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Abstract

We study the problem of finding the minimum size DNF formula for a functionf : {0, 1}d 7→ {0, 1}
given its truth table. We show that unless NP⊆ DTIME(npoly(log n)), there is no polynomial time
algorithm that approximates this problem to within factord1−ε whereε > 0 is an arbitrarily small
constant. Our result essentially matches the knownO(d) approximation for the problem.

We also study weak learnability of small size DNF formulas. We show that assuming NP6⊆ RP, for
arbitrarily small constantε > 0 and any fixed positive integert, a two term DNF cannot be PAC-learnt
in polynomial time by at term DNF to within1

2 + ε accuracy. Under the same complexity assumption,
we show that for arbitrarily small constantsµ, ε > 0 and any fixed positive integert, an AND function
(i.e. a single term DNF) cannot be PAC-learnt in polynomial time under adversarialµ-noise by at-CNF
to within 1

2 + ε accuracy.

1 Introduction

Any given functionf : {0, 1}d 7→ {0, 1} can be written in an equivalent disjunctive normal form (DNF),
i.e. an OR of someterms, where aterm is an AND of literals. Thesizeof the DNF formula is the number of
terms it contains. Given a truth table of a functionf : {0, 1}d 7→ {0, 1}, the problem of finding an equivalent
DNF formula of minimum size is a well studied problem in computer science. We denote the problem by
TT-M INDNF. It was first studied by Quine [Qui52, Qui56] in the context of mathematical logic and later by
McCluskey[McC56] in relation to circuit design and both discovered a heuristic to solve the problem. Since
then, a large number of heuristics and software tools have been developed; we refer the interested reader to
[CS01] for a survey.

TT-M INDNF is a special case of the SET-COVER problem. The greedy set cover algorithm gives
anO(logN) = O(d) approximation and runs in time polynomial inN whereN = 2d is the size of the
truth table. One the hardness side, the problem was proved to be NP-complete by Masek [Mas79]. Czort
[Czo99] showed that unless P= NP, TT-MINDNF cannot be approximated efficiently to within any additive
constant. Recently, Feldman [Fel06a] showed that TT-MINDNF cannot be approximated to within factordγ

in polynomial time for some constantγ > 0 unless P= NP. Allender, Hellerstein, McCabe, Pitassi and Saks
[AHM +06] independently obtained the same inapproximability result under a stronger assumption that NP
6⊆ DTIME(npoly(logn)). The constantγ in both results is unspecified; it depends on the parameters of Raz’s
parallel repetition theorem [Raz98] and is presumably very small. In this paper, we show an essentially
optimal hardness result that there is no polynomial time algorithm to approximate TT-MINDNF to within
factord1−ε assuming NP6⊆ DTIME(npoly(logn)), whereε > 0 is an arbitrarily small constant.

Learning DNFs is a central problem in learning theory. Valiant [Val84] defined a widely studied model
of learning, namely the Probably Approximately Correct (PAC) model. He showed that for every constant
k ≥ 1, k term DNF can be PAC learnt in polynomial time by ak-CNF, i.e. a CNF with at mostk literals
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in each clause. For unrestricted DNFs (that is when the number of terms could be polynomially large
in the number of variablesn), the best learning algorithm runs in time2O(n1/3 logn) due to Klivans and
Servedio [KS04]. For learning under uniform distribution, Jackson [Jac97] showed that unrestricted DNFs
can be learnt with membership queries, i.e. the algorithm can query for the value of the function at a point.
Alekhnovich, Braverman, Feldman, Klivans and Pitassi [ABF+08] gave annO(

√
n logn) time algorithm to

properly learn unrestricted DNFs, i.e. when the hypothesis is also a DNF.

On the hardness side, Pitt and Valiant [PV88] showed that unless NP= RP, there is no efficient algorithm
to PAC learns-term DNF by ans-term DNF wheres is unrestricted, i.e.2 ≤ s ≤ nc, for any constantc > 0.
In particular, Alekhnovichet al. [ABF+08] showed that unless NP= RP, there is no efficient algorithm to
learn a2 term DNF by ak term DNF for any constantk. Nock, Jappy and Sallantin [NJS98] showed that
unless NP⊆ ZPP, given constants0 ≤ α ≤ 1 + 1

145 andβ ≥ 0, there is no efficient algorithm to PAC-learn
nc term DNF withnαc+β term DNF. This was improved by Alekhnovichet al. [ABF+08] who showed that
unless NP= RP, for any given constantα ≥ 0, nc term DNF cannot be efficiently learnt by anαc term DNF.
Their result rules out polynomial time proper PAC learning of DNFs, unless NP= RP. This was further
strengthened by Feldman [Fel06a] to the case when the algorithm even has access to membership queries.
We note that all these intractability results rule out (under appropriate complexity assumptions) a learning
algorithm that learns within error 1

poly(n) , but do not rule out a learning algorithm that learns within constant
error (say within1%). In other words, for the underlying optimization problem of finding a DNF formula
consistent with the maximum number of given set of labeled examples, these are NP-hardness results and
do not give APX-hardness. Another reason to study stronger inapproximability is that given an algorithm to
PAC-learn find a(1

2 + ε)-consistent hypothesis, using boosting techniques [Sch90] it can used to efficiently
find a (1 − ε)-consistent hypothesis1. A hardness result for weak learning provides evidence against such
boosting based approaches.

In this paper, we show that unless NP= RP, for any constantε > 0 and any fixed integert, a 2-term
DNF formula cannot be weakly learnt in polynomial time by at-term DNF formula, i.e. within accuracy
1
2 + ε. We note that this hardness result is very much hypothesis dependent since for everyk ≥ 2, k-term
DNF can be efficiently PAC-learnt byk-CNF as mentioned earlier [Val84]. We then investigate whether
this algorithmic result holds under noise and resolve it negatively. We show that unless NP= RP, for any
constantsε, µ > 0 and constantt, an AND (i.e. a single term DNF) cannot be learnt to accuracy of1

2 + ε
by even at-CNF formula, under adversarialµ-noise unless NP= RP. This result generalizes the results of
[Fel06b, FGKP06] which showed hardness of weak-learning noisy AND function by an AND function. We
note that both the results are inapproximability results for the underlying optimization problem of finding a
formula (t term DNF ort-CNF) maximizing the number of agreements on a given set of labeled examples.
As inapproximability results, they are essentially optimal since a trivial formula that is either constant1 or
constant0 agrees with half of the samples.2

2 Overview of Our Reductions

In this section we formally state our main results and give an overview of the proof techniques involved.
The result for minimizing DNF formulas is a simple reduction from a new PCP that is constructed by a
straightforward composition of known PCPs. The other two results are direct reductions from label cover.

1After applying the boosting algorithm, the hypothesis class is now a majority over a set of hypotheses used in the weak learning
algorithm.

2Our inapproximability results hold under the assumption P6= NP, which translates to hardness of weak PAC-learning under the
assumption NP6= RP.
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2.1 Minimizing DNF formulas

Let the size of a DNF formula be the number of terms in it. We prove the following theorem.

Theorem 1 For anyε > 0, there is no polynomial time algorithm that, given the truth table of a boolean
functionf : {0, 1}d 7→ {0, 1}, overd variables, computes an equivalent DNF formula forf of size within
d1−ε of the minimum size equivalent DNF formula forf , unless NP⊆ DTIME(npoly(logn)).

Since there is aO(d) approximation algorithm for this problem, our hardness of approximation factor is
essentially optimal. Our reduction actually proves hardness of approximation factor ofd1−ε for a related
problem, PHC-COVER of covering a subsetS of the hypercube{0, 1}d using minimum number of terms
from a given setT of terms. Feldman [Fel06a] showed that this implies the same hardness of approximation
factor for the problem of minimizing the size of DNF formulas.

Overview of Reduction: The reduction proceeds by first constructing a specialized version of a constraint
satisfaction problem (or PCP) and then reducing it to PHC-COVER. However, for simplicity let us assume
that we begin with a bipartite label cover problem over the label set[k], with n vertices in each bipartition.
Consider the vertices of theU layer. It is easy to see that we require at mostlog n variables so that every
vertex inU is mapped to a unique setting of these variables. Call these variablesvertex variablesfor theU
layer. In the set of termsT of the PHC-COVER instance, we would like to havek unique terms for every
vertexu in U , corresponding to thek labels foru. For this purpose we createk label variables, one for each
label. For each vertexu and labeli, there is a term which is1 exactly on the unique setting, corresponding
to u, of the vertex variables and when the label variable for labeli is set to0. Therefore for theU layer
there arelog n+ k variables andnk terms,k for each vertex, where each term is overlog n vertex variables
and one label variable. We similarly construct distinct variables and terms for theV layer. In total we have
2(log n+ k) variables and2nk terms.

Now, we construct the subset of points of the hypercube to be covered as follows. Pick an edgee = (u, v)
and two setsS1, S2 ⊆ [k] such thatS1 × S2 does not contain any satisfying assignment toe. Set the
coordinates such that only the terms corresponding tou andv are active. Set the coordinates corresponding
to the labels inS1 (in theU layer) and those corresponding to labels inS2 (in theV layer) to be1. Do
this for all edgese of the label cover, and all such subsetsS1 andS2 corresponding toCe. It is easy to see
that for a given edgee = (u, v), if all points corresponding to such setsS1, S2 are covered then the set of
terms corresponding tou and tov, must ‘contain’ a labeling tou andv, respectively, satisfying the edgee.
Moreover, unless the number of terms chosen to cover the points is large enough, our analysis gives a way
to pick a ‘good’ labeling to the vertices of the label cover. Therefore, in the YES case, the number of terms
required to cover all points is small, in the NO case it is necessarily large.

While this reduction works even with the standard bipartite label cover, it does not give the desired
hardness of approximation factor. In order to achieve that, we combine it with a multi layered constraint
system based on a variant of the query efficient PCP of Samorodnitsky and Trevisan[ST00]. The PCP we
construct is similar to the one constructed by Khot[Kho01] as it uses Hadamard encodings instead of Long
Codes. We need this crucially as using Long Codes would blow up the size of the PCP in relation to the
size of the label set. In order to use Hadamard encodings, we need to start with an instance with linear
constraints. As a result, we lose perfect completeness. However, our reduction tolerates the loss of perfect
completeness as long as the completeness parameter is suitably close to1. In order to achieve this we start
the construction of the PCP using the Max-3LIN instance constructed by Khot and Ponnuswami[KP06],
which has completeness very close to1 which we desire. We also need to ensure a large sized label set. For
this purpose, the Hadamard encodings are over an appropriately large field extension ofF[2]. The PCP thus
constructed is transformed into a multi layered constraint system via standard reductions.
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We note that the previous hardness reductions of Feldman[Fel06a] and Allenderet al. [AHM +06] used
a construction of certainunion free families of sets, similar to thepartition systemsused in the reductions for
the SET-COVER problem [LY94, Fei98]. Our result does not need such constructions (which we find inter-
esting, since we in particular obtainlog1−εN hardness for SET-COVER without using partition systems).
In [Fel06a, AHM+06], the parameters involved in constructing union free families limits the hardness factor
achievable to

√
d in addition to the limitation onγ (in thedγ hardness) imposed by the parameters in Raz’s

parallel repetition theorem. Our reduction bypasses both these limitations.

2.2 Learning 2-term DNF by t-term DNF

We prove the following theorem.

Theorem 2 For anyε > 0 and any given positive integert, given a distributionD over point-value pairs
(examples)(x, y), wherex ∈ {0, 1}n andy ∈ {0, 1}, with the guarantee that there is a2 term DNF formula
that is consistent with all the examples ofD, unless NP= RP there is no polynomial time algorithm to
compute a DNF formula of up tot terms that is consistent with the examples with probability1

2 + ε under
the distributionD.

The result is essentially optimal since a trivial formula that is either the constant1 or the constant0 satisfies
the examples with probability12 . The distributionD in our instance is supported over polynomially (inn)
many points of the hypercube, and therefore it can be given explicitly.

Overview of Reduction: Our reduction proves an equivalent result for learning2-clause CNF byt-clause
CNF. We give a direct reduction from the bipartite label cover problem with vertex setsU andV , and label
sets[m] and[k] respectively. The examples of the distributionD simulate the junta and consistency tests.
We create one coordinate for every vertex and its potential label. So we havem|U |+ k|V | coordinates. The
1 examples have the property that there is an edge(u, v) such that all them coordinates corresponding tou
andk coordinates corresponding tov are set to1 and all other coordinates are set to0. The0 examples are
constructed by choosing a vertexu ∈ U and a setα ⊆ [m] and setting all the coordinates ofu corresponding
to [m] \ α to be1. Moreover for every neighborv of u, all coordinates corresponding toπ−1

uv (α) are set to
1, whereπuv is the projection map for the edge(u, v). All the other coordinates are set to0.

Suppose there is a labelingσ to the vertices that satisfies all edges. Now consider the clauseCU consist-
ing of the variables corresponding to vertexu and its labelσ(u) for all u ∈ U . Let clauseCV be similarly
defined forV . It is easy to see that the formulaCU ∧CV satisfies all the examples. In the NO case we show
that if there at clause CNF that is consistent with the examples with probability at least1

2 + ε, then one can
construct a labeling to the vertices of label cover which satisfies a significant fraction of edges. This leads
to a contradiction if we choose the soundness parameter of the label cover to be small enough.

2.3 Learning AND by t-CNF under adversarial noise

We prove the following theorem.

Theorem 3 For any constantsε, µ > 0 and any positive integert, given a distributionD over point-value
pairs (examples)(x, y), wherex ∈ {0, 1}n andy ∈ {0, 1}, with the guarantee that there is an AND formula
that is consistent with the examples with probability (underD) at least1 − µ, unless NP= RP there is no
polynomial time algorithm to compute at-CNF formula, i.e. a CNF formula with at mostt literals in each
clause, that is consistent with examples with probability(underD) at least1

2 + ε.

Again the result is essentially optimal since it is trivial to output a formula that is consistent with half
the examples. Moreover, without any noise an AND formula can be properly learnt in polynomial time. Our
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reduction proves an equivalent result for learning OR byt-DNF, i.e. DNF formula with at mostt literals
in each term. The reduction is similar to the one described in section 2.2, and the distributionD has a
polynomial (inn) support and can be given explicitly. It starts with an instance of bipartite label cover. In
a similar manner the examples simulate the junta and consistency tests, with the property that in the YES
instance, the labeling gives a OR formula that is consistent with the examples with probability close to1.
In the NO case, any DNF formula with at mostt literals in each term that is consistent with the examples
with probability at least12 + ε yields a labeling to the vertices of the label cover that satisfies a significant
fraction of edges, and choosing the soundness parameter of the label cover to be small enough, this leads to
a contradiction.

Organization of the paper. In the next section we formally define the problems considered, and the
tools we require for our reductions. We present the hardness result for minimizing DNF formulas in section
4. It is a reduction from a multi-layered CSP to PHC-COVER. Due to space constraints, the results for
learning2 term DNF, learning AND under adversarial noise and the construction of the multi-layered CSP
are presented in appendices A, B and C respectively.

3 Preliminaries

Let f : {0, 1}d 7→ {0, 1} be a boolean function. We say that a boolean functiong is equivalentto f if it
agrees withf at every point of the hypercube. A DNF formula is a OR oftermswhere aterm is an AND of
literals. Similarly, a CNF formula is a AND of clauses, where each clause is an OR of literals. We define
the problem TT-MINDNF as follows.

Definition 1 The problemTT-M INDNF is the following: given the truth table of a boolean functionf on
d variables, to find an equivalent DNF formulaφ with the minimum number of terms.

In our reduction we prove a hardness of approximation factor ofd1−ε for anyε > 0, for the partial hypercube
cover (PHC-COVER) problem which is defined as follows.

Definition 2 The problemPHC-COVERis the following: given a subsetS ⊆ {0, 1}d, and a set of terms
T , to find a minimum subset of termsT ∗ ⊆ T that covers all the points inS.

Feldman [Fel06a] showed that a hardness of approximation factor ofdγ for PHC-COVER implies same
hardness factor for TT-MINDNF, for any constantγ > 0. Therefore, our result implies hardness of approx-
imation factor ofd1−ε for TT-M INDNF.

We also define the following problems related to learning boolean functions.

Definition 3 For any positive integert, the problem ofLEARN-t-TERM-DNF is the following: given a
distributionD on point-value pairs (examples)(x, y), wherex ∈ {0, 1}n andy ∈ {0, 1}, the goal is to find
a DNF formula with up tot terms that is consistent with the examples with maximum probability under the
distributionD.

Definition 4 For any positive integert, the problem ofLEARN-t-CNF is the following: given a distribution
D on point-value pairs (examples)(x, y), wherex ∈ {0, 1}n and y ∈ {0, 1}, the goal is to find a CNF
formula with up tot literals in each clause that is consistent with the examples with maximum probability
under the distributionD.

The starting point for our inapproximability results for LEARN-t-TERM-DNF and LEARN-t-CNF is the
label cover problem, which is defined below.

5



Definition 5 An instanceL of LABELCOVER(m, k) consists of a bipartite graphG(U, V,E) and a set of
projections{πuv}(u,v)∈E , whereπuv : [k] 7→ [m] for every edge(u, v) ∈ E, whereu ∈ U andv ∈ V . A
labelingσU : U 7→ [m] andσV : V 7→ [k] satisfies the edge(u, v), iff πuv(σV (v)) = σU (u). The goal is to
find a labeling that satisfies maximum number of edges ofL.

The following theorem is a consequence of the PCP Theorem [AS98, ALM+98] and Raz’s Parallel Repeti-
tion Theorem [Raz98].

Theorem 4 For any constantδ > 0, there existm andk such that, given an instanceL of LABELCOVER(m, k),
it is NP-hard to distinguish between the following two cases,
YES Case. There is a labeling to the vertices ofL that satisfies all the edges.
NO case. Any labeling to the vertices ofL satisfies at mostδ fraction of the edges.

The following theorem is proved in Appendix A and implies Theorem 2.

Theorem 5 For any ε > 0 and any positive integert > 0, given an instance ofLEARN-t-TERM-DNF
consisting of a distributionD on the set of examples(x, y), wherex ∈ {0, 1}n andy ∈ {0, 1}, it is NP-hard
to distinguish between the following cases,
YES Case. There is a two term DNFφ that is consistent with all the examples of the distributionD.
NO Case. There is no DNF formulaφ′ of up to t terms that is consistent with the examples ofD with
probability 1

2 + ε.

The following theorem is proved in Appendix B and implies Theorem 3.

Theorem 6 For anyµ, ε > 0 and any positive integert > 0, given an instance ofLEARN-t-CNFconsisting
of a distributionD on the set of examples(x, y), wherex ∈ {0, 1}n and y ∈ {0, 1}, it is NP-hard to
distinguish between the following cases,
YES Case. There is a AND formula that is consistent with all the examples of the distributionD with
probability at least1− µ.
NO Case. There is no CNF formulaφ′ with up tot literals in each clause that is consistent with the examples
ofD with probability 1

2 + ε.

For the reduction to TT-MINDNF we require a more specialized constraint satisfaction problem which we
define below. Lett be a parameter. We define the problemt-LAYERED-CSP as follows.

Definition 6 An instance oft-LAYERED-CSPconsists of the following,

1. A t-uniform hypergraphG(V,E) which has the following properties,

a. Let V be the vertex set of the hypergraph. ThenV can be partitioned into setsV1, . . . , Vt such
that each edge of the hypergraph has exactly one vertex from eachVi for i = 1, . . . , t. Moreover
|V1| = |V2| = · · · = |Vt|.

b. Every vertex inV has the same degree.

2. A set of labels[k], and constraints for each hyperedge of the graph defined as follows,

a. Lete = (v1, v2, . . . , vt) be a hyperedge such thatvi ∈ Vi for all i = 1, . . . , t. Then the constraintCe
is a non empty subset of[k]t.

b. Letσ : V 7→ [k] be a labeling of the vertices inV . Then the hyperedgee = (v1, v2, . . . , vt), where
vi ∈ Vi for all i = 1, . . . , t, is satisfied iff(σ(v1), . . . , σ(vt)) ∈ Ce.
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The goal is to find a labelingσ : V 7→ [k] to the vertices ofV that satisfies the maximum number of
hyperedges inE.

The following theorem is proved in Appendix C.

Theorem 7 There is an absolute constantξ > 0 such that, for a given arbitrarily large integert > 0, there
is a DTIME(npoly(logn)) time reduction from3SAT to an instance oft-LAYERED-CSPwith |V | = n and
k = θ(log2 n) such that,

YES CASE: If the3SAT formula is satisfiable then there is a setV ′ ⊂ V of vertices of size at most
n/(2(logn)ξ) and a labelingσ∗ : V \ V ′ 7→ [k] such that,

1. (Strong Completeness)σ∗ satisfies all hyperedges induced byV \ V ′.

2. (Extendability) For any hyperedgee ∈ E (possibly containing vertices fromV ′), there is an labeling
σ′e to vertices ine ∩ V ′ such thatσ∗ extended byσ′e satisfies hyperedgee.

NO CASE: If the3SAT formula is not satisfiable then any labelingσ to the vertices ofV satisfies at most
k−t+O(

√
t) fraction of the hyperedges.

The following theorem is proved in Section 4 via a reduction fromt-LAYERED-CSP, and it implies
Theorem 1.

Theorem 8 For any ε > 0, there exists a functionh : Z+ 7→ Z
+ such that given an instance ofPHC-

COVERconsisting of a subsetS of {0, 1}d and a set of termsT ,unless NP⊆ DTIME(npoly(logn)), there is
no polynomial time algorithm to distinguish between the following two cases,

YES Case. There is a subsetT ∗ ⊆ T of size at mosth(d) that covers all the points inS.

NO Case. There is no subsetT ′ ⊆ T of size at mostd1−εh(d) that covers all the points inS.

4 Reduction from t-LAYERED-CSPto PHC-COVER

In this section we show a reduction from the problemt-LAYERED-CSP to PHC-COVER. With thet-
LAYERED-CSP problem as defined in Def 6, we first construct the set of variables.
Vertex Variables: For every layerVi (1 ≤ i ≤ t), we have a setP i = {xij}1≤j≤D of D variables where
D = dlog |Vi|e. We refer to them asvertex variablesfor layer i. Clearly we have a one to one mapping
from every vertexu ∈ Vi to a setting of the variables inP i for every layer1 ≤ i ≤ t. Call this settingsi(u).
Thus, we have a set of variables for every layer whose settings encode all the vertices of that layer.
Label variables: For every layerVi (1 ≤ i ≤ t), we have a setQi = {yij}1≤j≤k of k variables each
corresponding to a label. We refer to this set aslabel variablesfor the layeri.

LetM =
⋃t
i=1(P i ∪Qi) be the set of all the variables, and letd := |M| = t(D+ k). We now describe

the set of termsT .

Terms: Let Vi (1 ≤ i ≤ t) be a layer of vertices and letu ∈ Vi. Then there is a setT i(u) of k terms
corresponding tou as follows. Letti(u) be the unique AND of the literals corresponding to the variables in
P i = {xij}1≤j≤D such thatti(u) is 1 only on the settingsi(u) of the variables inP i corresponding tou.
Let,

T i(u) := {ti(u) ∧ yij | 1 ≤ j ≤ k}.
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Therefore, for every layeri (1 ≤ i ≤ t) and everyu ∈ Vi, there is a set ofk termsT i(u). We define,

T =
t⋃
i=1

⋃
u∈Vi

T i(u).

In all there arenk terms. Next we define the set of pointsS ⊆ {0, 1}M for our instance of PHC-COVER.

Points: Let e = (v1, v2, . . . , vt) be a hyperedge in the graphG, wherevi ∈ Vi for 1 ≤ i ≤ t, and letCe ⊆
[k]t be its constraint. LetI = (I1, I2, . . . , It), be at tuple whereIi ⊆ [k] and letω(I) := I1× I2× · · ·× It.
We consider thoseI ∈ (2[k])t such thatω(I) ∩ Ce = ∅. Note that this is trivially true if any ofIi is empty.
In other words, the setω(I) does not ‘contain’ any satisfying assignment to the hyperedgee. Let Ie be the
set of all sucht-tuplesI corresponding to hyperedgee. Formally,

Ie = {I ∈ (2[k])t | ω(I) ∩ Ce = ∅}

For every suchI ∈ Ie, we create the following pointγe(I) ∈ {0, 1}M as follows. The coordinates corre-
sponding toP i are set tosi(vi) for all 1 ≤ i ≤ t. For1 ≤ i ≤ t, the coordinate corresponding toyij ∈ Qi
is set to1 if j ∈ Ii and0 otherwise, for every1 ≤ j ≤ k. We define,

S :=
⋃
e∈E

⋃
I∈Ie

{γe(I)}

Now consider any subsetT ∗ ⊆ T . Let i (1 ≤ i ≤ t) be a layer, andu ∈ Vi be a vertex. Define,

LiT ∗(u) := {j | ti(u) ∧ yij ∈ T ∗},

for all 1 ≤ i ≤ t andu ∈ Vi. Thus,LiT ∗(u) is precisely the set of labels ofu such that the corresponding
terms are present inT ∗, whereu ∈ Vi. Additionally, for every hyperedgee = (v1, v2, . . . , vt) ∈ E, let,

LT ∗(e) = L1
T ∗(v1)× · · · × LtT ∗(vt).

The following is a simple lemma.

Lemma 9 Let T ∗ ⊆ T . ThenT ∗ covers all the points inS if and only if for every hyperedgee =
(v1, v2, . . . , vt) ∈ E, wherevi ∈ Vi for 1 ≤ i ≤ t, LT ∗(e) ∩ Ce 6= ∅.

Proof: Let us fix a hyperedgee = (v1, . . . , vt) wherevi ∈ Vi for all 1 ≤ i ≤ t. Consider any pointγe(I)
for I ∈ Ie. First we show thatγe(I) can be covered by terms only from the setsT i(vi) for 1 ≤ i ≤ t. Letu
be any vertex such thatu 6= vi for 1 ≤ i ≤ t. Assume thatu ∈ Vi′ for some1 ≤ i′ ≤ t. By the construction
of γe(I), the coordinates corresponding toP i

′
are set tosi

′
(vi′), and the AND formulati

′
(u) is 0 on this

setting sincevi′ 6= u.
Since, for any pointγe(I), the variablesP i are set tosi(vi) for all 1 ≤ i ≤ t, all the AND formulas,ti(vi)

are set to1. Therefore,γe(I) is not covered byT ∗ if and only if, for all layersi (1 ≤ i ≤ t), the coordinates
corresponding to{yij | j ∈ LiT ∗(vi)} are set to 1. Equivalently,ω(I) ⊇ L1

T ∗(v1) × · · · × LtT ∗(vt) =
LT ∗(e). By the definition ofIe, ω(I) ∩ Ce = ∅. Therefore, if there is anI ∈ Ie such thatγe(I) is not
covered byT ∗, thenLT ∗(e) ∩ Ce = ∅. For the reverse direction, we note that ifLT ∗(e) ∩ Ce = ∅, then we
can setI = (L1

T ∗(v1), . . . , LtT ∗(vt)), andγe(I) is not covered byT ∗. This completes the proof.
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4.1 Analysis

To prove our hardness of approximation result for PHC-COVER we reduce from thet-LAYERED-CSP
instance obtained from the Theorem 7 to an instance of PHC-COVER via the reduction described above.
Next we present the analysis.

4.1.1 YES Case In the YES case we have a set of verticesV ′ ⊆ V of size at mostn/2(logn)ξ , and a
labelingσ∗ to the verticesV \ V ′ satisfying the properties in Theorem 7. Now we construct a set of terms
T ∗ ⊆ T as follows. For every layeri, (1 ≤ i ≤ t), do the following. For every vertexu ∈ Vi, if u ∈ V ′
thenT ∗ contains thek terms in the setT i(u) corresponding tou. Otherwise, ifu 6∈ V ′, thenT ∗ contains
only the termti(u) ∧ yiσ∗(u), i.e. the term inT i(u) corresponding to the label ofu given byσ∗.

We show thatT ∗ covers all the points inS. Let e = (v1, . . . , vt) be a hyperedge, wherevi ∈ Vi for
1 ≤ i ≤ t. We have two cases.

Case 1.e is induced byV \ V ′. The labelingσ satisfiese. ThenLiT ∗(vi) = {σ∗(vi)}, for 1 ≤ i ≤ t and
LT ∗(e) = {(σ∗(v1), . . . , σ∗(vt))}. And thereforeLT ∗(e) ∩ Ce 6= ∅.

Case 2.e contains vertices fromV ′. Then,LiT ∗(vi) = {σ∗(vi)} if vi ∈ V \V ′ andLiT ∗(vi) = {1, 2, . . . , k}
otherwise. Now, by the Extendability property in Theorem 7, there is a labelingσ′e to vertices ine∩V ′ such
thatσ∗ extended byσ′e satisfiese. Clearly, this implies there is a labeling to the verticesvi in e from the sets
LiT ∗(vi) for 1 ≤ i ≤ t that satisfies the hyperedgee. Therefore,LT ∗(e) ∩ Ce 6= ∅.

Therefore, for every edgee, LT ∗(e) ∩ Ce 6= ∅. And by Lemma 9 the set of termsT ∗ covers all the
points inS. The number of terms inT ∗ is,

|V \ V ′|+ k|V ′|

≤ n
(

1− 1
2(logn)ξ

)
+ k

(
n

2(logn)ξ

)
.

Since, we havek = θ(log2 n), the above expression is at most2n for large enoughn. Therefore, the number
of terms inT ∗ is at most2n.

4.1.2 NO Case Suppose that there is a set of termsT ′ ⊆ T that covers all the points inS. By Lemma 9,
for every hyperedgee, LT ′(e)∩Ce 6= ∅. Now, consider the labelingσ′ constructed in a randomized manner
as follows. Letu be a vertex in, say,Vi for some1 ≤ i ≤ t. Selectσ′(u) to be a random label fromLiT ′(u).
Supposee = (v1, . . . , vt) is a hyperedge wherevi ∈ Vi for 1 ≤ i ≤ t. SinceLT ′(e) contains a satisfying
assignment fromCe we have the following,

Pr
[
e is satisfied byσ′

]
≥ 1∏t

i=1 |LiT ′(vi)|
.

Therefore, the expected fraction of edges satisfied is at least,

Eσ′
[
Fraction of edges satisfied byσ′

]
≥ Ee=(v1,...,vt)

[
1∏t

i=1 |LiT ′(vi)|

]
(1)

The left hand side of the above expression is less than the soundnessδ = k−t+O(
√
t) of the NO case.

Therefore,

Ee=(v1,...,vt)

[
1∏t

i=1 |LiT ′(vi)|

]
≤ δ.
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Therefore, for at least12 fraction of the hyperedgese = (v1, . . . , vt) we have,

1∏t
i=1 |LiT ′(vi)|

≤ 2δ

⇒
t∏
i=1

|LiT ′(vi)| ≥
1
2δ

⇒
∑t

i=1 |LiT ′(vi)|
t

≥ 1

(2δ)
1
t

. (2)

Now, since each vertex inV has the same degree,

|T ′| =
t∑
i=1

∑
u∈Vi

LiT ′(u)

= nEe=(v1,...,vt)

[∑t
i=1 |LiT ′(vi)|

t

]
(3)

And combining equations (2) and (3), we have,

|T ′| ≥ n
(

1
2

)(
1

(2δ)
1
t

)

Substituting the value ofδ, we obtain that,

|T ′| ≥ nk
1−O

(
1√
t

)
21+ 1

t

Sincet can be made to be an arbitrarily large constant, combining the above with the analysis of the YES
case, we get a gap ofk1−ε for the optimum of the instance of PHC-COVER, for any constantε > 0. Also,
the number of variablesd is at mostt(log n + k) = O(k), sincek = θ(log2 n). In terms ofd, we obtain a
gap ofd1−ε. Clearly the reduction runs in time2O(d), which is2O(k) = O(2log3 n) . Therefore, along with
the inapproximability oft-LAYERED-CSP given in Theorem 7, this proves Theorem 8.

5 Conclusion

An open problem is to improve upon thed1−ε hardness of approximation factor for any constantε > 0 to a
Ω(d) factor hardness for TT-MINDNF.

Another open question is to obtain results on hardness of weak learning DNFs even when membership
queries are available. It would be interesting to extend hardness of weak learning results for polynomial size
DNFs.
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A Hardness of Learning 2-clause CNF byt-clause CNF

In this section we prove Theorem 5. For convenience we prove an equivalent result for learning 2-clause
CNF byt-clause CNF.

We start with an instanceL of LABELCOVER(m, k) consisting of a bipartite graphG(U, V,E), set
of labels[m] (for vertices inU ), [k] (for vertices inV ), the projectionsπuv : [k] 7→ [m] for every edge
e = (u, v) ∈ E, where vertices inU have degreedU , and those inV have degreedV . All the parameters are
constants independent of the sizesNU = |U | andNV = V . LetN = NU +NV .

A.1 Construction

Variables. First we define the set of variables. Letv be any vertex inV . We have the set of variables
Sv = {xvi }ki=1. Similarly, letu be any vertex inU , and letSu = {yui }mi=1. Thus, we have one variable for
every vertex and every potential label for that vertex. Let,

S = (∪u∈USu)
⋃

(∪v∈V Sv)

be the set of all variables. Let the corresponding boolean hypercube be{0, 1}S where the coordinates are
indexed by the variables inS.

Distribution . We now describe how the oracle generates a sample point. This describes the distributionD
on the samples. Letµ ∈ (0, 1) be a ‘perturbation’ parameter, which we will fix later. On being queried for
a sample, the oracle does the following,
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1. Chooses a vertexu ∈ U at random from the vertices inU . LetN(u) ⊆ V be the neighborhood ofu.

2. With probability1
2 does the following,

2a. Picksv ∈ N(u) at random.

2b. Creates the following pointZuv1 ∈ {0, 1}S as follows,

∀j ∈ [k], Zuv1 (xv
′
j ) =

{
1 if v′ = v

0 otherwise

and,

∀j ∈ [m], Zuv1 (yu
′
j ) =

{
1 if u′ = u

0 otherwise

2.c Output the sample(Zuv1 , 1).

3. With probability1
2 does the following,

3.a Chooses a setα ⊆ [m] by picking everyi ∈ [m] independently with probabilityµ.

3.b Creates the following pointZuα0 ∈ {0, 1}S as follows,

∀j ∈ [k], Zuα0 (xv
′
j ) =


0 if v′ 6∈ N(u)
1 if v′ ∈ N(u) andπuv′(j) ∈ α
0 if v′ ∈ N(u) andπuv′(j) 6∈ α

and,

∀j ∈ [m], Zuα0 (yu
′
j ) =


0 if u′ 6= u

0 if u′ = u andj ∈ α
1 if u′ = u andj 6∈ α

3.c Output the sample(Zuα0 , 0).

We note that the distribution has a polynomial (in|S|) support, and therefore can be given explicitly.

Let t > 0 be a given integer andε > 0 be a given parameter. We will show that ifL is a YES instance
of LABELCOVER(m, k), i.e if there is a labeling that satisfies all edges then there is a2-clause CNF which
is consistent with all the samples. On the other hand, ifL is a NO instance then there is not clause CNF
that is consistent with the samples with probability1

2 + ε under the distributionD provided the soundnessη
of the label cover instance is chosen to be suitably small.

A.2 YES Case

LetL be a YES instance of LABELCOVER(m, k). Then there is a labelingσ to the vertices ofG that satisfies
all the edges. Consider the following two clauses,

CV =
∨
v∈V

xvσ(v) ,

and,
CU =

∨
u∈U

yuσ(u).
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Let φ = CV ∧ CU . We will show thatφ is consistent with all the data points.

Consider any data point of the form(Zuv1 , 1) whereZuv1 ∈ {0, 1}S . Recall thatZuv1 was generated by
picking a vertexu ∈ U then a vertexv ∈ N(u). By the construction ofZuv1 , clearlyZuv1 (xvσ(v)) = 1 and
Zuv1 (yuσ(u)) = 1. Therefore, the clausesCV andCU , both are1 on the pointZuv1 , and thereforeφ is also1
at the pointZuv1 . So the formulaφ is consistent with all the data points of the form(Zuv1 , 1).

Now consider any data point(Zuα0 , 0). Recall thatZuα0 was constructed by first picking a vertexu ∈ U
and then a setα ⊆ [m]. We consider two cases.

Case 1. Let σ(u) ∈ α. We observe that in this caseZuα0 (yuσ(u)) = 0, and further, for allu′ ∈ U ,

Zuα0 (yu
′

σ(u′)) = 0. And soCU evaluates to0 onZuα0 , and thereforeφ evaluates to0 onZuα0 .

Case 2. Let σ(u) 6∈ α. Then∀v ∈ N(u), πuv(σ(v)) = σ(u) 6∈ α by construction of the pointZuα0 .
Therefore, for allv ∈ N(u), Zuα0 (xvσ(v)) = 0, and moreover for allv′ ∈ V \ N(u), Zuα0 (xv

′

σ(v′)) = 0.
Therefore,CV evaluates to0 onZuα0 and thereforeφ evaluates to0 onZuα0 .

Therefore,φ is consistent with all the data points of the form(Zuα0 , 0).

From the above analysis we conclude that the2-clause CNF formulaφ is consistent with all the data
points ofD.

A.3 NO Case

For the sake of contradiction we assume that there is at clause CNF formulaφ∗ which is consistent with the
data points with probability at least1

2 + ε for some given constantsε, t > 0. We will set the perturbation

parameterµ = ε2

16t3
.

Let the givent clause CNF formula beφ∗ = C1 ∧ · · · ∧ Ct. We will first show that not all the clauses
C1, . . . , Ct can contain a negative literal.

From the construction of the data points it is easy to see that any given coordinate of{0, 1}S is set to
1 with probability at most dU+dV

min{|U |,|V |} = ξ(N) = o(1). Therefore, if all the clauses inφ∗ had a negative
literal, thenφ∗ would evaluate to1 with probability at least1 − tξ(N) = 1 − o(1) over the distributionD,
which is a contradiction to the assumption thatφ∗ is consistent with the data points with probability at least
1
2 + ε for constantε > 0, since the0 and1 data points are equally likely inD. This implies that there is a
non empty subsetQ of clauses ofφ∗, such that none of the clauses inQ contains a negative literal. W.l.o.g.
we may assume thatQ = {C1, . . . , C`}, where` ≤ t. Moreover, the formulaφ = C1 ∧ · · · ∧ C` must be
consistent with the data points of the oracle with probability at least1

2 + ε − tξ(N) ≥ 1
2 + ε/2, for large

enough size of instance. For the remainder of the argument we shall only consider the CNFφ and use it to
construct a ‘good’ labeling to the vertices of the label cover.

Before proceeding we first define` distinguished labels from[k] ∪ {0} : {qvi }`i=1 for eachv ∈ V . Let
qvi be any arbitrary labelj ∈ [k] such that the positive literalxvj is present in clauseCi of φ, and0 if there is
no such variable inCi. We call this setting of distinguished labelsΓ.

Sinceφ is consistent with the data points of the oracle with probability at least1
2 + ε

2 , by an averaging
argument we have that there is a setU ′ ⊆ U such that|U ′| ≥ ε

4 |U |, such that for every vertexu ∈ U ′, φ is
consistent with probability at least1

2 + ε
4 with the data points generated by the oracle on pickingu in step1.

Call such verticesu ∈ U ′ as ‘good’.
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A.3.1 Analysis for a fixed ‘good’ vertexu ∈ U ′. We now fix one such ‘good’ vertexu. The rest of the
analysis is with respect to this ‘good’ vertex. LetN(u) be its neighborhood. After pickingu in step1, the
oracle outputs a0 example and a1 example with equal probability. Therefore, again by averaging, it must
be the case thatφ is consistent with the1 examples (ofu) with probability (over choice ofv ∈ N(u) in step
2a) at leastε4 ; and consistent with the0 examples (ofu) with probability (over the choice of the setα in step
3a) at leastε4 .

SupposeCi is a clause inφ for some1 ≤ i ≤ `, such thatCi contains a positive literalyuj for some
j ∈ [m]. Then,Ci will be 0 with probability at mostµ on the0 examples ofu. Therefore, by union bound,
the probability that any of the clauses ofφ containing a positive literal evaluates to0 on the0 examples is
at mosttµ, which is at mostε8 for our setting of the parameterµ. Therefore, there is a subformulaφu of φ
containing the clauses{Ci}i∈Lu , whereLu ⊆ [`], such that none of the clauses ofφu contains a variable
of the formyuj for j ∈ [m], and moreoverφu is consistent with the0 examples with probability at least
ε′ = ε

4 − tµ ≥
ε
8 , and with the1 examples also with probability at leastε′. The rest of the analysis will show

that there is an appropriate clause inφu which gives a good labeling for a significant fraction of the vertices
in N(u).

Sinceφu is consistent with the1 examples ofu, with probabilityε′, there must be a setM(u) ⊆ N(u)
such that|M(u)| ≥ ε′|N(u)| and for everyv ∈ M(u), φu is 1 on the pointZuv1 constructed on choosing
v in step 2a. Call such vertices ‘good neighbors’ ofu. Since we have shown thatφu does not contain any
negative literal or any positive literalyuj for anyj ∈ [m] in any of its clauses, from the construction of the
pointZuv1 , this implies that every clauseCi (i ∈ Lu) contains a positive literal from the set{xvj}kj=1, for all
‘good neighbors’v of u. So the settingqvi given byΓ, of distinguished labels for the ‘good neighbors’v
corresponding to the clausesCi of φu is not0.

We also have that with probabilityε′ over the setsα chosen in step 3a,φu is 0 on the pointsZuα0 . This
implies that there is a clauseCiu of φu, for someiu ∈ Lu, such thatCiu is 0 on the pointsZuα0 with
probability at leastε

′

` . We have,

Pr
α

[Ciu is 0 onZuα0 ] ≥ ε′

`
(4)

Now, sinceCiu is a clause ofφu, it contains positive literals corresponding to all the ‘good neighbors’
v ∈M(u), and thereforeqviu ∈ [k] for all v ∈M(u). Define the setTu ⊆ [m] as,

Tu = {πuv(qviu) | v ∈M(u)}.

In other words,Tu is the subset of[m] onto which the distinguished labels of the verticesv ∈ M(u)
corresponding to the clauseCiu project. From the construction of the pointsZuα0 , we have the following
observation.

Observation 10 If α ∩ Tu 6= ∅ thenCiu is 1 on the pointZuα0 .

We will show that the above observation implies that the setTu cannot be too large. We have,

Pr
α

[α ∩ Tu = ∅] = (1− µ)|Tu|

≥ Pr
α

[Ciu is 0 onZuα0 ]
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and combining the above with equation (4), we have,

(1− µ)|Tu| ≥ ε′

`

≥ ε′

t

Therefore,

|Tu| ≤
1
µ

ln
(
t

ε′

)
.

For convenience letν =
(

1
µ ln

(
t
ε′

))−1
. Define,

Λuj = {v ∈M(u) | πuv(qviu) = j}

for all j ∈ [m]. Essentially,Λuj is the subset of the ‘good’ neighborsv of u whose distinguished label
corresponding to the clauseCiu projects ontoj. We have the following simple lemma.

Lemma 11 ∃ju ∈ Tu such that|Λuju | ≥ ν|M(u)|.

Proof: Note thatM(u) =
⋃
j∈Tu Λuj . And since|Tu| ≤ 1

ν , the lemma follows.

A.3.2 Labeling. We now define the labeling. The partial labelingσV : V 7→ [k] is constructed in a
randomized manner as follows. For every vertexv ∈ V , chooseiv randomly from{1, . . . , `}. If qviv ∈ [k]
then setσ(v) = qviv . Essentially, for every vertexv, we label it by its distinguished label (given by the setting
Γ) corresponding to a random clause ofφ (if the label is not0).

We construct the partial labelingσU : U 7→ [m] as follows. For every ‘good’ vertexu ∈ U ′, let
σ(u) = ju as in lemma 11.

Now we analyze how many edges are satisfied by the partial assignmentσV , σU . Let (u, v) be a random
edge chosen by pickingu randomly fromU and then choosingv randomly fromN(u). With probability
ε
4 , u is a good vertex. With probability at leastε′ν, the vertexv is selected fromΛuju , and with a further
probability at least1` ≥

1
t , the vertexv is labeled with the labelqviu which projects ontoju via the mapπuv.

Therefore, the edge is satisfied with probability at least

p∗ =
(ε

4

)
ε′ν

(
1
t

)
≥

(ε
4

)(ε
8

)
ν

(
1
t

)
which, by the definition ofν and our choice ofµ, is a constant depending only onε andt. Since a random
edge is satisfied with probabilityp∗, the expected fraction of edges satisfied isp∗. This implies that there
must be a labeling that satisfies at leastp∗ fraction of the edges. Now, the soundnessη of the Label Cover
instance can be chosen arbitrarily small to obtain a contradiction.
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B Hardness of Learning OR byt-DNF under adversarial noise

In this section we prove Theorem 3. For convenience, we prove an equivalent result for learning OR by a
t-DNF under adversarial noise.

We start with an instanceL of LABELCOVER(m, k) consisting of the a bipartite graphG(U, V,E), set
of labels[m] (for vertices inU ), [k] (for vertices inV ), the projectionsπuv : [k] 7→ [m] for every edge
e = (u, v) ∈ E, where vertices inU have degreedU , and those inV have degreedV . All the parameters
are constants independent of the sizesNU = |U | andNV = |V |. LetN = NU + NV . Let the soundness
parameter beη.

B.1 Construction

Variables. First we define the set of variables. Letv be any vertex inV . We have a setk variables,
Sv = {xvi }ki=1 for every vertexv ∈ V , with one variable for every (potential) label for that vertex. Let,

S =
⋃
v∈V

Sv

be the set of all variables. Let the corresponding boolean hypercube be{0, 1}S where the coordinates are
indexed by the variables inS.
Distribution . We now describe how the oracle generates a sample point. This describes the distributionD
on the samples. Letµ ∈ (0, 1) be a given parameter. Let` > 0 be a positive integer to be fixed later. On
being queried for a sample, the oracle does the following,

1. Chooses a vertexu ∈ U at random from the vertices inU . LetN(u) ⊆ V be the neighborhood ofu.

2. With probability1
2 does the following,

2a. Picksv ∈ N(u) at random.

2b. Creates the following pointZu1 [v] ∈ {0, 1}S as follows,

∀j ∈ [k], Zu1 [v](xv
′
j ) =

{
1 if v′ = v

0 otherwise

2c. Output(Zu1 [v], 1) as a data point.

3. With probability1
2 does the following,

3a. Picks à tuple (v1, . . . , v`) such that eachvi is chosen uniformly at random fromN(u) for
1 ≤ i ≤ `.

3b. Picks a setα ⊆ [m] by picking every element of[m] independently at random with probability
µ.

3c. Creates the following pointZu0 [α, (v1, . . . , v`)] as follows,

∀j ∈ [k], Zu0 [α, (v1, . . . , v`)](xv
′
j ) =

{
1 if for any i ∈ [`], v′ = vi andπuv′(j) ∈ α
0 otherwise

3d. Outputs(Zu0 [α, (v1, . . . , v`)], 0) as a data point.
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Note that the support ofD is polynomial in the size of the label cover instance and henceD can be given
explicitly. Let t > 0 be a given positive integer andε, µ > 0 be given parameters that may be arbitrarily
small constants. We will show that if the instance of label coverL is a YES instance, i.e there is a labeling
that satisfies all edges then there is a OR formula which is consistent with the samples with probability1−µ.
On the other hand, if the instance is a NO instance then there is not-DNF formula that is consistent with the
samples with probability12 + ε under the distributionD with the soundnessη and the degreesdU anddV
suitably chosen.

B.2 YES Case

Suppose the instance of label cover is a YES instance. In this case, there is a labelingσ to the vertices of the
label cover that satisfies all the edges. Consider the following OR formula,

φ =
∨
v∈V

xvσ(v) (5)

The formulaφ contains one positive literal for every vertexv ∈ V , corresponding to the label assigned to
v by σ. Clearly,φ is consistent with any1 example(Zu1 [v], 1) generated by the oracle. This is because in
Zu1 [v], the coordinates corresponding to all the labels ofv are set to1, and therefore the literalxvσ(v) is 1 on
Zu1 [v].

Now suppose the oracle selects a vertexu ∈ U and then generates a0 example(Zu0 [α, (v1, . . . , v`)], 0).
In the pointZu0 [α, (v1, . . . , v`)] all the variablesxvσ(v) are set to0 wherev 6= vi for all 1 ≤ i ≤ `. Now
supposeσ(u) 6∈ α. Thenxviσ(vi)

is set to0 for all 1 ≤ i ≤ `. Therefore,φ evaluates to0 in this case. Now
the probability thatσ(u) 6∈ α is exactly1− µ, by the construction of the setα. Therefore, with probability
at least1− µ, φ is consistent with the0 examples ofu.

The above analysis holds for any vertexu as the choice in step 1. Therefore, overall,φ is consistent with
the data points of the verifier with probability at least1− µ.

B.3 NO Case

Suppose that the label cover instance is a NO instance, i.e. no labeling to the vertices of the label cover
satisfiesη fraction of the edges, whereη is the soundness parameter which will be chosen to be small
enough later. We assume that there is at-DNF formulaφ∗ that is consistent with the examples of the oracle
with probability at least12 + ε, under the distributionD. We have that,

φ∗ =
M∨
j=1

Tj (6)

for someM , and each termTj is the AND of at mostt literals. Suppose there is a termT ′ of φ∗ such that
it is an AND of only negative literals. Now such a term will be1 with probability at least1 − tdU

|V | , which

would imply thatφ∗ is 1 with probability at least1− tdU
|V | . Since the oracle outputs0 and1 examples equally

often, this is a contradiction to the assumption thatφ∗ is consistent with the examples of the oracle with
probability at least12 + ε for large enough|V |. Therefore, we may assume that every term ofφ∗ has at least
one positive literal. We now make this simple observation.

Observation 12 If a given termTj is never1 on any of the1 examples of the oracle, thenφ \ {Tj}, is also
consistent with the examples of the oracle with probability1

2 + ε.
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This is because removing a term can hurt us only in the case of1 examples, so we can remove all the terms
that are never1 on the1 examples. This leads to the following simple lemma.

Lemma 13 Let φ be the OR of all the termsTj of φ∗ such that for eachTj there is a vertexv ∈ V , such
that all the positive literals in the termTj are of the formxvi for some1 ≤ i ≤ k, andTj does not contain
any negative literal of the form̄xvi′ for any1 ≤ i′ ≤ k. Thenφ is also consistent with the examples of the
oracle with probability1

2 + ε.

Proof: Suppose there is a termTj of φ such that it contains positive literals of the formxv1
i1

andxv2
i2

, where
v1 6= v2 and1 ≤ i1, i2,≤ k. Since all the1 data points of the oracle have the property that all the coordinates
that are set to1 correspond to the variablesxvi 1 ≤ i ≤ k, for exactly one such vertexv ∈ V , the termTj
will be 0 on all such points as it contains positive literals corresponding to two different vertices.

Moreover, ifTj contains a positive literal of the formxvi1 and a negative literal of the form̄xvi2 , then
againTj will always be0 on the1 examples since in the1 data points, for any vertexv′ ∈ V , either all the
coordinates corresponding to{xv′i }ki=1 are set to1 or all of them are set to0. Therefore, removingTj does
not hurt us in the1 examples and clearlyφ∗ \ {Tj} is as good asφ∗ on the0 examples. Therefore, we can
remove all such terms and obtain thet-DNF formulaφ which is also consistent with the examples of the
oracle with probability at least12 + ε.

In the rest of the analysis we will use the formulaφ to construct a good labeling for the vertices of the
label cover.

Before proceeding, we will construct the following assignment of terms to vertices. For every vertex
v ∈ V , let T v = Tj′ be any arbitrary term ofφ containing at least one positive literal of the formxvi . If no
such term exists forv in φ let T v = 0. Call this assignmentΓ. ClearlyΓ is well defined since, every term
has at least one positive literal of the formxvi for exactly onev ∈ V . For every vertexv ∈ V , let us also
define the setW (v) := {i ∈ [k] | xvi is a positive literal ofT v}. As mentioned, all the positive literals of
T v are necessarily of the formxvi for 1 ≤ i ≤ k. Therefore, unlessT v = 0 the setW (v) is non empty. Rest
of the analysis will be with respect to this assignmentΓ.

Sinceφ is consistent with the data points of the oracle with probability at least1
2 + ε, by an averaging

argument we have that there is a setU ′ ⊆ U such that|U ′| ≥ ε
2 |U |, such that for every vertexu ∈ U ′, φ is

consistent with probability at least1
2 + ε

2 with the data points generated by the oracle on pickingu in step
1. Call such verticesu ∈ U ′ as ‘good’. We fix one such ‘good’ vertexu and do the analysis for the0 and1
examples output by the oracle after choosingu in the initial step.

B.3.1 Analysis for a fixed ‘good’ vertexu ∈ U ′. Let N(u) be the neighborhood ofu. After picking
u in step1, the oracle outputs a0 example and a1 example with equal probability. Therefore, again by
averaging, it must be the case thatφ is consistent with the1 examples (ofu) with probability (over choice of
v ∈ N(u) in step 2a) at leastε2 ; and consistent with the0 examples (ofu) with probability (over the choice
of the setα, and thè tuple(v1, . . . , v`) in step 3a and 3b) at leastε2 . For convenience, letε′ = ε

2 .

Sinceφ is consistent with the1 examples with probability at leastε′, this implies thatφ is 1 on the
pointsZu1 [v] for at leastε′ fraction of the neighborsv ∈ N(u). Let the set of such verticesv beM(u),
where|M(u)| ≥ ε′|N(u)|, and call suchv as ‘good neighbors’ ofu. We have shown thatφ does not have
any term with all negative literals, and every term ofφmust contain positive literals, all of them from exactly
one vertex ofV . Since the only coordinates ofZu1 [v] that are set to1 correspond toxvi for 1 ≤ i ≤ k, it
must be that for every ‘good neighbor’v, there is a term ofφ containing positive literals only of the formxvi
for some1 ≤ i ≤ k. This implies that for such verticesv, T v 6= 0 andW (v) 6= ∅ in our settingΓ.
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Consider aǹ -tuple v̄ = (v1, . . . , v`) chosen randomly by choosing everyvi uniformly at random from
N(u). LetDv̄ := {r ∈ [`] | vr ∈ M(u)}. Essentially,Dv̄ is the set of indicesr such thatvr is a ‘good’
vertex. We call̄v as ‘dense’ if|Dv̄| ≥ ε′

2 `. Since each coordinate ofv̄ is chosen uniformly at random from
N(u) and |M(u)| ≥ ε′|N(u)|, we expect̄v to be ‘dense’ with high probability. Indeed, using Chernoff
bound, we have,

Pr̄
v

[v̄ is not dense] ≤ exp(−ε′`/8)

Consider the ordered pair(r1, r2) such that1 ≤ r1 6= r2 ≤ `. Call such a pair intersecting for an`-tuple v̄
if T vr1 contains a literal of the form̄x

vr2
i for some1 ≤ i ≤ k. Now, the number of literals inT vr1 is at most

t. And sincevr2 is chosen independently at random fromN(u), we have,

Pr̄
v

[(r1, r2) is intersecting] ≤ t

dU

for every1 ≤ r1 6= r2 ≤ `. Call v̄ intersection-free, if it contains no intersecting pair of coordinates. Since,
there arè 2 such pairs,

Pr̄
v

[v̄ is not intersection-free] ≤ t`2

dU
.

Now φ is consistent with the0 examples with probability at leastε′. Again, by averaging, we have that for
ε′

2 of the`-tuplesv̄, φ is 0 on the pointsZu0 [α, v̄] generated after choosinḡv in step 3a, with probability at
leastε

′

2 . We call such̀ -tuplesv̄ as ‘good’. More formally we have,

Pr̄
v

[v̄ is ‘good’ ] ≥ ε′

2
,

where, for a given ‘good’̀-tuple v̄,

Pr
α

[φ is 0 onZu0 [α, v̄] ≥ ε′

2
.

Using union bound, we have,

Pr̄
v

[v̄ is good, dense and intersection free] ≥ ν (7)

where,

ν =
ε′

2
− exp(−ε′`/8)− t`2

dU
. (8)

We now fix a good, dense and intersection-free`-tuple v̄ = (v1, . . . , vt). Consider anyr ∈ Dv̄, vr ∈
M(u) and soT vr 6= 0. Moreover, sincēv is intersection free, the negative literals inT vr correspond to
vertices that are not contained in any coordinate ofv̄. Therefore, the negative literals inT vr are always set
to 1 on the pointsZu0 [α, v̄] for anyα ⊆ [m]. Therefore, the termT vr will be 1 if all the variables (positive
literals) inT vr are set to1, which happens ifπuvr(W (vr)) ⊆ α. This leads to the following key lemma.

Lemma 14 If ` >
(

2
ε′µt

)
ln
(

2
ε′

)
, then there must existr1, r2 ∈ Dv̄, r1 6= r2 such thatπuvr1 (W (vr1)) ∩

πuvr2 (W (vr2)) 6= ∅.

Proof: Assume that there is no such pairr1 andr2. Therefore, the events(πuvr(W (vr)) ⊆ α) are indepen-
dent events forr ∈ Dv̄. From the discussion above, we have for anyr ∈ Dv̄,

Pr
α

[T vr is 1 onZu0 [α, v̄]] = Pr
α

[πuvr(W (vr)) ⊆ α]

= µ|πuvr (W (vr))|

≥ µt (9)
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Therefore, we have,

Pr
α

[φ is 0 onZu0 [α, v̄]] ≤ Pr
α

|Dv̄ |∧
r=1

(T vr is 0 onZu0 [α, v̄])


= Pr

α

|Dv̄ |∧
r=1

(W (vr) 6⊆ α)


and combining the independence of the events(πuvr(W (vr)) ⊆ α) with equation (9), we obtain,

Pr
α

[φ is 0 onZu0 [α, v̄]] ≤ (1− µt)|Dv̄ |

Now, since the left hand side is at leastε′

2 , the above implies,

|Dv̄| ≤
(

1
µt

)
ln
(

2
ε′

)
⇒ ` ≤

(
2
ε′µt

)
ln
(

2
ε′

)
(10)

sincev̄ is dense. This proves the lemma.

In our construction we choosèlarge enough depending onµ, ε andt, and then (independently of`),
choosedU large enough (by parallel repetition), to ensure the following.

` >

(
2
ε′µt

)
ln
(

2
ε′

)
(11)

and

ν ≥ ε′

4
(12)

Note that the above analysis holds for any valid assignmentΓ of terms to vertices. We are now ready to
define a labeling to the vertices of the label cover.

B.3.2 Construction of labeling We will define a partial labelingσU , σV to the vertices inU andV
respectively in the following randomized manner.

1. Letu ∈ U be any given vertex. Choose a random vertexv′ from N(u). If W (v′) = ∅ then do not
assign any label tou. If not, selecti ∈W (v′) randomly, and letσU (u) = πuv′(i).

2. Letv ∈ V be any vertex. IfW (v) is empty then do not assign any label tov, otherwise, letσV (v) = i
wherei is randomly chosen fromW (v).

We will now analyze how many edges this labeling satisfies in expectation. Consider a random edge(u, v)
of the label cover, selected by first choosingv randomly fromU and then selectingv randomly fromN(u).
Now,u is labeled by choosing a vertexv′ at random fromN(u) and labelingu by πuv′(i) wherei is chosen
randomly fromW (v′), unlessW (v′) = ∅. Therefore, the probability that a random edge(u, v) is satisfied
is same as the probability thatπuv(σV (v)) = πuv′(σV (v′)) wherev andv′ are vertices selected uniformly
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at random fromN(u).

With probability ε
2 , u is a ‘good’ vertex. Also, choosing two neighbors ofu uniformly at random is

same as choosing a random`-tuple v̄ (for ` ≥ 2) and then selecting two distinct coordinates ofv̄. In this
process, with probabilityν, a good, dense and intersection-free`-tuple v̄ is picked. From our choice of̀
depending onµ, ε andt, we have the bounds given by (11), and (12) and combining with Lemma 14, we
have that with probability1

`2
, the verticesv andv′ are such thatπuv(W (v)) ∩ πuv′(W (v′)) 6= ∅. And with

further 1
t2

probability the labels forv andv′ are consistent, i.e.πuv(σV (v)) = πuv′(σV (v′)).
Combining everything we have that the probability that a random edge(u, v) is satisfied is,

∆ =
(ε

2

)
ν

(
1
`2

)(
1
t2

)
.

Now, sinceν ≥ ε′

4 ≥
ε
8 and` is chosen to depend only onµ, ε andt, the above probability depends only

on µ, ε andt. Also, it implies that there is a labeling that satisfies∆ fraction of edges of the label cover,
where∆ depends only onµ, ε andt. By choosing the soundness parameter of the NO instanceη to be small
enough, we obtain a contradiction.

C Proof of Theorem 7

In this section we will construct an instance oft-LAYERED-CSP we require for our reduction. First we
will construct an appropriate PCP and then we will transform the PCP to a Multi Prover System with
some desired properties. The Multi Prover System thus constructed can be thought of as an instance of
t-LAYERED-CSP in a natural way.

We begin with the construction of the PCP. Our construction is very similar to the query efficient PCP
constructed in [Kho01]. We start with an instance of MAX -3LIN and construct the Raz verifier using
parallel repetition. The proofs are then encoded using Hadamard Codes. In order to obtain a PCP with a
large alphabet, we take the encoding using Hadamard Codes over a large field. The analysis is similar to
[Kho01] and relies heavily on the techniques developed in [ST98] and [ST00] and a similar construction
over finite abelian groups in [Eng00].

We start with the instance of MAX -3LIN constructed in [KP06] with completeness1 −
(

2−Ω(
√

logn)
)

and soundness1− Ω
(
log−3 n

)
. They prove the following theorem.

Theorem 15 Given a7-regular instanceA of MAX -3LIN overF[2] onn variables such that unlessNP⊆
DTIME(2O(log2 N)) there is no polynomial time algorithm to distinguish between the following two cases,

YES CASE. There is an assignment to the variables ofA that satisfies1− 2−Ω(
√

logn) fraction of the equa-
tions.

NO CASE. No assignment to the variables ofA satisfies more than1−Ω(log−3 n) fraction of the equations.

Note that the equations of MAX -3LIN are overF[2]. However, we may consider them to be over
F[2r] wherer is some parameter and still the above theorem still holds. This is because the additive group
(F[2r],+) is isomorphic to(F[2]r,+). Therefore, we can substitute the equationx1 + x2 + x3 = b, where
x1, x2, x3, b ∈ F[2] with the equation overF[2r], x′1 +x′2 +x′3 = br, wherebr is the element ofF[2]r with b
in each or ther coordinates. Clearly, any assignment overF[2] can be extended to an assignment overF[2]r

by replicating it in every coordinate. Moreover, any assignment overF[2]r that satisfies a particular equation
must satisfy it in every coordinate, and so we can pick any coordinate and the corresponding assignment
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overF[2] will also satisfy all equations satisfied earlier. And since(F[2r],+) ∼= (F[2]r,+), we can write the
entire system of equations over the fieldF[2r].

C.1 Raz Verifier

We construct the Raz Verifier starting with an instanceA of MAX -3LIN obtained from Theorem 15. For
convenience we let the completeness ofA be 1 − c(n) and soundness be1 − s(n). The construction in
[ST00] started with a GAP-3SAT instance, however we require constraints to be linear to be able to use
Hadamard Codes instead of Long Codes, similar to the construction in [Kho01]. Note that our instanceA
of MAX -3LIN is over the fieldF[2r] for somer > 0 to be fixed later, and has the same completeness and
soundness as in Theorem 15.

Letm > 0 be a parameter to be fixed later. The Raz Verifier is given an instanceA of MAX -3LIN. It
expects two proofs,P andQ. The proofP is supposed to contain, for every setU of m variables, a length
m vectorP (U) overF[2r] giving the assignment to the variables inU . Similarly, for every setW of m
equations,Q(W ) is supposed to be a length3m vector giving the assignment to the3m variables in the set
of equationsW .

The verifier works by picking a set ofU = (xi)mi=1 of m variables and then picking a set ofm equations
W = (Ci)mi=1 where each equationCi is selected randomly from the constantly many equations containing
the variablexi. The verifier readsP (U) andQ(W ) from the proof and accepts iffQ(W ) satisfies all the
equations(Ci)mi=1 and the values of the variables(xi)mi=1 in P (U) andQ(W ) are the same (call this projec-
tion test).

Completeness.In the YES caseA has an assignment that satisfies1 − c(n) fraction of the equations. Let
both proofsP andQ be consistent with that assignment. Since, the instanceA is regular, with probability
at least(1− c(n))m all the equationsW = (Ci)mi=1 chosen in the construction above will be satisfied by the
proofQ. Therefore, the completeness is at least(1− c(n))m ≥ (1−mc(n)).

Soundness. In the NO case any assignment to the variables ofA satisfies at most1 − s(n) fraction of
the equations. Using Raz’s Parallel Repetition Theorem [Raz98], and the fact that each equation contains
exactly3 variables, we have the following upper bound.

Theorem 16 There is a an absolute constantκ > 0 such that, the soundness of the Raz Verifier on the
instance ofMAX -3LIN (overF[2r]) with soundness(1− s(n)) is at most(1− s(n)κ)(m/(κr)). 3

C.2 Fourier Analysis

We will be working over the fieldF[2r] for r > 0, which is a field extension ofF[2]. Let ϕ be the iso-
morphism from the additive group(F[2r],+) to (F[2]r,+). Define the following homomorphismφ from
(F[2r],+) to the multiplicative group({−1, 1}, .).

φ(a) =

{
1 if ϕ(a) contains even number of1s

−1 otherwise
3Since in our case the constraints are projections, using Rao’s [Rao08] proof of parallel repetition we can eliminate the depen-

dence overr.
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for anya ∈ F[2r]. We now define the ‘characters’ψa : F[2r] 7→ {−1, 1} for a ∈ F[2r] as follows.

ψa(b) := φ(ab)

The charactersψa satisfy the following properties.

ψ0(b) = 1 ∀b ∈ F[2r]
ψa(0) = 1 ∀a ∈ F[2r]

ψa+b(c) = ψa(c)ψb(c)

and, ∑
a∈F[2r]

ψa(b) =

{
|F[2r]| if b = 0
0 otherwise

We note that the ‘character’ functions form an orthonormal basis for the spaceL2(F[2r]). We have that,

〈ψa, ψb〉 =

{
1 if a = b

0 otherwise

where,
〈ψa, ψb〉 := Ec∈F[2r] [ψa(c)ψb(c)] .

We now consider the vector spaceF[2r]m for some positive integerm. We define the ‘characters’
χα : F[2r]m 7→ {−1, 1} for everyα ∈ F[2r]m as,

χα(f) := φ(α · f), f ∈ F[2r]m

where ‘·’ is the inner product in the vector spaceF[2r]m. From the way we defined the charactersψa, we
have,

χα(f) =
m∏
i=1

ψαi(fi),

whereαi andfi are theith coordinates ofα andf respectively. The charactersχα satisfy the following
properties,

χ0(f) = 1 ∀f ∈ F[2r]m

χα(0) = 1 ∀α ∈ F[2r]m

χα+β(f) = χα(f)χβ(f)
χα(f + g) = χα(f)χα(g)

and,

Ef∈F[2r]m [χα(f)] =

{
1 if α = 0
0 otherwise

The charactersχα form an orthonormal basis forL2(F[2r]m). We have,

〈χα, χβ〉 =

{
1 if α = β

0 otherwise
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where,
〈χα, χβ〉 := Ef∈F[2r]m [χα(f)χβ(f)] .

LetA : F[2r]m 7→ F[2r] be a function. We definêAγ,α to be the Fourier coefficient of the functionψγ ◦ A
corresponding to the elementχα of the basis, forα ∈ F[2r]m andγ ∈ F[2r]. Formally,

Âγ,α = 〈ψγ ◦A,χα〉 = Ef∈F[2r]m [ψγ(A(f))χα(f)]

and therefore,
ψγ ◦A =

∑
α∈F[2r]m

Âγ,αχα.

The following is a useful lemma.

Lemma 17 Let A : F[2r]m 7→ F[2r] be a function such that∃h ∈ F[2r]m and ζ ∈ F[2r] such that
A(f + δh) = A(f) + δζ, for all δ ∈ F[2r]. Then, ifÂγ,α 6= 0 for someα ∈ F[2r]m andγ ∈ F[2r], then
α · h = γζ.

Proof: We have,

Âγ,α = 〈ψγ ◦A,χα〉
= Ef∈F[2r]m [ψγ(A(f))χα(f)]
= Ef∈F[2r]m [ψγ(A(f + δh))χα(f + δh)]

for anyδ ∈ F[2r]. Therefore using the property ofA we have,

Âγ,α = Ef∈F[2r]m [ψγ(A(f) + δζ)χα(f)χα(δh)]
= Ef∈F[2r]m [ψγ(A(f))ψγ(δζ)χα(f)χα(δh)]
= ψγ(δζ)χα(δh)Ef∈F[2r]m [ψγ(A(f))χα(f)]

= ψγ(δζ)χα(δh)Âγ,α

and sinceÂγ,α 6= 0, this implies,

ψγ(δζ) = χα(δh)
⇒ φ(δγζ) = φ(α · (δh))
⇒ φ(δ(γζ))φ(δ(α · h)) = 1
⇒ φ(δ(γζ + α · h)) = 1

for all δ ∈ F[2r]. But sinceφ 6≡ 1, we must have thatγζ + α · h = 0, i.e. γζ = α · h. This completes the
proof.

Hadamard Codes. In the construction of the PCP, the prover expects the Hadamard encodings of the vectors
P (U) andQ(W ) for the setsU andW in the construction of the Raz Verifier.

Definition 7 For any positive integert, the Hadamard Code ofp ∈ F[2r]t is given by a functionHadp :
F[2r]t 7→ F[2r] where,

Hadp(a) = p · a

for all a ∈ F[2r]t.
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Note that the stringx = Q(W ), x ∈ F[2r]3m that the Raz Verifier reads is supposed to satisfy certain linear
constraints overF[2r] , given byhi · x = ζi, wherehi ∈ F[2r]3m andζi ∈ F[2r] for 1 ≤ i ≤ m.

Let π : F[2r]3m 7→ F[2r]m be aprojectionthat maps vectors inF[2r]3m to some fixedm coordinates.
Let π−1(a) denote the unique vectorb ∈ F[2r]3m such thatπ(b) = a and is0 on all other coordinates other
than those that are projected byπ.

Folding. LetBx be the Hadamard Code of a vectorx ∈ F[2r]3m that satisfies the constraintshi · x = ζi for
1 ≤ i ≤ m. LetH be the subspace ofF[2r]3m spanned by{hi}mi=1. Leth ∈ H be such thath =

∑m
i=1 ρihi,

whereρi ∈ F[2r] for 1 ≤ i ≤ m. Then, we have that for anya ∈ F[2r]3m,

Bx(a+ h) = Bx(a) +
m∑
i=1

ρiζi.

So, we can enforce the folding over linear constraints in the following manner. For anya ∈ F[2r]3m, let,

a = va +
m∑
i=1

ρihi

whereva is the lexicographically smallest vector in the coseta + H. The verifier expects a functionB′ :
F[2r]3m 7→ F[2r] defined only on the distinguished vectorsva for the coseta + H, and then computes the
value ofB(a) as follows,

B(a) = B′(va) +
m∑
i=1

ρiζi.

We say thatB is ‘folded’ over the linear constraints. Therefore, we can enforce the folding of the supposed
Hadamard encodings of the assignmentsQ(W ), over the linear constraints given by the equations inW .
The following crucial lemma follows from directly from Lemma 17.

Lemma 18 For anyγ ∈ F[2r], if B̂γ,β 6= 0 for someβ ∈ F[2r]3m, thenβ · hi = γζi for all 1 ≤ i ≤ m.

Eventually our analysis will show that the supposed Hadamard CodeB for Q(W ) can be decoded to
obtain the vectorsβ with probability proportional toB̂2

γ,β . Since we have ensured the folding, Lemma 18
would imply thatγ−1β is a valid assignment to the variables inQ(W ) that satisfies all the linear constraints.

C.3 Construction of the PCP

We now construct the PCP verifier. The verifierVlin is given an instance of MAX -3LIN overF[2r] with the
completeness and soundness parameters as before. The verifier expects proofs(P ′, Q′) which are Hadamard
encodings of the proofs(P,Q) given to the Raz Verifier. For setsU andW of the Raz Verifier,P ′(U) and
Q′(W ) are supposed to be Hadamard codes ofP (U) andQ(W ) respectively. The verifierVlin proceeds as
follows,

1. Pick a setU of m variables and̀ sets(Wj)`j=1 independently in a manner similar to the Raz Verifier.
Let πj be the projection function betweenWj andU for 1 ≤ j ≤ `.

2. LetA be the supposed Hadamard Code ofP (U) andBj be the supposed Hadamard code ofQ(Wj).
The codesBj are assumed to be folded over the linear constraints.

3. Picka1, . . . , a` ∈ F[2r]m andb1, . . . , b` ∈ F[2r]3m randomly.
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4. Accept iff for1 ≤ i, j,≤ `

A(ai) +Bj(bj) = Bj(π−1
j (ai) + bj).

The following is the main theorem about the properties of this PCP.

Theorem 19 Given an instanceA of MAX -3LIN overn variables with completeness1− c(n) and sound-
ness1− s(n),

1. Vlin usesm log n+O(`mr) random bits.

2. Vlin queries̀ 2 + 2` positions from the proof.

3. If the instanceA is a YES instance then there is a setS̄ consisting of all the positions of the supposed
encodings ofQ(W ′) for at mostmc(n) fraction of setsW ′, and an assignmentτ∗ to all the positions
of the proof except those in̄S such that,

a. (Strong Completeness) The verifier accepts onτ∗ whenever none of the positions in̄S are
queried.

b. (Extendability) For any constraintq of the verifier which (possibly) queries positions from̄S,
there is an assignmentτq to the positions in̄S queried inq, such thatτ∗ extended byτq satisfies
the constraintq.

4. If the instanceA is a NO instance then the probability that the verifier accepts is at most|F[2r]|−`2 +δ,
for δ2 = (1− s(n)κ)(m/(κr))(|F[2r]| − 1)`

2
, for some universal constantκ.

Proof: Properties1 and2 of verifier are clear. Assume that the MAX -3LIN A was a YES instance and
had an assignmentσ to the variables such that1 − c(n) fraction of the equations were satisfied. Call the
equations not satisfied as ‘bad’. Therefore, at mostmc(n) fraction of the setsW ′ of the Raz Verifier are
‘bad’ i.e. they contain a ‘bad’ equation. Let the assignmentsP (U) andQ(W ) be consistent withσ and
P ′(U) andQ′(W ) be the respective Hadamard encodings given to verifierVlin, for all sets of variablesU
and all setsW that are not ‘bad’. We let the set̄S of positions in the proof correspond to the supposed
Hadamard encodings of the assignment to the ‘bad’ setsW ′.

LetU and(Wj)`j=1 be such that none of theWj are ‘bad’, andA and(B)`j=1 be the Hadamard encodings
of the assignments given byσ, which is a satisfying assignment for the setsU and(Wj)`j=1.

A(ai) = ai · P (U) Bj(bj) = bj ·Q(Wj)

Bj(π−1
j (ai) + bj) = (π−1

j (ai) + bj) ·Q(Wj)

= (π−1
j (ai) ·Q(Wj) + bj ·Q(Wj)

= ai · πj(Q(Wj)) + bj ·Q(Wj)
= A(ai) +Bj(bj) (13)

sinceπj(Q(Wj)) = P (U) asσ satisfiesU andWj . This proves the Strong Completeness property. Observe
that every constraint of the verifier is a set of linear equalities of the formA(ai) = B(bj)+B(π−1

j (ai)+bj).
Also, for ai 6= ai′ , π

−1
j (ai) − π−1

j (ai′) 6∈ Hj , whereHj is the subspace spanned by the linear con-

straints over which the supposed encodingBj is folded. Therefore, ifai 6= ai′ thenBj(π−1
j (ai) + bj) and

Bj(π−1
j (ai′) + bj) are distinct positions in theBj . So, within any constraint every equation has a unique
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variable. Then, ifBj is an encoding corresponding to a ‘bad’ setW ′j , the proofQ′ can be extended to satisfy
equations involving positions inBj , in a given constraint involvingBj . This implies that for any given
constraint (possibly involving positions from̄S), the encodingsP ′, Q′given byσ, can be extended to the po-
sitions inS̄ queried by the given constraint so that the constraint is satisfied. This proves the Extendability
property, and completes the analysis for the YES case.

We now analyze the NO case. We assume that the verifier accepts with probability|F[2r]|−`2 + δ. It was
shown in [Eng00] that the probability of acceptance of the verifier is,

1
|F[2r]|`2

∑
S⊆[`]×[`]

E [TS ] (14)

where,

TS =
∏

(i,j)∈S

 ∑
γ∈F[2r]\{0}

ψγ(A(ai) +Bj(bj) +Bj(π−1(ai) + bj))

 , (15)

and the expectation is over the choice ofU, (Wj)`j=1, (ai)
`
i=1, (bj)

`
j=1 and whereT∅ = 1.

If the above probability is|F[2r]|−`2 +δ, there must be a nonempty setS ⊆ [`]× [`], such that|E[TS ]| ≥
δ. This term was analyzed in [Eng00] and we use their analysis. In [Eng00], since Long Codes are analyzed,
the notion of projections is slightly different from ours, but the proof is exactly the same even for our case.
The analysis in [Eng00] also had a certain perturbation parameter, which is0 in our case. We state the
following theorem and refer the reader to the proof in section 4.5 of [Eng00].

Theorem 20 Suppose that|E[TS ]| ≥ δ > 0 for some nonempty setS ⊆ [`]× [`]. Number the elements inS
such that there is at least one element of the form(1, j) and all the elements of that form are(1, 1), . . . , (1, d),
whered ≤ `. Then there existγ1, . . . , γd ∈ F[2r] \ {0} such that,

EU,W1,...,Wd
[∆] ≥ δ2

(|F[2r]| − 1)|S|

where,
∆ =

∑
α,β1,...,βd

α=π1(β1)+···+πd(βd)

Â2
γ,αB̂

2
1,γ1,β1

. . . B̂2
d,γd,βd

and,

γ = γ1 + · · ·+ γd

Âγ,α = 〈ψγ ◦A,χα〉
B̂j,γj ,βj =

〈
ψγj ◦Bj , χβj

〉
We now define proofs(P,Q) for the Raz Verifier as follows. For a setW , pick β with probability B̂2

γ1,β

and defineQ(W ) to beγ−1
1 β, whereB is the supposed encoding ofQ(W ). Note that sincêBγ1,β 6= 0 for

any set we pick, andγ1 6= 0 by lemma 18,γ−1
1 β satisfies all the equations ofW . For a setU , pick sets

(Wj)dj=2 at random as in the Raz Verifier, and pick(βj)dj=2 with probability
∏d
j=2 B̂

2
j,γj ,βj

, and chooseα
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with probabilityA2
γ,α. DefineP (U) to beγ−1

1 (α+
∑d

j=2 πj(βj)). Sinceγ1 6= 0, we have,

γ−1
1 (α+

d∑
j=2

πj(βj)) = π1(γ−1
1 β1)

⇐⇒ γ−1
1 (α+

d∑
j=2

πj(βj)) = γ−1
1 (π1(β1))

⇐⇒ α+
d∑
j=2

πj(βj) = π1(β1)

⇐⇒ α =
d∑
j=1

πj(βj).

Using the above observation it is easy to see that the acceptance probability of the the Raz Verifier is given
by E[∆] and therefore,

Pr[Raz Verifier accepts] ≥ δ2

(|F[2r]| − 1)|S|

≥ δ2

(|F[2r]| − 1)`2

since|S| ≤ `2. Using the bound given by Theorem 16, we obtain,

δ2 ≤ (1− s(n)κ)(m/(κr))(|F[2r]| − 1)`
2

which completes the analysis of the NO case.

C.4 Construction of Multi Prover System

We will now give a reduction from the PCP system constructed to an appropriate Multi Prover System. For
convenience we shall call the PCP system constructed in the previous subsection as PCP1. Also, we let
t = `2 + 2` andk = |F[2r]|. Clearly, PCP1 is a t-query PCP where the answers are from[k], with the
properties specified in Theorem 19. We construct a Multi Prover System MIPS1 as follows. LetP1, . . . , Pt
be t provers. The verifierVMIPS1 computes thet queries ofVlin, sayq1, . . . , qt. It computes a random
permutationν : [t] 7→ [t] and sendsqi toPν(i), for all 1 ≤ i ≤ t and expects answers from each prover from
the set[k]. The acceptance predicate ofVMIPS1 is the same asVlin. LetQ be the set of queries thatVlin
makes, which is the set of positions in the proof expected byVlin. LetQi be the set of queries sent toPi by
VMIPS1 . Clearly,Qi = Q for all 1 ≤ i ≤ t. It is easy to see that the completeness ofVMIPS1 is same as that
of Vlin. It can be shown [TS97] that if the soundness of PCP1 is ε then the soundness ofVMIPS1 is at most
ttε. It is easy to check that the properties of Strong Completeness and Extendability hold. Analogous to the
PCP construction, for every proverPi, there is a set of ‘bad’ queries̄Si = S̄ consisting of the positions of
the encodings ofQ(W ′) for ‘bad’ setsW ′. Let µi(S̄i) be the probability that theith queryqi ∈ S̄i. From
the construction of PCP1, it can be seen thatµi(S̄i) ≤ mc(n) for 1 ≤ i ≤ t. We summarize the properties
in the following theorem.

Theorem 21 Given a7-regular instance ofMAX -3LIN overn variables with completeness1 − c(n) and
soundness1 − s(n), for parametersm, k and t, (wherek = 2r and t = `2 + 2`), there ist prover system
MIPS1 with proversP1, . . . , Pt and verifierVMIPS1 such that,
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1. The verifier usesm log n+O(`mr) + t log t random bits to compute a querȳq = (q1, . . . , qt) where
qi is sent toPi and an answer from[k] = [2r] is expected, for all1 ≤ i ≤ t. LetQi be the set of
queries given to proverPi. Then|Q1| = . . . |Qt|.

2. If the MAX -3LIN instance is a YES instance, then there is a setS̄i ⊆ Qi such thatµi(S̄i) ≤ mc(n)
whereµi(S̄i) is the probability thatqi ∈ S̄i. Furthermore,

a. (Strong Completeness) There is a strategyσ∗i : Qi \ S̄i 7→ [k] (1 ≤ i ≤ t) of the provers such
that the verifier accepts on all queries̄q such thatqj 6∈ S̄j for all 1 ≤ j ≤ t.

b. (Extendability) For any given querȳq of the verifier (possibly containing queryqi ∈ S̄i to
individual proversPi), the strategy given byσ∗i can be extended to the queries from̄Si contained
in q̄ so that the verifier accepts on the queryq̄.

4. If the instance ofMAX -3LIN is a NO instance then the probability that the verifier accepts is at most
tt(k−`

2
+ δ), whereδ2 = (1− s(n)κ)(m/(κr))(k − 1)`

2
, for some universal constantκ.

We also need the condition that the queries are uniformly distributed over the set of all possible queries to
proverPi for all 1 ≤ i ≤ t. For this construct another verifierVMIPS2 for a Multi Prover System MIPS2.
LetRi,qi be the set of all random strings toVMIPS1 that generate the queryqi to proverPi. Then the verifier
VMIPS2 computes a querȳq = (q1, . . . , qt) of VMIPS1 , and sends the querȳq′ = ((q1, r1,q1), . . . , (qt, rt,qt))
whereri,qi is a string uniformly chosen fromRi,qi . The verifier expects answer toqi from proverPi, and
the acceptance predicate remains the same. Clearly, sending uniformly chosen random stringsri,qi does
not change the completeness, since provers can disregard them, and they do not provide any information to
provers, so the soundness remains the same. In MIPS2, letQ′i be the set of all queries toPi. It can be seen
that |Q′1| = · · · = |Q′t| and the queries are uniformly distributed over the sets|Q′i|. Essentially, every query
of MIPS1 is replicated proportional to the probability it is queried. Let the corresponding ‘bad’ setS̄′i be the
set of all queries(qi, r) such thatqi ∈ S̄i for all 1 ≤ i ≤ t. We have the following,

|S̄′i|
|Q′i|

= Pr
VMIPS2

→(qi,r)
[(qi, r) ∈ S̄′i]

= Pr
VMIPS1

→qi
[qi ∈ S̄i]

= µi(S̄i)
≤ mc(n) (16)

for all 1 ≤ i ≤ t. It is easy to see that the properties of Strong Completeness and Extendability are also
satisfied. The number of random bits used byVMIPS2 is at mostt times that ofVMIPS1 . We summarize the
properties of MIPS2 in the following theorem.

Theorem 22 Given a7-regular instance ofMAX -3LIN overn variables with completeness1 − c(n) and
soundness1 − s(n), for parametersm, k and t, (wherek = 2r and t = `2 + 2`), there ist prover system
MIPS2 with proversP1, . . . , Pt and verifierVMIPS2 such that,

1. The verifier usest(m log n + O(`mr) + t log t) random bits to compute a querȳq′ = (q′1, . . . , q
′
t)

whereq′i is sent toPi and an answer from[k] = [2r] is expected, for all1 ≤ i ≤ t. LetQ′i be the set
of queries given to proverPi. Then|Q′1| = · · · = |Q′t| and the queries are uniformly distributed over
eachQ′i.

2. If the MAX -3LIN instance is a YES instance, then there is a setS̄′i ⊆ Q′i such that

|S̄′i|
|Q′i|

≤ mc(n).
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Furthermore,

a. (Strong Completeness) There is a strategyσ′i
∗ : Q′i \ S̄′i 7→ [k] (1 ≤ i ≤ t) of the provers such

that the verifier accepts on all queries̄q′ such thatq′j 6∈ S̄′j for all 1 ≤ j ≤ t.
b. (Extendability) For any given querȳq′ of the verifier (possibly containing queryq′i ∈ S̄′i to

individual proversPi), the strategy given byσ′i
∗ can be extended to the queries from̄S′i contained

in q̄′ so that the verifier accepts on the queryq̄′.

4. If the instance ofMAX -3LIN is a NO instance then the probability that the verifier accepts is at most
tt(k−`

2
+ δ), whereδ2 = (1− s(n)κ)(m/(κr))(k − 1)`

2
, for some universal constantκ.

There is a canonical reduction from the above Multi Prover System, MIPS2 to at-LAYERED-CSP instance
with the vertices ofith layer beingQ′i and the hyperedges being the constraints overt vertices, one from
each layer, corresponding to the queries made by the verifier. The set of vertices inV ′ of t-LAYERED-CSP
corresponds to∪ti=1S̄

′
i. We now set the parameters used in our reduction, which along with reduction to the

MAX -3LIN instance in [KP06] would prove theorem 7.

We start with the instance MAX -3LIN of [KP06] onn variables withc(n) = 2−Ω(
√

logn) ands(n) =
Ω(log−3 n). We takem = θ(log3κ+3 n) and r = θ(log log n) such thatk = θ(log6κ+8 n). Now let
N = |V | be the number of vertices in thet-LAYERED-CSP instance. From the properties of MIPS2,
we havelogN = θ(log3κ+4 n). Moreover, the size of the vertex setV ′ of the t-LAYERED-CSP is
Nmc(n) ≤ N/(2(logN)(1/(10κ+20))

) for large enoughN .
The size of the label setk = θ(log6κ+8 n) = θ(log2N). Sinces(n) = Ω(log−3 n), we haveδ2 =
(1− s(n)κ)(m/(κr))(k − 1)`

2
= 2−Ω(log2 n)(k − 1)`

2
. Therefore, the soundnesstt(k−`

2
+ δ) = k−t+O(

√
t).

The above analysis completes the construction of thet-LAYERED-CSP instance with the desired properties
in Theorem 7.
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