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ABSTRACT
We study the fundamental classification problems 0-
Extension and Metric Labeling. 0-Extension is closely
related to partitioning problems in graph theory and to Lip-
schitz extensions in Banach spaces; its generalization Met-
ric Labeling is motivated by applications in computer vi-
sion. Researchers had proposed using earthmover metrics to
get polynomial time-solvable relaxations for these problems.
A conjecture that has attracted much attention recently is
that the integrality ratio for these relaxations is constant.
We prove

1. that the integrality ratio of the earthmover relaxation
for Metric Labeling is Ω(log n) (which is asymptot-
ically tight), k being the number of labels, whereas the
best previous lower bound on the integrality ratio was
only constant;

2. that the integrality ratio of the earthmover relaxation
for 0-Extension is Ω(

√
log k), k being the number of

terminals (it was known to be O((log k)/ log log k)),
whereas the best previous lower bound was only con-
stant;
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3. that for no ε > 0 is there a polynomial-
time O((log n)1/4−ε)-approximation algorithm for 0-
Extension, n being the number of vertices, unless
NP⊆DTIME(npoly(log n)), whereas the strongest in-
approximability result known before was only MAX
SNP-hardness; and

4. that there is a polynomial-time approximation al-
gorithm for 0-Extension with performance ratio
O(
�

diam(d)), where diam(d) is the ratio of the largest
to smallest nonzero distances in the terminal metric.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algortihms
and Problem Complexity

General Terms
Algorithms, Theory

1. INTRODUCTION
Originally suggested by Karzanov [14], 0-Extension takes
as input an undirected graph G with a nonnegative weight
function w on the edges, a subset T of the node set V (G)
(the elements of T being called terminals), and a metric
d on T . The goal is to assign each node v ∈ V (G) to
a terminal t(v) ∈ T (with t(v) = v for every v ∈ T ),
minimizing the total cost of the assignment, which is de-
fined to be

�
{u,v}∈E(G) w(u, v)d(t(u), t(v)). We are parti-

tioning the graph into |T | pieces, the ith piece contain-
ing terminal i, where the cost of sending endpoints u and
v of an edge to different terminals depends on the termi-
nals to which u and v are assigned. It is the fact that
the cost associated with edge {u, v} depends on the ter-
minals to which u and v are assigned, and not just on
whether t(u) = t(v) or not, that makes it more challeng-
ing than easier problems like Multiway Cut. Multiway
Cut asks for the minimum cost of partitioning a graph into
|T | parts, the ith part including the ith terminal. In other
words, Multiway Cut asks for the minimum cost of an
assignment of V (G) to T , with t(v) = v for all v ∈ T ,
of
�

{u,v}∈E(G) w(u, v) · [1 if t(u) �= t(v), 0 otherwise]. Thus

Multiway Cut is precisely 0-Extension when the metric
d is the uniform metric.
0-Extension takes its (unfortunate) name from the fact
that we wish to extend the metric d on T to a semimetric on
all of V (G) subject to the restriction that every nonterminal
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must be at distance 0 from some terminal; such extensions
are called 0-extensions.
Calinescu et al. [6] gave a O(log |T |)-approximation al-
gorithm for 0-Extension. The better analysis of
Fakcharoenphol et al. [10] improved the guarantee to
O(log |T |/ log log |T |). The underlying idea in [6, 10] is to
solve a linear programming relaxation that optimizes over all
metric extensions (rather than just 0-extensions), and then
to “round” the solution using a new partitioning procedure.
Lee and Naor [18] later showed that this partitioning pro-
cedure can be used to improve the bounds on Lipschitz ex-
tensions in Banach spaces. Krauthgamer, Lee, Mendel, and
Naor [15] used the 0-Extension partitioning techniques of
[6, 10] in their measured descent embedding method.
Metric Labeling takes as input an undirected graph G
with a nonnegative weight function w on the edges, a met-
ric space (T, d) (the elements of T are called labels), and
a nonnegative cost function c on node-label pairs. The
goal is to assign, for every node v ∈ V (G), a label t(v) ∈
T , minimizing the total cost of the assignment, which is�

v∈V (G) c(v, t(v)) +
�

{u,v}∈E(G) w(u, v)d(t(u), t(v)). (No-

tice that this problem generalizes 0-Extension by allow-
ing an arbitrary assignment cost function c.) Motivated
by applications to segmentation problems in computer vi-
sion, this problem was introduced by Kleinberg and Tar-
dos [17], who proposed an approximation algorithm based on
the approximate representation, due to Bartal [3], of (T, d)
as a combination of dominating tree metrics. Using the re-
cent improved representation of metrics as combinations of
dominating tree metrics due to Fakcharoenphol et al. [11],
the Kleinberg-Tardos algorithm guarantees a O(log |T |) ap-
proximation factor, which is the best general result to date.
Constant-factor approximations are known for some special
cases [17, 12, 8, 1]. (Indeed, the result of [11] was also
achieved by modifying the 0-Extension partitioning proce-
dure of [6, 10].)
An obvious question emerges from the above dis-
cussion: Can the upper bounds of O(log |T |) and
O(log |T |/ log log |T |) for Metric Labeling and 0-
Extension, respectively, be improved? As shown above,
past experience indicates that pursuing this question may
produce results whose impact goes beyond solving the spe-
cific optimization problems. Unfortunately, improving the
approximation guarantees for these problems is impossible
using the methods that were used by the above-mentioned
algorithms. Specifically, the bound on embedding a metric
into a combination of dominating tree metrics is asymp-
totically tight (a lower bound follows from [2, 19]), and
the diameter-times-boundary volume bound of the parti-
tioning is also tight (proof omitted). The metric relax-
ation of 0-Extension was shown to have integrality ratio

Ω
��

log |T |
�

[6]. (A different earlier construction of John-

son et al. [13] done in the context of Lipschitz extensions
implies a somewhat weaker bound.)
A promising direction was suggested independently by
Charikar [7] and by Chekuri et al. [8]. They suggested a
new linear programming relaxation, motivated by a suc-
cessful relaxation for the special case Multiway Cut of
0-Extension. The same relaxation, with different objective
functions, can be used for 0-Extension and for Metric La-
beling. The idea is to find an optimal transportation metric
extending d (instead of an arbitrary metric extending d). It

is often called the earthmover relaxation. (Transportation
metrics are called earthmover distance in the computer vi-
sion literature, where they are used as a standard metric to
compare histograms. In other fields where they are applied,
including analysis and information theory, they are often
called by other names.) Chekuri et al. [8] showed that the
earthmover relaxation for Metric Labeling has integral-
ity ratio “at least as good” as the performance ratio of the
Kleinberg-Tardos algorithm; see [8] for details. Archer et
al. [1] gave an earthmover relaxation-based Metric Label-
ing algorithm whose performance depends on the decompos-
ability of the metric d. Furthermore, the previously known
bad examples for the metric relaxation for 0-Extension ac-
tually have only constant integrality ratio in the earthmover
relaxation (proofs omitted). Despite these positive indi-
cations and significant attention, no progress has been re-
ported on improving the upper bounds in the general case for
either 0-Extension or Metric Labeling. In fact, Chuzhoy
and Naor [9] recently published a disturbing result. They

proved that unless NP ⊆ DTIME
�
npoly(log n)

�
, there is no

polynomial-time algorithm that approximates Metric La-

beling within a factor of O
�
(log |T |) 1

2−ε
�
, for any ε > 0.

Their result does not apply to 0-Extension.
In this paper we resolve many of the questions mentioned
above. In Section 3 we prove an Ω(log |T |) integrality ratio
for the earthmover relaxation for Metric Labeling, in con-
trast to the previous constant lower bound. In view of the
known upper bounds [8], this result is asymptotically tight.

In Section 4 we prove an Ω
��

log |T |
�

integrality ratio for

the earthmover relaxation for 0-Extension. This matches
the lower bound known for the metric relaxation. We also
provide in the Appendix, an alternate construction to prove
both these integrality ratios.
(A result of Bourgain [4] implies that the transportation
metric over a Hamming cube cannot be embedded into a
convex combination of 0-extensions of the Hamming cube
with distortion which is bounded by an absolute constant
as the cube dimension increases. The bound was improved
significantly (and stated explicitly) in a very recent paper of
Khot and Naor [16]. However, this does not imply an inte-
grality ratio, as we are interested in the Lipschitz constant
of the embedding rather than the product of the Lipschitz
constants of the embedding and its inverse. In fact, when d
is a Hamming cube metric, the earthmover relaxation gives
an optimal integral solution value (proof omitted)!)
In Section 5 we prove that unless NP ⊆
DTIME

�
npoly(log n)

�
, there is no polynomial-time al-

gorithm that approximates 0-Extension within a factor

of O
�
(log n)

1
4−ε
�
, n = |V |, for any ε > 0. On a more

optimistic note, in Section 6 we give an algorithm for
rounding the earthmover solution for 0-Extension that

guarantees a O
��

diam(d)
�

approximation. Such a bound

is not known for the metric relaxation.
Through this work we develop new techniques for analyz-
ing transportation metrics, which we hope will find further
use in the numerous areas in which earthmover metrics are
applied.

2. PRELIMINARIES
We often use k to denote |T |. For v ∈ V (G) let N(v) denote
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the set of neighbors of v. Informally, the earthmover relax-
ation for 0-Extension assigns to each v ∈ V (G) a prob-
ability distribution xv over the set of terminals. In other
words, xv ∈ �

k is a nonnegative vector with ‖xv‖1 = 1.
An edge {u, v} ∈ E(G) gets stretched by the minimum cost
of transporting mass to convert xu into xv (or vice versa),
where the cost of transporting a unit of mass from terminal
i to terminal j is d(i, j). This is simply a flow computation,
the vector fuv ∈ �

k×k denoting this flow. Formally, the
relaxation is the following linear program.

Minimize
1

2

�
u∈V

�
v∈N(u)

w(u, v) · [
�
i∈T

�
j∈T

d(i, j)(fuv)ij ]

such that (xu
j − xv

j ) +
�
i∈T

((fuv)ij − (fuv)ji) = 0

∀u ∈ V,∀v ∈ N(u), ∀j ∈ T�
j∈T

xu
j = 1 ∀u ∈ V

x, f ≥ 0,

where we put xj
j = 1 for all j ∈ T . The earthmover relax-

ation for Metric Labeling is identical, except the objective
function has an additional term of

�
v∈V

�
i∈T c(v, i)xv

i and

we don’t put xj
j = 1.

3. INTEGRALITY RATIO FOR METRIC
LABELING

Consider an infinite family of (bounded-degree) expanders.
Let H be a member of this family and let k be the number
of nodes in H . We define the following instance of Metric
Labeling:
The label set T is the set V (H) of vertices of H . The metric
on the label set is the shortest path metric of H . The input
graph G has V (G) = {{i, j} : i, j ∈ T, i �= j} and E(G) =
{{{i, j}, {i, j′}} : {j, j′} ∈ E(H)}. All edges have weight
1. The cost of assigning a label t to a node {i, j} is 0 if
t ∈ {i, j} and ∞ otherwise.
Consider the fractional solution that assigns to every node

{i, j} a vector x{i,j} where x
{i,j}
i = x

{i,j}
j = 1

2
, and the

other entries are 0. Notice that the length of every edge
in E(G) is exactly 1

2
, so the cost of this feasible solution is

|E(G)|/2 = k|E(H)|/2.
To bound the cost of an integral solution we need the fol-
lowing lemma, whose proof we omit.

Lemma 1. Consider a tournament over k nodes. At least
half the nodes have both their indegree and their outdegree
between k/8 and 7k/8.

Theorem 2. Any integral solution to the above instance
has cost Ω(|E(G)| log k). Thus, the integrality ratio for
Metric Labeling is Ω(log k).

Proof. An integral solution must assign to a node {i, j}
either label i or label j. Consider the tournament on the
label set T where there is an arc (i, j) if {i, j} is assigned to
j and the reverse arc otherwise. Call a label balanced if and
only if both its indegree and its outdegree in the tournament
are between k/8 and 7k/8. By Lemma 1, at least half the
labels are balanced.
Let t be a balanced label. Put I = {i : {t, i} is assigned t}
and J = {j : {t, j} is assigned j}. By definition we have

k/8 ≤ |I |, |J | ≤ 7k/8. Therefore, there are at least ck ex-
pander edges {i, j} for which i ∈ I and j ∈ J , where 8c is
the expansion constant. Let Gt denote the subgraph of G
that is induced by the set of nodes {{t, i} : i ∈ T}. Clearly,
E(G) is the disjoint union of all Gt’s. Every Gt is just a
copy of H . For some constant a, the number of terminals j
at distance at most a log k from t is o(k). Thus, Ω(k) edges
in Gt are stretched to Ω(log k). Summing over all balanced
labels, we get that the total cost is Ω(k2 log k). �

4. INTEGRALITY RATIO FOR 0-
EXTENSION

If the metric d on the terminals is the shortest-path metric
of a high-girth expander, the earthmover relaxation guar-
antees a constant integrality ratio for 0-Extension (proof
omitted). Therefore, the Metric Labeling construction
does not work for 0-Extension. An obvious suggestion is
to insist on a small girth expander, for example, by taking
the Cartesian product of an expander with itself. We don’t
know if this works; however, the following modification does
work.
Consider an infinite family of (bounded-degree) expanders.
Let H be a member of this family. The terminal set T
is V (H) × V (H). Let k = |V (H)|2 denote the num-
ber of terminals. The metric d on the terminals is given
by d ((u, v), (u′, v′)) =

√
log k · emdH ({u, v}, {u′, v′}) +

dH(u, u′); here dH is the shortest path metric on H , “{u, v}”
denotes the probability distribution on vertices which as-
signs mass 1/2 to each of u and v (likewise for “{u′, v′}”),
and emdH({u, v}, {u′, v′}) is the earthmover distance be-
tween the two probability distributions, the underlying met-
ric being dH .
The set V ′ of nonterminals is V ′ =

�
V (H)

2

�
. Notice that

|V ′| is approximately k
2
. The input graph G has node set

V = V (G) = T ∪ V ′. To define the edge set, put E1 =
{{{u, v}, {u, v′}} : u, v, v′ ∈ V (H) and {v, v′} ∈ E(H)} ,
E2 = {{(u, v), {u, v}} : u, v ∈ V (H)} , and put
E = E(G) = E1 ∪ E2. Edges in E1 join pairs of
nonterminals and have weight

√
log k. Edges in E2 join

terminals to nonterminals and have weight 1.

Lemma 3. The cost of the fractional solution for this in-
stance is O(k log k).

Proof. Consider the fractional solution that puts, for ev-

ery {u, v} ∈ V ′, x
{u,v}
(u,v) = x

{u,v}
(v,u) = 1

2
. By definition of d, the

cost of an edge {(u, v), {u, v}} ∈ E2 (which has weight 1)
is 1

2
dH(u, v), which is O(log k). There are O(k) such edges.

The cost of an edge {{u, v}, {u, v′}} ∈ E1, not including its
weight

√
log k, is the earthmover distance over d (not over

dH) between the configuration which splits its mass uni-
formly between (u, v) and (v, u) and the configuration which
splits its mass uniformly between (u, v′) and (v′, u). This
is at most (1/2)d((u, v), (u, v′)) + (1/2)d((v, u), (v′, u)) ≤
(1/2)[

√
log k · 1 + 0] + (1/2)[

√
log k + 1] =

√
log k + 1/2.

Hence its cost, including its weight, is O(log k). There are
O(k) such edges as well. �

Theorem 4. The integrality ratio for this instance is
Ω
�√

log k
�
.

Proof. We will show that every integral solution must

cost Ω
�
k(log k)3/2

�
. Together with Lemma 3, this implies

the lower bound.
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Consider an arbitrary integral solution, where every {u, v} ∈
V ′ is assigned to ϕ ({u, v}) ∈ V (H) × V (H). Let γ > 0 be
a sufficiently small constant, and let V1 = {{u, v} ∈ V ′ :
emdH ({u, v}, {u′, v′}) ≥ γ lg k, where (u′, v′) := ϕ({u, v})}.
For every {u, v} ∈ V1, the edges in E2 incident to {u, v} (one
or two such edges) cost vertices at least

√
log k · (γ log k), by

definition of the metric d on the terminals. If V1 ≥ k
64

then

the total cost is Ω
�
k(log k)3/2

�
.

Otherwise, define a directed graph on V (H) with no loops,
parallel or antiparallel arcs as follows. Every node e =
{u, v} ∈ V ′ \ V1 contributes an arc. Let (u′, v′) = ϕ({u, v}).
If emdH ({u, v}, {u′, v′}) = 1

2
dH(u, u′) + 1

2
dH(v, v′), then

add the arc (u, v). Otherwise, emdH ({u, v}, {u′, v′}) =
1
2
dH(u, v′) + 1

2
dH(v, u′) (this is not obvious, but true); add

the arc (v, u). (In other words, given e = {u, v}, choose
y, z such that {y, z} = {u, v} and emdH(e, {u′, v′}} =
(1/2)dH (y, u′)+(1/2)dH (z, v′) and then add arc (y, z).) Un-
less V1 = ∅, the resulting graph is not a tournament. Hence
add arbitrary dummy arcs to make a tournament. The
number of arcs that need to be added is |V1| < k

64
. By

Lemma 1, at least V (H)
2

= 1
2

√
k tournament nodes have

both indegree and outdegree between 1
8

√
k and 7

8

√
k. If

we now remove the dummy arcs, at least 1
4

√
k tournament

nodes have both indegree and outdegree between 1
16

√
k and

7
8

√
k. (One has to remove (1/16)

√
k arcs to “ruin” two

vertices.) Consider such a node u ∈ V (H). Let Ou =
{v ∈ V (H) : (u, v) is in the partial tournament} , and Iu =
{v ∈ V (H) : (v, u) is in the partial tournament} . As |Iu| ≥
1
16

√
k, there is a constant ε > 0 such that I ′

u =

{v ∈ Iu : dH(u, v) ≥ ε log k} satisfies |I ′
u| ≥ 1

32

√
k. We need

γ ≤ ε
4
. As H is a bounded degree expander, there are

Θ(
√

k) constant-length, edge-disjoint paths between Ou and
I ′

u. Consider any such path, and let v1 ∈ Ou and v2 ∈ I ′
u

be its endpoints. Notice that ϕ({u, v1}) = (u′, v′
1), where

dH(u, u′) < γ log k. Similarly, ϕ({u, v2}) = (v′
2, u

′′), where
dH(v2, v

′
2) < γ log k. So, dH(u′, v′

2) > (ε − 2γ) log k ≥
ε
2

log k. Therefore, d (ϕ({u, v1}), ϕ({u, v2})) is Ω(log k). By
the triangle inequality, there must be an edge {v, v′} ∈
E(H) along the path (which has constant length) such that
d (ϕ({u, v}), ϕ({u, v′})) is Ω(log k). Recall that every edge
{{u, v}, {u, v′}} ∈ E1 has weight

√
log k. Therefore, the to-

tal cost of such edges, fixing u ∈ V (H) with both indegree

and outdegree at least 1
16

√
k, is Ω

�√
k log k · log k

�
. Sum-

ming over all such u (each edge is counted at most twice),

we get a total cost of Ω
�
k(log k)3/2

�
. �

5. HARDNESS OF 0-EXTENSION
To prove the hardness of 0-Extension we start with the
construction of [9] for the hardness of Metric Label-
ing and modify this construction so that it works for 0-
Extension. We achieve this by applying a technique simi-
lar to the one applied in Section 4 to the Metric Labeling
instance of Section 3.
Let us first recall the k-prover protocol of [9]. We start with
the gap version of Max-3SAT(5). Let ε, 0 < ε < 1, be a
constant. A Max-3SAT(5) formula φ is called a Yes instance
if there is an assignment which satisfies all the clauses, and
it is called a No instance (with respect to ε) if no assignment
satisfies more than a (1 − ε) fraction of the clauses. In the
protocol, there are k provers P1, ..., Pk (k will be chosen later

to be poly(log n), where n is the size of φ).

• For each (i, j), 1 ≤ i < j ≤ k, the verifier chooses,
randomly and independently, a clause Cij and a dis-
tinguished variable xij from the clause. Pi is sent Cij

(and is expected to return an assignment to all vari-
ables of the clause), Pj is sent xij (and is expected to
return an assignment to this variable), and every other
prover is sent both Cij and xij (and is expected to re-
turn an assignment to all variables of the clause). Thus
the query sent to each prover has

�
k
2

�
coordinates.

• The verifier checks, for each pair (i, j), that the an-
swers of all the provers are consistent.

We denote the set of random strings used by the verifier by
R. Given r ∈ R, and 1 ≤ i ≤ k, let qi(r) be the query sent
to Pi when the verifier chooses the random string r. Let
Qi = ∪r{qi(r)} be the set of all possible queries to Pi. For
q ∈ Qi, let Ai(q) be the set of all possible answers of the
ith prover to q which satisfy all the clauses appearing in the
query.
Consider any pair Pi and Pj of provers. Let qi ∈ Qi and
qj ∈ Qj be a pair of queries such that for some r ∈ R,
qi = qi(r) and qj = qj(r). Let Ai and Aj denote the answers
of provers Pi and Pj , respectively, to the queries. We say
that the answers are weakly consistent if the assignments to
Cij in Ai and to xij in Aj are consistent. The answers are
called strongly consistent if they are also consistent in every
coordinate (a, b) �= (i, j).
We use the following theorem of Chuzhoy and Naor [9].

Theorem 5. (Theorem 4.2 in [9]). There is a constant
0 < ε < 1 such that if φ is a Yes instance, then there is
a strategy of the k provers such that the verifier always ac-
cepts, and if φ is a No instance, then for any strategy of the
provers, for every pair Pi, Pj of provers, i < j, the prob-
ability that their answers are weakly consistent is at most
1 − ε

3
.

We now construct a 0-Extension instance from an instance
of Max-3SAT(5) based on the k-prover system described
above. Recall that an instance of 0-Extension consists of a
graph G(V ′ ∪ T, E), where the set of vertices is the disjoint
union of two parts, the terminals T and the nonterminals V ′.
Each edge is between a terminal and a nonterminal or be-
tween two nonterminals. Every edge has a weight, which is
the factor by which it contributes to the cost. Also provided
is a metric on the set of terminals.
Our 0-Extension instance is based on the Metric Label-
ing instance in [9], with additional edges between nonter-
minals and terminals, and a special distance metric on the
terminals. To define our instance, we proceed thus. We first
define the set V ′ of nonterminals and the set T of termi-
nals. The set of nonterminals (resp., terminals) is precisely
the set of vertices (resp., labels) in the construction of [9].
We also define a graph GV ′ on V ′ and a graph GT on T .
Finally we define the weighted graph G(V ′ ∪ T, E) of the
input instance.
Nonterminals: V ′ consists of two types of nonterminals.

• For each i, 1 ≤ i ≤ k, and each query q ∈ Qi there is
a query nonterminal v(i, q).

• For each random string r, there is a constraint nonter-
minal v(r).
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The graph GV ′ on V ′ is defined by placing, for each i and
r, an edge between constraint nonterminal v(r) and query
nonterminal v(i, qi(r)).

1 Each edge in GV ′ has length 1
2
.

Terminals: T also consists of two types of terminals.

• For each i such that 1 ≤ i ≤ k, each query q ∈ Qi,
and each answer Ai ∈ Ai(q) to the query q, there is a
query terminal (v(i, q), Ai).

• For every random string r of the verifier, for every
k-tuple (A1, A2, ..., Ak) of pairwise strongly consistent
answers satisfying Ai ∈ Ai(qi(r)) for 1 ≤ i ≤ k, there
is a constraint terminal (v(r), (A1, A2, ..., Ak)).

Note that for every nonterminal x, there is a set of termi-
nals of the form (x, ·) derived from x. In what follows we
will represent a generic terminal by (x, y). The graph GT

on T , defined only for the purpose of defining the metric
on T , is defined by the following edges: incident on every
constraint terminal (v(r), (A1, A2, ..., Ak)) is, for each i, an
edge of length 1

2
to query terminal (v(i, qi(r)),Ai).

Metric on terminals: We now use the graphs GT and
GV ′ to define the metric dT on T . To do so, we first define
two different metrics, Δ on T and M on V ′.
For t, t′ ∈ T , let Δ(t, t′) equal the minimum of k and the
distance between t and t′ in GT . Note that this is indeed a
metric. For x, x′ ∈ V ′, let M(x, x′) be the minimum of k and
the distance between x and x′ in GV ′ . Now we can define
the metric on the set T of terminals. For two terminals
(x, y) and (x′, y′), define dT ((x, y), (x′, y′)) =

√
k ·M(x, x′)+

Δ((x, y), (x′, y′)).
Input graph: The input graph consists of the set of non-
terminals and terminals. There are two kinds of edges. The
first kind consists of edges between two nonterminals. These
are precisely the edges of the graph GV ′ and have weight

√
k.

The second kind consists of those between a nonterminal and
a terminal, and are defined as follows: for every r ∈ R, and
for every k-tuple (A1, A2, ..., Ak) of strongly consistent an-
swers, with Ai ∈ Ai(qi(r)) for 1 ≤ i ≤ k, there is an edge
between constraint nonterminal v(r) and constraint terminal
(v(r), (A1, ..., Ak)). Similarly, for every r ∈ R, i = 1, ..., k,
and every possible answer Ai of prover Pi to qi(r), there is
an edge between query nonterminal v(i, qi(r)) and query ter-
minal (v(i, qi(r)),Ai). To define the weight of an edge of the
second kind, we define the following. For a nonterminal v,
let dv be the number of nonterminal-nonterminal edges inci-
dent on v, and let zv be the number of nonterminal-terminal
edges incident on v. Then the weight of every nonterminal-
terminal edge incident on v is wv = dv/zv. (If zv = 0 there
are no edges awaiting weights.) Define y = 1

2

�
v∈V ′ dv, the

total number of nonterminal-nonterminal edges. Note that
y is also equal to k|R|.

5.1 Yes Instance
We assume now that the SAT formula is a Yes instance.
Then there is a strategy of the provers so that the veri-
fier accepts with probability 1. For i = 1, ..., k and query

1We assume without loss of generality that GV ′ is connected.
In general it may be disconnected if the SAT formula we
start with itself has disconnected components of variables,
where the connectivity is via common clauses. But we can
add dummy clauses to connect all variables, and this will
yield a connected GV ′ .

qi ∈ Qi, let fi(qi) ∈ Ai(qi) be the answer of prover Pi

to query qi under this strategy. Note that for each ran-
dom string r, f1(q1(r)), f2(q2(r)), ..., fk(qk(r)) are pairwise
strongly consistent. From this strategy, we can define the
following assignment of nonterminals to terminals.
For every random string r, assign con-
straint nonterminal v(r) to constraint terminal
(v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))). For every
random string r and i = 1, ..., k, assign query nonterminal
v(i, qi(r)) to query terminal (v(i, qi(r)), fi(qi(r))).
Consider an edge between two nonterminals, say, con-
straint nonterminal v(r) and query nonterminal v(i, qi(r)).
Let a = (v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))) and b =
(v(i, qi(r)), fi(qi(r))). Since v(r) is assigned to terminal a
and v(i, qi(r)) is assigned to terminal b, the distance to which

this edge is stretched is dT (a, b) =
√

k ·M(v(r), v(i, qi(r)))+

Δ(a, b) ≤
√

k(1/2)+1/2. This is because v(r) and v(i, qi(r))
are neighbors in GV ′ and a and b are neighbors in GT .
The weight of the edge between the nonterminals v(r) and

v(i, qi(r)) is
√

k; hence the contribution to the cost is at

most
√

k((1/2)
√

k + 1/2). Since there are a total of y num-
ber of edges of this type, the total contribution of such edges
to the cost is at most yk.
Consider an edge between a nonterminal, say, a con-
straint nonterminal v(r), and a constraint terminal b =
(v(r), (A1, A2, ..., Ak)). (The case of an edge between a
query nonterminal and a query terminal is identical.) Let
a = (v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))). Since v(r) is
assigned to a, the distance to which this edge is stretched
is dT (a, b) =

√
k · M(v(r), v(r)) + Δ(a, b) ≤

√
k · 0 + k.

The inequality follows because the distances under Δ are at
most k. This is true for all the zv(r) nonterminal-terminal
edges incident on v(r). Since the weight of each such edge is
wv(r) = dv(r)/zv(r), the contribution to the cost of all these
edges is at most wv(r)zv(r)k = dv(r)k. Summing over all non-
terminals v, we get that the total contribution to the cost of
all nonterminal-terminal edges is

�
v∈V ′ dvk = 2yk. Thus

the total cost in the Yes case is at most yk + 2yk = 3yk.

5.2 No Instance
Let f : V ′ → T be any assignment of nonterminals to ter-
minals. For v ∈ V ′, define g(v), h(v) by f(v) = (g(v), h(v)).
Let V1 = {v ∈ V ′ : M(v, g(v)) ≥ γk} for some small
constant 0 < γ < 1 to be chosen later. We also pick a
constant α > 0, to be fixed later. We consider two cases.

Case 1:
�

v∈V1
dv > α

�
v∈V ′ dv = α(2y). Take any non-

terminal in V1, say, a constraint nonterminal v(r) (the case
of a query nonterminal is identical), and consider any ter-
minal a = (v(r), (A1, A2, ..., Ak)) such that there is an edge
between v(r) and a. Then the distance to which this edge

is stretched is dT (f(v(r)), a) =
√

k · M(g(v(r)), v(r)) +

Δ(f(v(r)), a) ≥
√

k · (γk) + 0 = γk3/2. The inequality
follows from the fact that v(r) ∈ V1. This is true for all
the zv(r) nonterminal-terminal edges incident on v(r). Each
such edge has a weight of wv(r) = dv(r)/zv(r). Hence the con-
tribution to the cost incurred by the nonterminal-terminal
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edges incident on nonterminals in V1 is at least
�
v∈V1

zvwv(γk3/2) = γk3/2
�
v∈V1

dv

> γk3/2[α(2y)]

= 2γαyk3/2

The inequality follows because we are in Case 1. Hence the
total cost in this case is at least 2γαyk3/2.

Case 2:
�

v∈V1
dv ≤ α

�
v∈V ′ dv = α(2y). We will first

change the assignment f = (g, h) to an assignment f ′ =
(g′, h′) such that for all v ∈ V ′, g′(v) = v. (Such a “natural”
assignment corresponds to the Metric Labeling, not 0-
Extension, work of Chuzhoy and Naor [9]. Once we have
such an assignment we will be able to invoke the main lemma
of [9].) Furthermore, we will not change f much in going to
f ′: we will have Δ(f(v), f ′(v)) < γk for all v ∈ V ′\V1.
We get the “natural” assignment simply by changing the
assignment of the nonterminal v from f(v) to that terminal
of the form (v, ·) which is closest, according to distance Δ
on T , to f(v).
But have we changed the assignments too much? Recall
that by definition, for every v ∈ V ′\V1, M(v, g(v)) < γk.
That is, it takes fewer than 2γk steps in the graph GV ′
on nonterminals to move from g(v) to v (the factor of 2
appears because every edge in GV ′ is of length 1

2
). But this

implies that it takes fewer than 2γk steps in the graph GT

on terminals to move from (g(v), h(v)) to some terminal of
the form (v, ·); that is, Δ(f(v), f ′(v)) ≤ M(v, g(v)) < γk.
(This follows from the structure of the graph. If x and x′

are adjacent nonterminals and (x, y) is any terminal, then
there is a terminal (x′, y′) adjacent to (x, y); y′ “gives the
same answer to the question” as y.)
Now, because g′(v) = v for all v ∈ V ′, we have a valid
assignment in the sense of the Metric Labeling, not 0-
Extension, instance of [9]. An edge between two nonter-
minals, say v(r) and v(i, qi(r)), is stretched to

dT

�
f ′(v(r)), f ′(v(i, qi(r)))

�

=
√

k · M
�
g′(v(r)), g′(v(i, qi(r)))

�

+Δ
�
f ′(v(r)), f ′(v(i, qi(r)))

�
(1)

By summing over all nonterminal-nonterminal edges, and
ignoring the first term on the right-hand side of (1), we get

�
r,i

dT

�
f ′(v(r)), f ′(v(i, qi(r)))

�

≥
�
r,i

Δ
�
f ′(v(r)), f ′(v(i, qi(r)))

�
. (2)

Here’s the key point. By Proposition 4.4 and Lemma 4.5
in [9], we know that the right-hand side of (2) is at least�

k
2

�
ε
3
|R|. (While [9] does not “truncate” the distance metric

on the terminal graph at k, as we do for Δ, it can be shown
that their proof works even when such truncation is done).
Since the total number of nonterminal-nonterminal edges
is y = k|R|, we get that the total stretch of nonterminal-
nonterminal edges is at least (ε′k)y, for some constant ε′ > 0.
We now wish to compare this to the total stretch of these
edges in the original assignment f . In transforming f
to f ′, we may have increased the total stretch. Call a
nonterminal-nonterminal edge bad if it is incident to at

least one nonterminal in V1. Thus there are at most�
v∈V1

dv bad edges. Since we are in Case 2, this means

that there are at most (2α)y bad edges, i.e., at most a 2α-
fraction of all nonterminal-nonterminal edges is bad. Call
the nonterminal-nonterminal edges which are not bad good.
Then, when we go back from f ′ to f , |Δ(f ′(v), f ′(u)) −
Δ(f(v), f(u))| ≤ 2γk; this is true because if an edge with
endpoints u, v is good, both u and v are not in V1, and hence
Δ(f ′(v), f(v)) ≤ γk, and Δ(f ′(u), f(u)) ≤ γk. For a bad
edge |Δ(f ′(v), f ′(u)) − Δ(f(v), f(u))| ≤ k. Hence the total
stretch of nonterminal-nonterminal edges in the assignment
f is at least (ε′k)y−(2αy)k−y(2γk) = yk(ε′−2α−2γ), where
the first subtracted term corresponds to the bad edges, and
the second subtracted term corresponds to the good edges.
We choose α and γ small enough so that, for f , the total
stretch of nonterminal-nonterminal edges becomes at least
ε′′yk, for some constant ε′′ > 0. Since each nonterminal-
nonterminal edge has a weight of

√
k, the total contribution

of these edges to the cost, and hence the total cost in Case
2, is at least ε′′yk3/2.
Thus the ratio between the costs in the No and Yes cases
is Ω(

√
k). As in [9], the size N of the instance that we

constructed is nO(k2), where n is the size of the formula φ
from which we started. Choosing k to be poly(log n), which

is (log N)
1
2
−δ for an arbitrarily small constant δ > 0, we get

Theorem 6. For any constant δ > 0, there is no

O((log N)
1
4
−δ)-approximation algorithm for 0-Extension

unless NP ⊆ DTIME(npoly(log n)).

6. A �(
�

diam(�))-APPROXIMATION AL-
GORITHM FOR 0-EXTENSION

We define the diameter of (T, d) as diam(d) =
maxi,j d(i,j)

mini�=j d(i,j)
.

Alternatively, we can scale d so that the minimum distance
between different points is 1, and then the diameter is simply
the largest distance. We describe a rounding algorithm that
guarantees a ratio of O(

�
diam(d)) between the costs of the

fractional solution and of the rounded solution. Let G =
(V, E) be an input graph, and let T ⊆ V denote the set of
terminals. Given a solution x for the earthmover relaxation,
let emd(v, T ) = minj∈T {emd(xv, xj)}. The algorithm uses
the following lemma.

Lemma 7. (Archer et al. [1]). There exist c1, c2 > 0 such
that for every input graph G = (V, E), for every set T of
terminals, and for every solution x for the earthmover re-
laxation, there exists a distribution on solutions y such that
for every v ∈ V , if emd(xv, xj) > c1 ·emd(v, T ), then yv

j = 0,
and furthermore, for every u, v ∈ V , Ey[emd(yu, yv)] ≤
c2 · emd(xu, xv).

We use the rounding algorithm of [17], designed for the case
in which d is a uniform metric.

Lemma 8. (Kleinberg and Tardos [17].) There is a prob-
abilistic polynomial-time rounding algorithm that, given a
feasible solution x to the earthmover relaxation, generates
a probability distribution over assignments ϕ : V → T sat-
isfying ϕ(v) = v if v ∈ T such that for every u, v ∈ V ,
E[d(ϕ(u), ϕ(v)] ≤ ‖xu − xv‖1; and for every v ∈ V and
i ∈ T , Pr[ϕ(v) = i] ≤ 2xv

i .

We are now ready to describe the algorithm. We assume
that d is scaled so that the minimum distance between
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different terminals is 1. Thus diam(d) is the maximum
distance between terminals. First, pick α in the range�

diam(d) < α < 2
�

diam(d) uniformly at random. Assign
to terminal 1 all nodes v ∈ V such that emd(v, T ) > α. Sec-
ond, truncate x to a (random) solution y using Lemma 7, ig-
noring the nodes already assigned. Use the uniform metric-
case rounding algorithm of Lemma 8 on y to assign the re-
maining nodes to terminals.

Theorem 9. The expected cost of the rounded solution is
O(
�

diam(d)) times the cost of x.

Proof. We do an edge-by-edge analysis. We calcu-
late the expected cost incurred in the first phase and
that incurred in the second phase, showing that both are
O(
�

diam(d)) times the cost of x in the linear program.
Take any edge {u, v}; first, we calculate the expected cost it
incurs in the first phase. Choose u so that emd(u, T ) ≤
emd(v, T ). By the triangle inequality, emd(xu, xv) ≥
emd(v, T ) − emd(u, T ). As we draw α uniformly in a range

of length
�

diam(d), we have that the probability that α ∈
[emd(u, T ), emd(v, T )] is at most emd(xu, xv)/

�
diam(d). If

this happens, {u, v} is stretched to a length of at most
diam(d), so the expected contribution of these edges to the

cost is at most the cost of x times O(
�

diam(d)).
Now we calculate the expected cost incurred in the second
phase by an edge {u, v}. For it to be positive, it must

be the case that emd(u, T ), emd(v, T ) < 2
�

diam(d), for
otherwise either one or both of u and v was already as-
signed in the first phase, and hence there is no cost to
charge to {u, v} in the second phase. Hence we may as-

sume emd(u, T ), emd(v, T ) < 2
�

diam(d), We condition
on α ≥ max{emd(u, T ), emd(v, T )}. This happens with
probability at most 1, so we are perhaps overestimating
the cost of the rounding via the uniform-case algorithm.
Suppose u, v are assigned to terminals tu, tv, respectively.
By Lemma 8, the guarantee of the uniform-case rounding
rounding algorithm is that Pr[tu �= tv] ≤ ‖yu − yv‖1. No-
tice that by the triangle inequality, d(tu, tv) ≤ emd(tu, xu)+
emd(xu, xv)+emd(xv, tv). Further notice that by Lemma 8,
yu

tu
�= 0, so by Lemma 7, emd(tu, xu) ≤ c1 emd(xu, T ) ≤

2c1

�
diam(d). The term emd(xv, tv) can be bounded sim-

ilarly, so d(tu, tv) ≤ emd(xu, xv) + 4c1

�
diam(d). Also,

emd(xu, xv) ≥ Ey[emd(yu, yv)]/c2 ≥ Ey[‖yu − yv‖1]/(2c2)
(as the minimum distance between different terminals is 1).
Fix y. We have E[d(tu, tv)] ≤ Pr[tu �= tv] · (emd(xu, xv) +

4c1

�
diam(d)) ≤ ‖yu − yv‖1 · (emd(xu, xv) + 4c1

�
diam(d))

≤ 2·emd(xu, xv)+4c1

�
diam(d)·‖yu−yv‖1, as ‖yu−yv‖1 ≤

2. Taking the expectation over y, we get Ey[E[d(tu, tv)]] ≤
2 · emd(xu, xv) + 4c1

�
diam(d) · Ey[‖yu − yv‖1] ≤ (2 +

8c1c2

�
diam(d)) · emd(xu, xv), using the above inequalities.

Adding together the costs in the two phases gives us a ratio
of O(

�
diam(d)). �
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APPENDIX

A. ALTERNATIVE INTEGRALITY RATIO
CONSTRUCTIONS

In this section we provide an alternative construction of a
Metric Labeling instance for which the earthmover re-
laxation has an integrality ratio of Ω(log |T |). We also show
how the method used in Section 4 can be applied to this
construction to find an instance of 0-Extension with inte-
grality ratio Ω(

�
log |T |). This construction uses properties

of certain linear codes, and is inspired by the results in [16].
Fix a linear code C ⊆ {0, 1}n with distance at least ηn and
rate at least (1 − δ)n where η and δ are sufficiently small
constants (the Gilbert-Varshamov bound shows that such
codes exist with δ ≈ H(η) where H() is the binary entropy
function).
Let T0 be the orthogonal subspace of the code, i.e., T0 = C⊥.
Let T denote the set of all cosets of T0, i.e.,

T = {T0 + v : v ∈ {0, 1}n}.

Note that every coset has cardinality 2δn and the number of
cosets is 2(1−δ)n.
Let Δ denote the Hamming metric on {0, 1}n. Consider
the following metric dEM on T .

For T, T ′ ∈ T ,

dEM (T, T ′) := min
u∈T,v∈T ′ Δ(u, v).

In fact, for any fixed u0 ∈ T, v0 ∈ T ′, we have

dEM (T, T ′) = min
v∈T ′ Δ(u0, v) = min

u∈T
Δ(u, v0).

This is indeed the earthmover distance; consider the uni-
form probability distribution on T and T ′, respectively. The
earthmover distance between these distributions (with un-
derlying Hamming metric) is exactly dEM (T, T ′). This is be-
cause there is a “matching” between points in T and T ′ such
that the Hamming distance between every pair of matched
points is exactly dEM .
The following two lemmas are from [16]. We provide the
proofs here for completeness.

Lemma 10. Let θ > 0 be a sufficiently small constant.
Then if two cosets T, T ′ are picked at random from T , then
with high probability dEM (T, T ′) ≥ θn.

Proof. Fix coset T and fix any u0 ∈ T . Consider the
process of picking another random coset T ′. One can pick a
y ∈ {0, 1}n at random and define T ′ = T + y. Clearly,

Pr[∃v ∈ T ′ such that Δ(u0, v) ≤ θn]

= Pr[∃u ∈ T such that Δ(u0, u + y) ≤ θn]

≤
�
u∈T

Pr[Δ(u0, u + y) ≤ θn]

≤ |T | · 2−(1−H(θ))n

= 2−(1−H(θ)−δ)n

where the inequality on the penultimate line follows because
u + y is a random vector and its distance from u0 has bino-
mial distribution with mean n/2. �

Lemma 11. Let f : T �→ Rm be any assignment of vec-
tors to points in T . Let ‖ · ‖ denote the 
2-norm. Then

ET,i[‖f(T ) − f(T + ei)‖2] ≥ 2η · ET,T ′ [‖f(T ) − f(T ′)‖2],

where ei denotes a vector whose ith coordinate is equal to
1 and the rest are 0. T and T ′ are random cosets picked
independently and i is picked randomly (and independently
of T ) from 1 ≤ i ≤ n.

Proof. Clearly, it suffices to prove this when f is a real-
valued function (i.e. m = 1), since the desired inequality can
be “split” into separate inequalities for every dimension. So
assume f is a real-valued function. Let f ′ be a function on
{0, 1}n that is constant on every coset T and its value on
this coset equals f(T ). Clearly,

ET,ei [|f(T ) − f(T + ei)|2]
= Ex∈{0,1}n,ei

[|f ′(x) − f ′(x + ei)|2]
= Ex,ei [f

′(x)2 + f ′(x + ei)
2 − 2f ′(x)f ′(x + ei)]

Note that

Ex[f ′(x)2] = Ex,ei [f
′(x + ei)

2] =
�

S⊆[n]

f̂ ′(S)2

Also, using Fourier expansion,

Ex,ei [f
′(x)f ′(x + ei)]

= Ex,ei [
�
S,S′

f̂ ′(S)f̂ ′(S′)χS(x)χS′(x + ei)]

=
�

S

f̂ ′(S)2Eei [χS(ei)]

=
�

S

f̂ ′(S)2(1 − 2|S|/n)

Combining these, we get

ET,ei [|f(T ) − f(T + ei)|2] = 4
�

S⊆[n]

f̂ ′(S)2 · |S|
n

Now note that the function f ′ is constant on every coset
of T0 and hence only those Fourier coefficients are non-zero
that are in T⊥

0 , i.e. those that are codewords in C. Thus
either S = ∅ or |S| ≥ ηn since the code has distance ηn.
The lemma follows by observing that the total Fourier mass
on non-empty coefficients is given by

�
S⊆n

f̂ ′(S)2 − f̂ ′(∅)2

= Ex[f ′(x)2] − Ex[f ′(x)]2

=
1

2
Ex,x′ [f ′(x)2 + f ′(x′)2 − 2f ′(x)f ′(x′)]

=
1

2
Ex,x′ [|f ′(x) − f ′(x′)|2]

=
1

2
ET,T ′ [|f(T ) − f(T ′)|2

�

A.1 Metric Labeling
Consider the following Metric Labeling instance. The
label set is {0, 1}n. The distance between two labels is the
Hamming distance between them.
The input graph has vertices corresponding to cosets of T0,
i.e., the set of vertices is T . There is an edge between T
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and T + ei for every coset T and a coordinate vector ei. All
edges have weight 1.
The cost of assigning a vertex corresponding to a coset T to
a label x ∈ {0, 1}n is 0 if x ∈ T ⊆ {0, 1}n, and ∞ otherwise.

Fractional Solution: The fractional solution assigns to
every vertex T , a uniform probability distribution on labels
in T . The earth-mover distance between such distributions
is exactly dEM . For every edge (T, T + ei), we have
dEM (T, T + ei) = 1. Thus the average cost per edge in the
fractional case is 1.

Integral Solutions: Now we will prove an Ω(n) lower
bound on the average cost per edge of any integral solution.
Take any labeling of vertices, i.e., a map h : T �→ {0, 1}n

such that for every coset T , h(T ) ∈ T . We also think of val-
ues of h as vectors in Rn. The following series of inequalities
gives the desired lower bound.

ET,i[Δ(h(T ), h(T + ei)]

= ET,i[‖h(T ) − h(T + ei)‖2]

≥ 2η · ET,T ′ [‖h(T ) − h(T ′)‖2]

= 2η · ET,T ′ [Δ(h(T ), h(T ′))]

≥ 2η · ET,T [ min
u∈T,v∈T ′ Δ(u, v)]

= 2η · ET,T ′ [dEM (T, T ′)]

which is Ω(n), where on the second line we used Lemma 11
and at the end we used Lemma 10.
Thus the integrality ratio of the earthmover relaxation for
this instance is Ω(n), which is Ω(log |T |).

A.2 0-Extension
We define an instance of 0-Extension as follows. The set
X of terminals is defined as

X := {(T, x) : T ∈ T , x ∈ {0, 1}n, x ∈ T}.

The metric dX on X is defined as

dX((T, x), (T ′, x′)) := L · dEM (T, T ′) + Δ(x, x′),

where L will be chosen to be
√

n later.
The set of nonterminals is defined to be T . The input graph
has as its vertex set the union of the set of terminals and the
set of nonterminals. There is an edge between nonterminals
T and T +ei. These edges have a weight of K (which we will
choose to be

√
n later). There are edges from a nonterminal

T to all terminals {(T, x) : x ∈ T}. These edges have a
weight of 1.
Thus, the cost of an assignment f : T �→ X of nonterminals
to terminals is

cost(f) :=K · ET,T+ei [dX(f(T ), f(T + ei))]

+ ET,x∈T [dX(f(T ), (T, x))]

Call the two components of the cost function as cost1 and
cost2, respectively.

Fractional Solution:
We construct a fractional solution whose cost is at most
K · (L + 1) + n.
Assign to a nonterminal T the uniform probability distri-
bution on the set of terminals {(T, x) : x ∈ T}. Clearly,

the “movement” (T, x) �→ (T + ei, x + ei) “moves” this dis-
tribution to the uniform probability distribution on the set
of terminals {(T + ei, x

′) : x′ ∈ T + ei}. Therefore, the
contribution to the cost1 component of the cost is

K · dX((T, x), (T + ei, x + ei))

= K · (L · dEM (T, T + ei) + Δ(x, x + ei))

= K · (L + 1)

Also for any T and x0 ∈ T , the earthmover distance
between the uniform distribution on set {(T, x) : x ∈ T}
and the distribution “concentrated” at (T, x0) is at most
n. This is an upper bound on the cost2 component of the
fractional cost.

Integral Solutions:
We will prove a min(Ω(nK), Ω(nL)) lower bound on the cost
of any integral solution.
Let f : T �→ X be any assignment of nonterminals to termi-
nals. Denote f(T ) = (g(T ), h(T )), where g(T ) ∈ T , h(T ) ∈
{0, 1}n and h(T ) ∈ g(T ).

We consider two cases.

Case (i): ET,T ′ [dEM (g(T ), g(T ′))] ≤ γn where γ > 0 is a
small constant to be chosen later.
Applying the triangle inequality, we have

dEM (T, T ′) ≤ dEM (T, g(T )) + dEM (g(T ), g(T ′))

+ dEM (g(T ′), T ′)

Taking expectation over random T, T ′ and using Lemma 10,
we see that

θn ≤ 2 · ET [dEM (g(T ), T )] + γn.

Assuming γ ≤ θ/2, we have

ET [dEM (g(T ), T )] ≥ θn/4. (3)

Now we will show that the cost2-component of the cost is at
least L · θn/4. Indeed,

cost2 = ET,x∈T [dX(f(T ), (T, x))]

= ET,x∈T [dX((g(T ), h(T )), (T, x))]

= ET,x∈T [L · dEM (g(T ), T ) + Δ(h(T ), x)]

≥ ET [L · dEM(g(T ), T )]

≥ L · θn/4.

Case (ii): ET,T ′ [dEM (g(T ), g(T ′))] ≥ γn.
From h(T ) ∈ g(T ), h(T ′) ∈ g(T ′), and the definition of dEM ,
we get

ET,T ′ [Δ(h(T ), h(T ′)] ≥ γn.

We will show a lower bound of K · 2ηγn on the cost1-
component of the cost. We see that cost1 equals

K · ET,T+ei [dX((g(T ), h(T )), (g(T + ei), h(T + ei)))]

≥ K · ET,T+ei [Δ(h(T ), h(T + ei))]

= K · ET,T+ei [‖h(T ) − h(T + ei)‖2]

≥ K · 2η · ET,T ′ [‖h(T ) − h(T ′)‖2]

= K · 2η · ET,T ′ [Δ(h(T ), h(T ′))]

≥ K · 2η · γn,

where we used Lemma 11 again.
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Choosing K = L =
√

n gives an upper bound of O(n) on

the fractional cost and a lower bound of Ω(n3/2) on the

cost of any integral solution. This proves the Ω(
�

log |T |)
integrality ratio for 0-Extension. Observe the tradeoff be-
tween the two cost components cost1 and cost2 that limits
to Ω(

√
log N) the lower bound we can prove.
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