basic Dictatorship Test in this case is as
follows,

Algorithm 11 BASIC DICTATORSHIP TEST:
Pick η

ε←− F[q]k and test if P (η) = 0.

This test is analyzed using the following form of the Schwartz-Zippel lemma.

Fact 22 Let P (X1, . . . , Xk) be a non-zero polynomial of degree d over F[q], such that d = a(q −
1) + b, for 0 ≤ b ≤ q − 1. Then

Pr
η←−F[q]k

[P (η) = 0] ≤ s(d, q)

where s(d, q) = 1− q−b
qa+1 .

For a polynomial P over F[q], we have a corresponding hypergraph Hyp(P ), similar to the F[2]
case. For every monomial

m = c ·
∏

i∈T⊆[k]

xei
i (c 6= 0)

of P , Hyp(P ) contains a hyperedge consisting of the vertices xi with multiplicity ei for i ∈ T .
Analogous to the F[2] case, we obtain the following theorem:

Theorem 23 Let P (X1, . . . , Xk) be a degree d polynomial over F[q] that passes the Basic Dicta-
torship Test (Algorithm 11) with probability s(d, q) + δ for some δ > 0. Then the largest matching
in the hypergraph Hyp(P ) is of size C ′(q, ε, δ, d). Further the constant term c in P (X1, . . . , Xk)
is 0.

Proof: Our proof proceeds in a similar manner to the F[2] case. For convenience, we define
ε′ =

(
q−1
q
ε
)

. We do a two step sampling procedure for η :

• Set every variable ηi to 0 independently with probability 1− ε′.

• Independently set each of the remaining variables to a uniformly chosen random value from
F[q].
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Clearly this induces an ε-noise distribution on η. Let S ⊆ [k] be the set of indices correspond-
ing to variables that are not set to 0 in step 1. LetXS denote the set of these variables. The resulting
polynomial P ′(XS) consists of the hypergraph induced by the vertex set S. Also

Pr
η

ε←−F[q]k
[P (η) 6= 0] = Pr

η′←−F[q]|S|
[P ′(η′) 6= 0]

If P ′(XS) is non-zero, then since it has degree at most d, Pr[P ′(η′) 6= 0] ≥ 1 − s(d, q).
Now if c 6= 0, then P ′ also has the non zero constant term, hence it is a non-zero polynomial, so
Pr[P (η) 6= 0] = Pr[P ′(η′) 6= 0] ≥ 1− s(d, q), which is a contradiction.

Now assume that the hypergraph Hyp(P ) contains a matching M of size |M | ≥ C
(ε′)d where

the constant C will be fixed later. For each hyperedge e ∈ M , the probability that all its vertices
are chosen to be in S is at least (ε′)|e|. Also, since M is a matching, these events are independent
for various edges. Thus the probability that none of these edges occurs in the hypergraph induced
by S is bounded by ∏

e∈M

(1− (ε′)|e|) ≤ (1− (ε′)d)
C

(ε′)d < e−C .

Hence, with probability 1 − e−C , the subgraph induced by S is non-empty. Conditioned on this
event, P ′(XS) is a non-zero polynomial of degree at most d, hence P ′(η′) 6= 0 with probability at
least s(d, q). Thus

Pr[P (η) 6= 0] ≥ (1− e−C) · (1− s(d, q)).
For sufficiently large C, this contradicts the fact that Pr[P (η) = 0] ≥ s(d, q) + δ.

Consistency Testing: We consider the following consistency problem as described in Section 5.
There are two vertices u and v, each of them is assigned a label l(u), l(v) ∈ [k] respectively. The
vertex u is assigned a projection function π : [k]→ [t], while the vertex v is assigned a projection
function σ : [k] → [t]. The goal is to check whether the labels l(u) and l(v) satisfy π(l(u)) =
σ(l(v)). We want a test that accepts all polynomials of the form Xi + Yj where π(i) = σ(j). Let
us denote the set of all such polynomials by D. The test will specify target values for points of
the form (x,y) ∈ F[q]2k projected onto a certain lower dimensional subspace. First we need the
following definition,

Definition 4 Given a projection function π : [k] → [t], for z ∈ {0, 1}t, we define the vector
z ◦ π ∈ F[q]k by (z ◦ π)i = zπ(i).

We construct a subspace H on which every polynomial in D vanishes. Consider the subspace H
defined by the equations

Xi + Yj = 0, ∀i, j ∈ [k] s.t. π(i) = σ(j) (5)

As before, we have the following analogous lemma.

Lemma 24 The subspace H contains the vectors (z ◦ π,−z ◦ σ) for z ∈ {0, 1}t.
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Proof: We need to check that (x,y) = (z ◦ π,−z ◦ σ) satisfies xi + yj = 0 for all π(i) = σ(j).
But

xi = (z ◦ π)i = zπ(i), yj = −(z ◦ σ)j = −zσ(j) hence xi = −yj.

Let g = (1k,0k). Every polynomial in D is folded over g +H . We pick a basis h(1), . . . ,h(t)
for H and complete this to a basis F of F[q]2k given by

F = {f(1), . . . , f(2k − t− 1),g,h(1), . . . ,h(t)},

for some suitable choice of f(i)s. Set g = 2k − t. Then

(x,y) =

g−1∑
i=1

λif(i) + λgg +
t∑

j=1

µjh(j)

Algorithm 12 FOLDED CONSISTENCY TEST:
1. For vertex u, pick η

ε←− F[q]k.
2. Let (η,0k) ≡F (λ1, . . . , λg, µ1, . . . , µt) and test if P (λ1, . . . , λg−1) = λg.

3. For vertex v, pick η′
ε←− F[q]k.

4. Let (0k, η′) ≡F (λ′1, . . . , λ
′
g, µ

′
1, . . . , µ

′
t) and test if P (λ′1, . . . , λ

′
g−1) = λ′g.

Algorithm 13 DECODING PROCEDURE FOR THE FOLDED CONSISTENCY TEST:
1. Let Q(X1, . . . , Xk, Y1, . . . , Yk) = P (λ1, . . . , λg−1) + λg.
2. Run Algorithm 2 on Q(X1, . . . , Xk,0

k) to get list L(u).
3. Run Algorithm 2 on Q(0k, Y1, . . . , Yk) to get list L(v).
4. Assign l(u)←− L(u) and l(v)←− L(v).

We define the polynomials U(X1, . . . , Xk) = Q(X1, . . . , Xk,0
k) and V (Y1, . . . , Yk) =

Q(0k, Y1, . . . , Yk). As before, we have the following analogous lemma which we state here without
proof.

Lemma 25 Define the projected polynomials

Uπ(Z1, . . . , Zt) = U(Zπ(1), . . . , Zπ(k)), Vσ(Z1, . . . , Zt) = U(Zσ(1), . . . , Zσ(k)).

Then Uπ(Z1, . . . , Zt) = Vσ(Z1, . . . , Zt).

The following analysis of the Folded Consistency Test proceeds in a similar manner as before.
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Theorem 26 Define the projections of the lists L(u) and L(v) as Lπ(u) = {π(i) | i ∈ L(u)} and
Lσ(v) = {σ(j) | j ∈ L(v)}.

1. Both Lπ(u) and Lσ(v) are vertex covers for the hypergraph Hyp(Uπ) = Hyp(Vσ).

2. The polynomials Uπ and Vσ are each folded over 1t.

3. The probability that P (λ1, . . . , λg−1) passes the Folded Consistency Test (Algorithm 12)
for vertex u equals the probability that U(X1, . . . , Xk) passes the Basic Dictatorship Test
(Algorithm 11).

Proof: Consider an assignment z to the variables Z1, . . . , Zt such that zi = 0 for all i ∈ Lπ(u).
Now, Uπ(z) = U(z ◦ π). We have (z ◦ π)j = zπ(j) = 0 for all j ∈ L(u) since zi = 0 for all
i ∈ Lπ(u). Since L(u) is a vertex cover for Hyp(U), therefore, by setting all the variables in L(u)
to zero, we obtain U(z ◦ π) = 0. Hence, Uπ(z) = 0. Since z was an arbitrary assignment which
set variables in Lπ(u) to zero, Uπ(Z1, . . . , Zt) vanishes over all such assignments. Therefore, a
variable of Lπ(u) is present in every monomial of Uπ(Z1, . . . , Zt), and so Lπ(u) is a vertex cover
for Hyp(Uπ). Similarly, L(Vσ) is a vertex cover for Hyp(Vσ). By Lemma 25, since Uπ = Vσ,
Hyp(Uπ) = Hyp(Vσ).
Using arguments similar to Theorem 13, we can show that U and V are folded over 1k, and since

Uπ(z + λ1t) = U((z + λ1t) ◦ π) = U(z ◦ π + λ1k) = λ+ U(z ◦ π) = λ+ Uπ(z).

So Uπ is folded over 1t and similarly for Vσ. This shows that the hypergraphHyp(Uπ) = Hyp(Vσ)
is non-empty.
The proof of Part 3 follows that of Theorem 12. We omit the details here.

The reduction from LABELCOVER(d + 1) proceeds along similar lines as Theorem 21. We
omit the details.

B Reduction from MAX-LIN

In this section, we consider the polynomial reconstruction problem POLYREC(d, n) over any finite
field F[q], where d < q. We prove a hardness result for the reconstruction problem via a simple
reduction from Håstad’s result for linear equations.

The MAX-LIN(n, q) problem consists of point-value pairs {xi, f(xi)}mi=1 with xi ∈ F[q]n and
f(xi) ∈ F[q]. Our goal is to find a linear polynomial, which satisfies the maximum number of
points. The following theorem is due to Håstad [Hås01],

Theorem 27 For any ε, δ > 0, given an instance of MAX-LIN(n, q), it is NP-hard to distinguish
between the following cases:
1. YES INSTANCE: There is a linear polynomial that satisfies 1− ε fraction of the points.
2. NO INSTANCE: Every linear polynomial satisfies at most 1

q
+ δ fraction of the points.
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We use this to prove a hardness of 1− ε versus qd+q−d
q2

+ δ for POLYREC(d, n). Note that since
d < q, the soundness lies between d

q
and d+1

q
.

Theorem 28 For any ε, δ > 0, given an instance of POLYREC(d, n) over F[q] with d < q, it is
NP-hard to distinguish between the following cases:
1. YES INSTANCE: There is a linear polynomial satisfying P (xi) = f(xi) for 1− ε fraction of the
points.
2. NO INSTANCE: Every polynomial of degree d < q satisfies P (xi) = f(xi) for at most
qd+q−d
q2

+ δ fraction of the points.

Proof: Let the instance of MAX-LIN(n, q) be given by 〈xi, f(xi)〉 for i = 1, . . . ,m. Our instance
of POLYREC(d, n) is given by the point-value pairs 〈λxi, λf(xi)〉 for every λ ∈ F[q] and every
i ∈ [m].

If the MAX-LIN instance is a YES instance, then there is a linear polynomial P (X1, . . . , Xn)
that satisfies P (xi) = f(xi) for 1 − ε fraction. It is easy to see that the same polynomial satisfies
at least 1− ε fraction of the constraints for the POLYREC(d, n) problem.

Suppose that MAX-LIN instance is a NO instance. Assume that there is a degree d polynomial
P (X1, . . . , Xn) that satisfies qd+q−d

q2
+ δ fraction of the points. We call a point x good if P satisfies

at least d + 1 of the pairs 〈λx, λf(x)〉 over all values of λ ∈ F[q]. By an averaging argument,
at least 1

q
+ γ fraction of the points are good, for some constant γ. Since P satisfies at least

d+ 1 of the pairs 〈λx, λf(x)〉, the univariate polynomial in λ given by P (λx)− λf(x) has d+ 1
roots in F[q]. However, it has degree at most d, so it must be the zero polynomial. Equating the
coefficients of λ on both sides, we get P ′(x) = f(x) for every good point, where P ′ is the linear
part of P . Thus P ′ is a linear polynomial satisfying 1

q
+ γ fraction of the constraints of the original

MAX-LIN instance. Taking the soundness of the MAX-LIN instance sufficiently small, we get
a contradiction.

C Hardness for LABELCOVER(d + 1)
In this section we give a reduction from the standard LABELCOVER instance to the LABELCOVER(d+
1) instance as defined in section 6, where d is a fixed constant.

Definition 5 A LABELCOVER instance L(G(U, V,E), [t], [k], {πv,u}{u,v}∈E) is a bipartite graph
G with bipartition U , V and edge set E with a projection πv,u : [k] 7→ [t], for every {u, v} ∈ E,
with u ∈ U and v ∈ V . Moreover, every vertex in U has the same degree and every vertex in V has
the same degree. A vertex labeling l(w) for all w ∈ U ∪ V , satisfies an edge {u, v} ∈ E, (where
u ∈ U and v ∈ V ) iff πv,u(l(v)) = l(u).

The following theorem is a consequence of the PCP Theorem [ALM+98, AS98] and Raz’s
Parallel Repetition Theorem [Raz98].

Theorem 29 For every constant β > 0, given an instance L of LABELCOVER, it is NP-hard to
distinguish between the following cases:
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1. YES INSTANCE : There is some vertex labeling that satisfies all the edges of L.
2. NO INSTANCE : There is no vertex labeling that satisfies β fraction of edges of L.

We now give a reduction from LABELCOVER to the LABELCOVER(d+1) problem which will
prove Theorem 17.

Proof: Given an instance of LABELCOVER, L(G(U, V,E), [t], [k], {πv,u}{u,v}∈E) , we construct
an instance L′ of LABELCOVER(d+ 1) in the following manner:

1. The vertex set of L′ is V ′ = V .

2. A hyperedge e′ is added in the following manner. Pick a random u ∈ U and pick vertices
v1, v2, . . . , vd+1, uniformly at random from the neighbors of u in G. Set e′ = {vi}d+1

i=1 , and
the associated d+1-tuple of projections to be {πi}d+1

i=1 , where πi = πvi,u for all 1 ≤ i ≤ d+1.

3. Add all such hyperedges possible to the edge set E ′.

Consider a subset S ⊆ V ′ = V of size δ|V ′|. Let u be any vertex in U of the instance L.
Let pu be the fraction of neighbors of u in S. Since, every vertex of U has the same degree and
every vertex of V has the same degree, Eu∈RU [pu] = δ. The way edge set E ′ of L′ is constructed
implies that the fraction of hyperedges in E ′ induced by S is the probability that all d+ 1 vertices
uniformly chosen at random from neighbors of a vertex u (which is chosen uniformly at random
from U ), lie in S. For a given u ∈ U , the probability that d + 1 vertices chosen uniformly at
random from its neighbors lie in S is pd+1

u . Therefore the fraction of edges of E ′ induced by S
is Eu∈RU [pd+1

u ] ≥ (Eu∈RU [pu])
d+1 = δd+1. Hence, a constant fraction of hyperedges in E ′ are

induced by a subset S of constant fraction of vertices in V ′.

Note that by applying Parallel Repetition on LABELCOVER we can increase the degrees of
vertices in U arbitrarily while reducing the soundness. Since d + 1 is a fixed constant, we can
arbitrarily reduce the fraction of hyperedges of LABELCOVER(d+1) which have repeated vertices
and hence remove these hyperedges from the instance.

If L is a YES instance, then there is a labeling l that satisfies all the edges of L. Clearly, the
labeling l restricted to V will strongly satisfy all the hyperedges of L′.

If L is a NO instance, then there is no labeling that satisfies β fraction of the edges of L. Now,
suppose that there is a labeling l that weakly satisfies α fraction of hyperedges of L′. For every
vertex u ∈ U , define qu to be the probability that two (distinct) random neighbors of u are labelled
consistently by l. Since every vertex in U has equal degree and every vertex of V has equal degree,
and by union bound, we obtain, Eu[qu] ≥ α/

(
d+1
2

)
. Let 2α′ = α/

(
d+1
2

)
. Call a vertex u ∈ U ‘good’

if qu ≥ α′. By averaging, at least α′ fraction of vertices U are good. Let u ∈ U be a ‘good’ vertex,
i.e. l labels at least α′ fraction of pairs {vi, vj} consistently where vi and vj are neighbors of u.
Again, by averaging, there must be a neighbor v′ of u which is consistently labelled with at least
α′/2 fraction of neighbors of u. Now, extending the labeling l to u, by setting l(u) = πv

′,u(l(v′))
will satisfy at least α′/2 fraction of edges incident on u in L. By labeling every ‘good’ vertex in
a similar manner, we obtain a labeling l that satisfies at least α′2/2 fraction of edges of L. Since
d + 1 is a fixed constant, for any α > 0, choosing β to be small enough, we get a contradiction.
So, there is no labeling of L′ that weakly satisfies α fraction of the hyperedges.
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