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1. Introduction

The well-known P 6= NP hypothesis says that a large class of computational prob-
lems known as NP-complete problems do not have efficient algorithms. An algo-
rithm is called efficient if it runs in time polynomial in the length of the input. A
natural question is whether one can efficiently compute approximate solutions to
NP-complete problems and how good an approximation one can achieve. We are
interested in both upper and lower bounds: designing algorithms with a guarantee
on the approximation (upper bounds) as well as results showing that no efficient
algorithm exists that achieves an approximation guarantee beyond a certain thresh-
old (lower bounds). It is the latter question, namely the lower bounds, that is the
focus of this article. Such results are known as inapproximability or hardness of
approximation results, proved under a standard hypothesis such as P 6= NP.

Let us consider the Max-3Lin problem as an illustration. We are given a system
of linear equations over GF (2) with three variables in each equation and the goal
is to find an assignment that satisfies the maximum number of equations. This is
known to be an NP-complete problem. There is a trivial approximation algorithm
that achieves a multiplicative approximation guarantee of 2. The algorithm simply
assigns a random value in GF (2) to each variable and in expectation satisfies half
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of the equations. The optimal assignment may satisfy all (or nearly all) equations,
and thus the assignment produced by the algorithm is within factor 2 of the op-
timal assignment. On the other hand, a famous result of H̊astad [25] shows that
such a trivial algorithm is the best one can hope for! Specifically, let ε > 0 be
an arbitrarily small constant. Then given an instance of Max-3Lin that has an
assignment satisfying 1 − ε fraction of the equations, no efficient algorithm can
find an assignment that satisfies 1

2 + ε fraction of the equations unless P = NP.
It turns out that such inapproximability results are closely related to Fourier

analysis of boolean functions on a boolean hypercube and to certain problems in
geometry, especially related to isoperimetry. This article aims to give a survey of
these connections. We anticipate that the intended audience of this article is not
necessarily familiar with the techniques in computer science. We therefore focus
more on the Fourier analytic and geometric aspects and only give a brief overview of
how such results are used in (and often arise from) the context of inapproximability.
We describe an overall framework in Section 2 and then illustrate the framework
through several examples in the succeeding sections.

2. Framework for Inapproximability Results

Approximation Algorithms and Reductions

Let I denote an NP-complete problem. For an instance I of the problem
with input size N , let OPT(I) denote the value of the optimal solution. For a
specific polynomial time approximation algorithm, let ALG(I) denote the value
of the solution that the algorithm finds (or its expected value if the algorithm is
randomized). Let C > 1 be a parameter that could be a function of N .

Definition 2.1. An algorithm is said to achieve an approximation factor of C if
on every instance I,

ALG(I) ≥ OPT(I)/C if I is a maximization problem,
ALG(I) ≤ C · OPT(I) if I is a minimization problem

A maximization problem I is proved to be inapproximable by giving a reduc-
tion from a canonical NP-complete problem such as 3SAT 1 to a gap version of
I. Specifically, suppose there is a polynomial time reduction that maps a 3SAT
formula φ to an instance I of the problem I, such that for constants 0 < s < c, we
have:

1. (Completeness): If φ has a satisfying assignment, then OPT(I) ≥ c.

2. (Soundness): If φ has no satisfying assignment, then OPT(I) ≤ s.
1 A 3SAT formula φ is a logical AND of a set of clauses, where each clause is a logical OR

of three boolean variables, possibly negated. The goal is to decide whether the formula has a
satisfying boolean assignment.
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Such a reduction implies that if there were an algorithm with approximation factor
strictly less than c

s for the problem I, then it would enable one to efficiently decide
whether a 3SAT formula is satisfiable, and hence P = NP. Inapproximability results
for minimization problems can be proved in a similar way.

The PCP Theorem

In practice, a reduction as described above is often a sequence of (potentially
very involved) reductions. In fact, the first reduction in the sequence is the famous
PCP Theorem [18, 4, 2] which can be phrased as a reduction from 3SAT to a gap
version of 3SAT. For a 3SAT formula φ, let OPT(φ) denote the maximum fraction
of clauses that can be satisfied by any assignment. Thus OPT(φ) = 1 if and only if
φ is satisfiable. The PCP Theorem states that there is a universal constant α < 1
and a polynomial time reduction that maps a 3SAT instance φ to another 3SAT
instance ψ such that:

1. (Completeness): If OPT(φ) = 1, then OPT(ψ) = 1.

2. (Soundness): If OPT(φ) < 1, then OPT(ψ) ≤ α.

We stated the PCP Theorem as a combinatorial reduction. There is an equiv-
alent formulation of it in terms of proof checking. The theorem states that every
NP statement has a polynomial size proof that can be checked by a probabilistic
polynomial time verifier by reading only a constant number of bits in the proof!
The verifier has the completeness and the soundness property: every correct state-
ment has a proof that is accepted with probability 1 and every proof of an incorrect
statement is accepted with only a small probability, say at most 1%. The equiv-
alence between the two views, namely reduction versus proof checking, is simple
but illuminating, and has influenced much of the work in this area.

Gadgets based on Hypercube

The core of a reduction often involves a combinatorial object called a gadget
and the reduction itself consists of taking several copies of the gadget and then
appropriately connecting them together. The class of gadgets that is relevant
for this article is the class of hypercube based gadgets. A simple example is the
hypercube {−1, 1}n itself thought of as a graph. The edges of the hypercube are
all pairs of inputs that differ on exactly one co-ordinate. When the computational
problem under consideration is the Graph Partitioning problem, we are interested in
partitioning a graph into two equal parts so as to minimize the number of crossing
edges. A cut in the hypercube is same as a function f : {−1, 1}n 7→ {−1, 1}. The
number of edges cut divided by a normalizing factor of 2n is known as average
sensitivity of the function. It is well-known that the minimum average sensitivity
of a balanced function is 1 and the minimizer is precisely the dictatorship function,
i.e. the function f(x) = xi0 for some fixed co-ordinate i0 ∈ {1, . . . , n}. Note that
the dictatorship function depends only on a single co-ordinate. On the other hand,
a theorem of Friedgut [19] shows that any function whose average sensitivity is at
most k, is very close to a function that depends only on 2O(k) co-ordinates. In the
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contrapositive, if a function depends on too many co-ordinates and thus is far from
being a dictatorship, then its average sensitivity must be large. Such “dictatorship
is good; any function that is far from being a dictatorship is bad” kind of results
are precisely the properties that we need from the gadget.

In the following, we will sketch the overall framework for inapproximability re-
sults proved via hypercube based gadgets. We refrain from describing the compo-
nents of a reduction other than the gadget itself, as these typically involve computer
science techniques that the reader may not be familiar with. We then illustrate
this framework through several examples.

The Framework

Let F := {f | f : {−1, 1}n 7→ {−1, 1},E[f ] = 0} be the class of all balanced
boolean functions on the hypercube. Let

DICT := {f | f ∈ F , ∀x ∈ {−1, 1}n, f(x) = xi0 for some i0 ∈ {1, . . . , n}},

be the class of dictatorship functions. Note that a dictatorship function depends
only on a single co-ordinate. We aim to define a class FFD of functions that are to
be considered as functions far from being a dictatorship. This class should include
functions such as MAJORITY := sign(

∑n
i=1 xi), PARITY :=

∏n
i=1 xi, and random

functions; these functions depend on all the co-ordinates in a non-trivial manner.
Towards this end, let the influence of the ith co-ordinate on a function f be defined
as:

Infli(f) := Prx [f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . ,−xi, . . . , xn)] .

For a dictatorship function, the relevant co-ordinate has influence 1 and all other
influences are zero. Thus one may define FFD as the class of functions all of whose
influences are small. This includes MAJORITY (all influences are O( 1√

n
)), but

excludes PARITY (all influences are 1) and random functions (all influences are
very close to 1

2 ). We therefore give a more refined definition that also turns out to
be the most useful for the applications.

It is well-known that any function f : {−1, 1}n 7→ R has a Fourier (or Fourier-
Walsh) representation:

f(x) =
∑

S⊆{1,...,n}

f̂(S)
∏
i∈S

xi,

where the f̂(S) ∈ R are the Fourier coefficients. When f is a boolean function, by
Parseval’s identity,

∑
S f̂(S)2 = E[f2] = 1. It is easily proved that:

Infli(f) =
∑
i∈S

f̂(S)2.

For an integer d, we define the degree d influence as:

Infldi (f) =
∑

i∈S,|S|≤d

f̂(S)2.
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Finally, for an integer d and a parameter η > 0, let

FFDd,η := {f | f ∈ F , ∀i ∈ {1, . . . , n}, Infldi (f) ≤ η}.

In words, FFDd,η is the class of all functions that are far from being a dictatorship,
in the sense that all degree d-influences are at most η. We will think of d as a large
and η as a small constant, and n → ∞ as an independent parameter. Clearly,
MAJORITY, PARITY, and random functions are in this class. For MAJORTIY,
the influences are O( 1√

n
), and so are the degree d influences. For PARITY, the

only non-zero Fourier coefficient f̂(S) is for S = {1, . . . , n} and hence all degree
d-influences are zero. For a random function, the Fourier mass is concentrated on
sets |S| = Ω(n), and hence the degree d-influences are negligible. We are now ready
to informally state the connection between inapproximability results and Fourier
analytic results:

Theorem 2.2. (Informal) Suppose I is a maximization problem and Val : F 7→
R+ is a valuation on balanced boolean functions. Suppose there are constants 0 <
s < c such that,

1. (Completeness): ∀f ∈ DICT, Val(f) ≥ c.

2. (Soundness): ∀f ∈ FFDd,η, Val(f) ≤ s.

Assume a certain complexity theoretic hypothesis. Then given an instance of the
problem I that has a solution with value at least c, no polynomial time algorithm
can find a solution with value exceeding s. In particular, there is no polynomial
time algorithm for the problem I with approximation factor strictly less than c/s.

The theorem is stated in a very informal manner and calls for several comments:
(1) The choice of the valuation Val(·) depends very much on the problem I and
different problems lead to different interesting valuations. (2) We will be interested
in the limiting case when d → ∞, η → 0. Often we will have s = s′ + δ where s′

is a specific constant and δ → 0 as d → ∞, η → 0. (3) The complexity theoretic
hypothesis should ideally be P 6= NP, but often it will be the Unique Games
Conjecture (see below). (4) An analogous theorem holds for minimization problems
as well.

We apply the framework of Theorem 2.2 to several computational problems
in the rest of the article. For each problem, we state the problem definition, the
valuation Val(·) that is used, how the soundness property follows from a Fourier
analytic result, related geometric results, and then the inapproximability result
that can be proved. Before we begin, we state several properties of the dictatorship
functions that will be useful and state the Unique Games Conjecture for the sake
of completeness.

The valuation Val(·) is supposed to capture a certain property of dictatorship
functions. Let us observe a few such properties:

1. Dictatorships are linear, i.e. ∀x, y ∈ {−1, 1}n, f(xy) = f(x)f(y), where xy
denotes the string that is bitwise product of strings x and y.
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2. Dictatorships are stable under noise, i.e. if input x ∈ {−1, 1}n is chosen
uniformly at random, and y ∈ {−1, 1}n is obtained by flipping every bit of x
with probability ε, then the probability that f(x) 6= f(y) is ε. In contrast,
MAJORITY is less stable and the probability is θ(

√
ε), whereas PARITY is

very unstable and the probability is very close to 1
2 .

3. If C ⊆ {−1, 1}n is a random sub-cube with dimension εn, then with proba-
bility 1−ε, a dictatorship function is constant on C. A sub-cube of dimension
k is the set of all inputs that agree on a specific setting of input bits outside
of T for some subset of co-ordinates T ⊆ {1, . . . , n}, |T | = k.

4. The Fourier mass of a dictatorship function is concentrated at the first level,
i.e. on sets |S| = 1. In contrast, the Fourier mass of MAJORITY at the first
level is very close to 2

π and that of the PARITY function is zero.

The Unique Games Conjecture

Most of the inapproximability results presented in this article rely on the Unique
Games Conjecture [28] stating that a certain computational problem called the
Unique Game is very hard to approximate. We do state the conjecture here, but
since we are focussing only on a certain component of a reduction, we will not
have an occasion to use the statement. It is easier to understand the conjecture in
terms of a special case: an instance of the Linear Unique Game is a system of linear
equations over Zn where every equation is of the form xi − xj = cij , {x1, . . . , xN}
are variables, and cij ∈ Zn are constants. The goal is to find an assignment to the
variables that satisfies a good fraction of the equations.

The Unique Games Conjecture states that for every constant ε > 0, there is
a large enough constant n = n(ε), such that given an instance of Linear Unique
Game over Zn that has an assignment satisfying 1 − ε fraction of the equations,
no polynomial time algorithm can find an assignment that satisfies (even) an ε
fraction of the equations. 2

A comment about the term “Unique Game”. The term “game” refers to the
context of 2-Prover-1-Round games where the problem was studied initially. Given
an instance of the Linear Unique Game, consider the following game between two
provers and a verifier: the verifier picks an equation xi − xj = cij at random,
sends the variable xi to prover P1 and the variable xj to prover P2. Each prover
is supposed to answer with a value in Zn, and the verifier accepts if and only if
a1−a2 = cij where a1 and a2 are the answers of the two provers respectively. The
strategies of the provers correspond to assignments σ1, σ2 : {x1, . . . , xN} 7→ Zn.
The value of the game is the maximum over all prover strategies, the probability
that the verifier accepts. It can be easily seen that this value is between β and

2The original conjecture is stated in terms of a more general problem, but it is shown in [29]
that the conjecture is equivalent to the statement here in terms of linear unique games. Also, the
“hardness” is conjectured to be NP-hardness rather than just saying that there is no polynomial
time algorithm.
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max{1, 4β} where β is the maximum fraction of equations that can be satisfied
by any assignment. The term “unique” refers to the property of the equations
xi − xj = cij that for every value to one variable, there is a unique value to the
other variable so that the equation is satisfied.

3. Max-3Lin and Linearity Test with Perturbation

Max-3Lin Problem: Given a system of linear equations over GF (2) with each
equation containing three variables. The goal is to find an assignment that satisfies
a maximum fraction of equations.

Valuation: We define Val(f) as the probability that f passes the linearity test
along with a small perturbation. Specifically, pick two inputs x, y ∈ {−1, 1}n
uniformly at random and let w := xy. Let z be a string obtained by flipping each
bit of w with probability ε independently. Note that the correlation of every bit in
z with the corresponding bit in w is 1− 2ε and let z ∼1−2ε w denote this. Define

Val(f) := Prx,y,z∼1−2εw [f(z) = f(x)f(y)] .

The optimization problem concerns linear equations with three variables, and the
valuation is defined in terms of a test that depends linearly on the values of f at
three random (but correlated) inputs.

Completeness: If f ∈ DICT, then it is easily seen that Val(f) = 1 − ε. Indeed,
for some fixed co-ordinate i0 ∈ {1, . . . , n}, f(x) = xi0 , f(y) = yi0 , f(z) = zi0 , and
zi0 is obtained by flipping the value of xi0yi0 with probability ε. Hence we have
f(z) = f(x)f(y) with probability 1− ε.

Soundness: We will sketch a proof showing that if f ∈ FFDd,η, then Val(f) ≤ 1
2 +δ

where δ → 0 as d → ∞, η → 0. The key observation is that the probability of
acceptance of the test can be written in terms of Fourier coefficients of f . It is a
rather straightforward exercise (that we skip) to show that:

Val(f) =
1
2

+
1
2

∑
S⊆{1,...,n}

f̂(S)3(1− 2ε)|S|

=
1
2

+
1
2

∑
S⊆{1,...,n}

f̂(S)2
(
f̂(S) · (1− 2ε)|S|

)
.

Note that
∑
S f̂(S)2 = 1 and since the function is balanced f̂(∅) = 0. Thus it

suffices to show that for every S 6= ∅,
∣∣∣f̂(S)(1− 2ε)|S|

∣∣∣ ≤ δ. Since the degree d-
influence of each co-ordinate is at most η, it must be that for every set S 6= ∅,
either |S| > d or f̂(S)2 ≤ η, as otherwise any co-ordinate in S will have degree
d-influence at least η. Thus setting δ = max{(1− 2ε)d,

√
η} proves the claim.

Inapproximability Result: Applying Theorem 2.2, gives the following inap-
proximability result proved by H̊astad [25].
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Theorem 3.1. Assume P 6= NP and let ε, δ > 0 be arbitrarily small constants.
Given an instance of the Max-3Lin problem that has an assignment satisfying 1− ε
fraction of the equations, no polynomial time algorithm can find an assignment that
satisfies 1

2 + δ fraction of the equations. In particular, there is no polynomial time
algorithm for the Max-3Lin problem with approximation factor strictly less than 2.

4. Max-kCSP and Gowers Uniformity

Max-kCSP Problem: Given a set of N boolean variables, and a system of con-
straints such that each constraint depends on k variables, find an assignment to
the variables that satisfies a maximum fraction of constraints. For the ease of
presentation, we assume that k = 2q − 1 is a large constant.

Valuation: We define Val(f) to be the probability that f passes the hypergraph
linearity test with perturbation. The test is a generalized and iterated version
of the linearity test with perturbation in Section 3. Specifically, pick q inputs
x1, . . . , xq ∈ {−1, 1}n at random. For every set S ⊆ {1, . . . , q}, |S| ≥ 2, let
wS :=

∏
i∈S x

i and zS be obtained by flipping each bit of wS with probability ε in-
dependently, i.e. zS ∼1−2ε w

S . The test passes if for every S, f(zS) =
∏
i∈S f(xi),

i.e.

Val(f) := Pr
x1,...,xq,zS∼1−2εw

S

[
∀|S| ≥ 2, f(zS) =

∏
i∈S

f(xi)

]
.

Completeness: If f ∈ DICT, it is easily seen that Val(f) ≥ 1− ε · 2q, as there are
2q − q− 1 sets |S| ≥ 2, and the test for each S could fail with probability ε due to
the ε-noise/perturbation.

Soundness: It can be shown that if f ∈ FFDd,η, then Val(f) ≤ 1
22q−q−1 + δ where

δ → 0 as d → ∞ and η → 0. Note that there are 2q − q − 1 sub-tests, one for
each |S| ≥ 2. If f has all influences small, then these tests behave as if they were
independent tests, each tests accepts with probability essentially 1

2 , and hence the
probability that all tests accept simultaneously is essentially 1

22q−q−1 .

Samorodnitsky and Trevisan [43] relate the acceptance probability of the test to
the Gowers Uniformity norms [22] of a function, and then show that for a function
with all influences small, the Gowers Uniformity norm is small as well.

Definition 4.1. Gowers Uniformity: Let f : {−1, 1}n 7→ {−1, 1} be a function,
and ` ≥ 1 be an integer. The dimension-` uniformity of f is defined as:

U `(f) := Ex,x1,...,x`

 ∏
S⊆{1,...,`}

f

(
x ·
∏
i∈S

xi

) .
Theorem 4.2. ([43]) If f is a balanced function such that ∀i ∈ {1, . . . , n}, Infli(f) ≤
η, then U `(f) ≤ √η · 2O(`).
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Inapproximability Result:

Theorem 4.3. ([43]) Assume the Unique Games Conjecture and let ε, δ > 0 be
arbitrarily small constants. Then given an instance of Max-kCSP problem, k =
2q − 1, that has an assignment satisfying 1 − ε · 2q fraction of the constraints, no
polynomial time algorithm can find an assignment that satisfies at least 1

22q−q−1 +δ
fraction of the constraints. In particular, there is no polynomial time algorithm
for the Max-kCSP problem with approximation factor strictly less than 22q−q−1 =
θ(2k/k).

We note that an algorithm with approximation factor of O(2k/k) is known [8]
and therefore the inapproximability result is nearly optimal.

5. Graph Partitioning and Bourgain’s Noise
Sensitivity Theorem

Graph Partitioning Problem: Given a graph G(V,E), find a partition of the graph
into two equal (or roughly equal) parts so as to minimize the fraction of edges cut.
Note that this is a minimization problem.

Valuation: We define Val(f) = NSε(f), the ε-noise sensitivity of f , i.e. the
probability that f passes the perturbation test with ε-noise. Specifically, pick
input x ∈ {−1, 1}n at random, and let y be a string obtained by flipping each bit
of the string x with probability ε, i.e. x ∼1−2ε y. Define

Val(f) := NSε(f) := Probx∼1−2εy [f(x) 6= f(y)] .

The optimization problem concerns balanced cuts in graphs. Consider a complete
graph with vertices {−1, 1}n and non-negative weights on edges where the weight
of an edge (x, y) is exactly the probability that the pair (x, y) is picked by the
perturbation test. View a balanced function f : {−1, 1}n 7→ {−1, 1} as a cut in
the graph. Thus Val(f) is exactly the total weight of edges cut by f .

Completeness: If f ∈ DICT, then it is easily seen that Val(f) = ε.

Soundness: It turns out that for large enough d and small enough η (depending
on ε), if f ∈ FFDd,η, then Val(f) ≥ Ω(

√
ε). This follows either from the Majority

Is Stablest Theorem [38] that we will describe in the next section or essentially
from the Bourgain’s Theorem stated below. Bourgain’s Theorem only gives a
lower bound of Ω(εc) for any constant c > 1

2 , but its conclusion is stronger in the
following sense: if the noise sensitivity of a balanced boolean function is O(εc),
then not only that f has a variable with significant influence, in fact f is close to
a function that depends only on a bounded number of co-ordinates. The precise
statement is:

Theorem 5.1. (Bourgain [7]) Let c > 1
2 be fixed. Then for all sufficiently small

ε > 0, if f is a balanced function with ε-noise sensitivity O(εc), then there is a
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boolean function g that agrees with f on 99% of the inputs and g depends only on
2O(1/ε2) co-ordinates.

We would like to point out that Bourgain’s Theorem came as an answer to a
question posed by H̊astad who was interested in such a theorem towards application
to inapproximability.

Inapproximability Result: Applying Theorem 2.2 gives the following inapprox-
imability result proved by Khot and Vishnoi [34]. The result applies to a gen-
eralization of the Graph Partitioning problem: one has so-called demands, i.e. a
collection of pairs of vertices and we are interested in cuts that are balanced w.r.t.
the demands, i.e. cuts that separate at least a constant fraction of the demands.
The Graph Partitioning problem is a special case when all

(|V |
2

)
vertex pairs occur

as demands.

Theorem 5.2. ([34]) Assume the Unique Games Conjecture. Given a graph
G(V,E) along with demands that has a balanced partition that cuts at most ε frac-
tion of the edges, no polynomial time algorithm can find a balanced partition that
cuts at most o(

√
ε) fraction of the edges. In particular, there is no polynomial time

algorithm for the Graph Partitioning problem with an approximation factor that is
a universal constant.

Connection to Metric Embeddings

The Graph Partitioning problem has a close connection to the theory of met-
ric embeddings. We refer to Naor’s article [39] for a detailed treatment of this
connection and give a brief overview here. Theorem 5.2 rules out a constant fac-
tor approximation algorithm for the Graph Partitioning problem with demands;
however the result is conditional on the Unique Games Conjecture. It is also in-
teresting to have unconditional results that rule out a specific class of algorithms
such as those based on Semi-definite Programming relxation. It turns out that
the performance of an SDP algorithm for the Graph Partitioning problem is closely
related to the question of embedding the negative type metrics into the class of `1
metrics. An N -point finite metric d(·, ·) is said to be of negative type if the metric√
d is isometrically embeddable in `2. Let c1(NEG, N) be the least number such

that every N -point negative type metric embeds into the class of `1 metrics with
distortion c1(NEG, N), i.e. preserving all distances up to a factor of c1(NEG, N).
It is known that c1(NEG, N) is same up to a constant factor, the performance of
the SDP algorithm for the Graph Partitioning problem on N -vertex graphs. Given
an N -vertex graph that has a balanced partition that cuts ε fraction of the edges,
the SDP algorithm finds a balanced partition that cuts O(ε · c1(NEG, N)) frac-
tion of the edges. Goemans and Linial [21, 37] conjectured that c1(NEG, N) is a
universal constant independent of N ; this would be contrary to the statement of
Theorem 5.2 since the theorem rules out every polynomial time algorithm that
might achieve a constant factor approximation, and in particular an SDP-based
one. In fact, using the techniques used to prove Theorem 5.2, Khot and Vishnoi
[34] were able to disprove the Goemans and Linial conjecture:
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Theorem 5.3. ([34]) c1(NEG, N) ≥ Ω((log logN)c) for some constant c > 0.

An interesting aspect of this theorem is that the construction of the negative
type metric is inspired by the Unique Games Conjecture and the PCP reduction
used to prove Theorem 5.2, but the construction itself is explicit and the lower
bound unconditional. Regarding the upper bounds on c1(NEG, N), in a break-
through work, Arora, Rao, and Vazirani [3] showed that the SDP algorithm gives
O(
√

logN) approximation to the Graph Partitioning problem (without demands).
This was extended to the demands version of the problem by Arora, Lee, and Naor
[1], albeit with a slight loss in the approximation factor. As discussed, the latter
result is equivalent to an upper bound on c1(NEG, N).

Theorem 5.4. ([1]) c1(NEG, N) ≤ O(
√

logN · log logN).3

Using an alternate construction based on the geometry of Heisenberg group, a
sequence of works by Lee and Naor [36], Cheeger and Kleiner [11, 12], Cheeger,
Kleiner, and Naor [13, 14] obtained a stronger lower bound than Theorem 5.3:

Theorem 5.5. ([36, 11, 12, 13, 14]) c1(NEG, N) ≥ Ω((logN)c) for some con-
stant c > 0.

The lower bound of Theorem 5.3 is also strengthened in a different direction
by Raghavendra and Steurer [40] (also by Khot and Saket [33] with quantitatively
weaker result):

Theorem 5.6. ([40, 33]) There is an N -point negative type metric such that its
submetric on any subset of t points is isometrically `1-embeddable, but the whole
metric incurs distortion of at least t to embed into `1, and t = (log logN)c for
some constant c > 0.

The KKL Theorem

A result of Kahn, Kalai, and Linial [27] was used by Chawla et al [10] to prove
a theorem analogous to Theorem 5.2, and also by Krauthagamer and Rabani [35]
and Devanur et al [15] to improve the lower bound in Theorem 5.3 to Ω(log logN).
The KKL result has many other applications and we state it below:

Theorem 5.7. ([27]) Every balanced boolean function f : {−1, 1}n 7→ {−1, 1} has
a variable whose influence is Ω

(
logn
n

)
.

3Arora, Lee, and Naor [1] in fact give an embedding of an N -point negative type metric into
`2 (which is isometrically embeddable into `1) with distortion O(

√
logN · log logN). Since `1

metrics are of negative type, this gives an embedding of an N -point `1 metric into `2 with the
same distortion. The result essentially matches a decades long lower bound of Enflo [17] who
showed that embedding N -point `1 metric into `2 incurs distortion Ω(

√
logN).
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6. Majority Is Stablest and Borell’s Theorem

In the last section, we studied the ε-noise sensitivity of balanced boolean functions.
Bourgain’s Theorem gives a lower bound of Ω(εc) on the noise sensitivity of a
balanced function whose all influences are small and c > 1

2 . We also mentioned
that the Majority Is Stablest Theorem gives a lower bound of Ω(

√
ε). In fact it gives

an exact lower bound, namely 1
π arccos(1 − 2ε), which turns out to be useful for

an inapproximability result for the Max-Cut problem presented in the next section.
Indeed, the Majority Is Stablest Theorem was invented for this application!

Theorem 6.1. (Mossel, O’Donnell, Oleszkiewicz [38]) Let 0 < ε < 1
2 . If f ∈

FFDd,η, then

NSε(f) ≥ 1
π

arccos(1− 2ε)− δ

and δ → 0 as d→∞, η → 0.

We present a sketch of the proof as it demonstrates the connection to an isoperi-
metric problem in geometry and its solution by Borell [6]. The proof involves an
application of the invariance principle that has also been studied by Rotar [42]
and Chatterjee [9]. Here is a rough statement of the invariance principle:

Invariance Principle [38, 42, 9]: Suppose f is a low degree multi-linear polyno-
mial in n variables and all its variables have small influence. Then the distribution
of the values of f is nearly identical when the input is a uniform random point from
{−1, 1}n or a random point from Rn with standard Gaussian measure.

The invariance principle allows us to translate the noise sensitivity problem
on boolean hypercube to a similar problem in the Gaussian space and the latter
problem has already been solved by Borell! Towards this end, let f ∈ FFDd,η be
a boolean function on n-dimensional hypercube. We intend to lower bound its ε-
noise sensitivity. We know that f has a representation as a multi-linear polynomial,
namely its Fourier expansion:

f(x) =
∑
S

f̂(S)
∏
i∈S

xi ∀x ∈ {−1, 1}n.

Let f∗ : Rn 7→ R be a function that has the same representation as a multi-linear
polynomial as f :

f∗(x∗) =
∑
S

f̂(S)
∏
i∈S

x∗i ∀x∗ ∈ Rn. (1)

Since f ∈ FFDd,η, all its influences are small. Assume for the moment that f
is also of low degree. By the invariance principle, the distributions of f(x) and
f∗(x∗) are nearly identical, and let us assume them to be identical for the sake of
simplicity. This implies that E[f∗] = E[f ] = 0 and since f is boolean, so is f∗.
In other words, f∗ is a partition of Rn (with Gaussian measure) into two sets of
equal measure. The next observation is that the ε-noise sensitivity of f is same as
the ε-“Gaussian noise sensitivity” of f∗ : Rn 7→ {−1, 1}. To be precise, let (x∗, y∗)
be a pair of (1− 2ε)-correlated n-dimensional Gaussians, i.e. for every co-ordinate
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i, (x∗i , y
∗
i ) are (1− 2ε)-correlated standard Gaussians. One way to generate such a

pair is to pick two independent standard n-dimensional Gaussians x∗ and z∗, and
let y∗ = (1 − 2ε)x∗ +

√
1− (1− 2ε)2z∗, and thus one can think of y∗ as a small

perturbation of x∗. Let the ε-noise sensitivity of a function f∗ : Rn 7→ {−1, 1} be
defined as:

NSε(f∗) := Prx∗∼1−2εy∗ [f∗(x∗) 6= f∗(y∗)] .

When f∗ is a multi-linear polynomial as in (1), it is easily observed that

NSε(f∗) =
1
2
− 1

2

∑
S

f̂(S)2(1− 2ε)|S|.

But this expression is same as the ε-noise sensitivity of the boolean function f and
thus NSε(f) = NSε(f∗) and Theorem 6.1 follows from Borell’s result that lower
bounds NSε(f∗).

Theorem 6.2. (Borell [6]) If g∗ : Rn 7→ {−1, 1} is a measurable function with
E[g∗] = 0, then

NSε(g∗) ≥ NSε(HALF SPACE) =
1
π

arccos(1− 2ε),

where HALF-SPACE is the partition of Rn by a hyperplane through origin.

We note that the parameter δ in the statement of Theorem 6.1 accounts for ad-
ditive errors involved at multiple places during the argument: firstly, the distribu-
tions f(x) and f∗(x∗) are only nearly identical. Secondly, even though f ∈ FFDd,η,
f is not necessarily of bounded degree, and the invariance principle is not directly
applicable. One gets around this issue by smoothening f that kills the high order
Fourier coefficients (which are then discarded) and only slightly affecting the noise
sensitivity. The truncated version of f has bounded degree and the invariance prin-
ciple can be applied. We also note that the statement of Borell’s Theorem holds for
g∗ that is [−1, 1]-valued when the noise sensitivity is defined as 1

2 −
1
2 〈g
∗, T1−2εg

∗〉
and T1−2ε is the Ornstein-Uhlenbeck operator.

7. Max-Cut problem

Max-Cut Problem: Given a graph G(V,E), find a partition that maximizes the
number of edges cut.

Valuation: We define Val(f) as the ε-noise sensitivity of f for an appropriately
chosen constant ε > 1

2 . Specifically, pick input x ∈ {−1, 1}n at random, and let
y be a string obtained by flipping each bit of the string x with probability ε, i.e.
x ∼1−2ε y. Define

Val(f) := Probx∼1−2εy [f(x) 6= f(y)] .

The optimization problem concerns cuts in graphs. As in Section 5, we consider
the complete graph with vertices {−1, 1}n and non-negative weights on edges rep-
resenting the probability that a pair (x, y) is picked, and f : {−1, 1}n 7→ {−1, 1}
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as a cut in the graph. An important thing to note here is that for the Graph Par-
titioning problem, the goal is to minimize the noise sensitivity for a balanced cut,
and ε > 0 is a small constant. On the other hand, for the Max-Cut problem, the
goal is to maximize the noise sensitivity, and ε > 1

2 .

Completeness: If f ∈ DICT, then it is easily seen that Val(f) = ε.

Soundness: The Majority Is Stablest Theorem states that MAJORITY is the most
stable function among the class of low influence balanced boolean functions. It is
implicit in this statement that the noise rate is strictly less than 1

2 . It turns out,
essentially from the same theorem, that when the noise rate is above 1

2 , MAJORITY
is the most unstable function among the class of low influence boolean functions
(even including the unbalanced ones). This allows us to show that if f ∈ FFDd,η,

Val(f) ≤ 1
π

arccos(1− 2ε) + δ, where δ → 0 as d→∞, η → 0.

Inapproximability Result: Khot et al [29] proved the following inapproxima-
bility result for the Max-Cut problem and the Majority Is Stablest Theorem was
conjectured therein.

Theorem 7.1. ([29]) Assume the Unique Games Conjecture and let ε > 1
2 . Let

δ > 0 be an arbitrarily small constant. Given a graph G(V,E) that has a parti-
tion that cuts at least ε fraction of the edges, no polynomial time algorithm can
find a partition that cuts at least 1

π arccos(1 − 2ε) + δ fraction of the edges. In
particular, there is no polynomial time algorithm for the Max-Cut problem with an
approximation factor that is strictly less than ε

1
π arccos(1−2ε)

.

In the above theorem, one can choose ε > 1
2 so as to maximize the inapproxima-

bility factor. Let αGW := maxε∈[ 12 ,1]
ε

1
π arccos(1−2ε)

≈ 1.13. The theorem rules out
an efficient algorithm with approximation factor strictly less than αGW . On the
other hand, the well-known SDP-based algorithm of Goemans and Williamson [20]
achieves an approximation factor of exactly αGW and thus is the optimal algorithm
(modulo the Unique Games Conjecture).

8. Independent Set and the It Ain’t Over Till It’s Over
Theorem

Independent Set Problem: Given a graph G(V,E), find the largest independent
set. A set I ⊆ V is called independent if no edge of the graph has both endpoints
in I. It is known from a result of H̊astad [24], that given an N -vertex graph that
has an independent set of size N1−ε, no polynomial time algorithm can find an
independent set of size Nε unless P = NP. In this section, we are interested in the
case when the graph is almost 2-colorable, i.e. has two disjoint independent sets
of size

(
1
2 − ε

)
N each.
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Valuation: We define Val(f) as probability that f is constant on a random εn
dimensional sub-cube. For a set of co-ordinates S ⊆ {1, . . . , n} and a string x ∈
{−1, 1}n, a sub-cube CS,x corresponds to the set of all inputs that agree with x
outside of S, i.e.

CS,x := {z | z ∈ {−1, 1}n, ∀i 6∈ S, zi = xi}.

A random sub-cube CS,x of dimension εn is picked by selecting a random set
S ⊆ {1, . . . , n}, |S| = εn and a random string x. Define:

Val(f) := Pr|S|=εn,x [f is constant on CS,x] .

The connection between this test and the Independent Set problem is rather sub-
tle. One constructs a graph whose vertices are all pairs (C, b) where C is an
εn-dimensional sub-cube and b ∈ {−1, 1} is a bit. The intended purpose of this
vertex is to capture the possibility that f |C ≡ b. If two sub-cubes C,C ′ have
non-empty intersection and b 6= b′, then we cannot have both fC = b and fC′ = b′,
and we introduce an edge between vertices (C, b) and C ′, b′) to denote this conflict.
This construction is known as the FGLSS construction, invented in [18]. It is not
difficult to see that an independent set in this graph corresponds to a boolean
function and the size of the independent set is proportional to the probability that
the function passes the random sub-cube test.

Completeness: If f ∈ DICT, then f(x) = xi0 for some fixed co-ordinate i0. It is
easily seen that for a random sub-cube CS,x, unless i0 ∈ S, f is constant on the
sub-cube. Since |S| = εn, we have Val(f) = 1− ε.
Soundness: If f ∈ FFDd,η, then it can be showed that Val(f) ≤ δ where δ → 0 as
d→∞, η → 0. It follows from the It Ain’t Over Till It’s Over Theorem of Mossel et
al [38] which in fact says something stronger: if f has all influences small, then for
almost all sub-cubes C, not only that f is non-constant on C, but f takes both the
values {−1, 1} on a constant fraction of points in C. A formal statement appears
below:

Theorem 8.1. For every ε, δ > 0, there exist γ, η > 0 and integer d such that if
f ∈ FFDd,η, and C is a random εn-dimensional sub-cube, then

PrC
[∣∣∣E[f(x)|x ∈ C]

∣∣∣ ≥ 1− γ
]
≤ δ.

The theorem is proved using the invariance principle. Bansal and Khot [5] gave
an alternate simple proof without using the invariance principle (the random sub-
cube test is proposed therein), but the conclusion is only that f is non-constant on
almost every sub-cube (which suffices for their application to Independent Set prob-
lem).

Inapproximability Result:

Theorem 8.2. ([5]) Assume the Unique Games Conjecture and let ε, δ > 0 be
arbitrarily small constants. Then given an N -vertex graph G(V,E) that is almost
2-colorable, i.e. has two disjoint independent sets of size

(
1
2 − ε

)
N each, no poly-

nomial time algorithm can find an independent set of size δN .
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Friedgut’s Theorem

Khot and Regev [32] proved a weaker result than Theorem 8.2: assuming the
Unique Games Conjecture, given an N -vertex graph G(V,E) that has an indepen-
dent set of size

(
1
2 − ε

)
N , no polynomial time algorithm can find an independent

set of size δN . This gives 2− ε inapproximability factor for the Vertex Cover prob-
lem.4 The result is optimal since an algorithm that finds a maximal matching and
takes all endpoints of the edges in the matching gives a 2-approximation for the
Vertex Cover problem. Khot and Regev’s paper (and its precursor Dinur and Safra
[16]) use the following theorem of Friedgut [19]:

Theorem 8.3. ([19]) Let f : {−1, 1}n 7→ {−1, 1} be a function such that the
average sensitivity (i.e. sum of all influences) is at most k. Then there exists a
function g that agrees with f on 1−β fraction of inputs and depends only on 23k/β

co-ordinates.

9. Kernel Clustering and the Propeller Problem

Kernel Clustering Problem: Given an N × N (symmetric) positive semidefinite
matrix A = (aij) with

∑N
i,j=1 aij = 0, partition the index set {1, . . . , N} into k

sets T1, . . . , Tk so as to maximize
∑k
`=1

∑
i,j∈T` aij . In words, we seek to partition

the matrix into k×k block diagonal form and then maximize the sum of entries of
all diagonal blocks. Since the matrix is PSD, this sum is necessarily non-negative.
The problem is actually a special case of the Kernel Clustering problem studied in
[30, 31] and we don’t state the more general problem here. We think of k ≥ 2 as
a small constant.

Valuation: We define Val(f) as the Fourier mass of f at the first level. We need
to consider k-ary functions on k-ary hypercube, i.e. functions f : {1, . . . , k}n 7→
{1, . . . , k}. There is a natural generalization for the notions of dictatorship func-
tions, Fourier representation, influences, and functions that are far from dictator-
ship. We don’t formally state these notions here and directly state the definition
of Val(f):

Val(f) :=
∑

S∈{0,1,...,k−1}n,|S|=1

f̂(S)2,

where f̂(S) is the Fourier coefficient corresponding to a multi-index S ∈ {0, 1, . . . , k−
1}n and |S| denotes the number of its non-zero co-ordinates. The connection be-
tween the Kernel Clustering problem and the specific valuation is that the (squared)
Fourier mass is a PSD function of the values of f .

Completeness:5 If f ∈ DICT, then Val(f) = 1− 1
k .

4A vertex cover in a graph is complement of an independent set. The Vertex Cover problem
seeks to find a vertex cover of minimum size.

5When k = 2, we have boolean functions on boolean hypercube, and one would expect that
for a dictatorship function, the Fourier mass at the first level equals 1. We instead get 1

2
due to

a slightly different (but equivalent) representation of functions.
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Soundness: If f ∈ FFDd,η, then Val(f) ≤ C(k) + δ where δ → 0 as d → ∞ and
η → 0. We would like to know functions that maximize the Fourier mass at the
first level among the class of functions that are far from dictatorships. Since f
has all its influences small, one can apply the invariance principle, and reduce this
question to a certain geometric question, and the constant C(k) is the solution to
this geometric question. We state the geometric question below:

Definition 9.1. Let A1, . . . Ak be a partition of Rk−1 into k measurable sets and
for 1 ≤ ` ≤ k, let z` be the Gaussian moment vector over A`, i.e.

z` :=
∫
A`

x dγ where γ is standard Gaussian measure on Rk−1.

Then C(k) is the supremum (it is achieved) of the sum of squared lengths of z`’s
over all possible partitions, i.e.

C(k) := sup
Rk−1=A1∪...∪Ak

k∑
`=1

‖z`‖2. (2)

It seems challenging to characterize an optimal partition for k ≥ 4. For k = 2,
the optimal partition of R into two sets is the partition into positive and negative
real line, and C(2) = 1

π . For k = 3, the optimal partition of R2 into three sets is the
“propeller”, i.e. partition into three cones with angle 120o each, and C(3) = 9

8π .
One would expect that for k = 4, the optimal partition of R3 into four sets is
the partition into four cones given by a regular tetrahedron. This turns out to be
false as numerical computation shows that the value of this partition is worse than
C(3) = 9

8π that can be achieved by letting R3 = R2 × R and then partitioning R2

as a propeller. In fact Khot and Naor [30] conjecture that the propeller partition
is the optimal one for any k ≥ 3:

Conjecture 9.2. Propeller Conjecture: For every k ≥ 3, C(k) = C(3). In words,
the optimal partition of Rk−1 into k sets in the sense of (2) is achieved by letting
Rk−1 = R2 × Rk−3 and partitioning R2 as a propeller.

Inapproximability Result:

Theorem 9.3. ([30, 31]) Assume the Unique Games Conjecture and let ε, δ > 0 be
arbitrarily small constants. Then given an instance A = (aij) with value 1− 1

k − ε,
no polynomial time algorithm can find a solution with value at least C(k) + δ. In
particular, there is no polynomial time algorithm for the Kernel Clustering problem
with approximation factor strictly less than 1−1/k

C(k) .

10. Conclusion

We have presented several examples to demonstrate the connections between in-
approximability, discrete Fourier analysis, and geometry. There are many more
examples and we conclude with pointing out a few:
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• Plurality is Stablest Conjecture: In Section 6 and 7, we presented the
connections between the Max-Cut problem, the Majority Is Stablest Theorem,
and Borell’s Theorem stating that a halfspace through origin is the most
noise-stable balanced partition of Rn. The Max-Cut problem can be gener-
alized to the Max-kCut problem where one seeks to partition a graph into
k ≥ 3 sets so as to maximize the number of edges cut. An optimal inap-
proximability result for this problem is implied by the Plurality Is Stablest
Conjecture stating that the Plurality function from {1, . . . , k}n to {1, . . . , k}
is the most stable under noise among the class of functions that are balanced
and whose all influences are small. This conjecture in turn is implied by the
Standard Simplex Conjecture stating that the standard k-simplex partition is
the most noise-stable balanced partition of Rn with n ≥ k − 1 (see [26]).

• Sub-cube Test: Consider a variant of the test discussed in Section 8: As-
sume that f is balanced, and one tests whether f is constant −1 on a random
sub-cube of linear dimension. We know that if a function f passes the test
with constant probability, say α, then it must have an influential variable.
However f need not be close to a junta (i.e. a function depending on a
bounded number of co-ordinates). Is it necessarily true that there is a func-
tion g that is close to a junta, monotonically above f , and passes the test
with probability close to α? We say that g is monotonically above f if
∀x, f(x) = 1 =⇒ g(x) = 1. Such a result, though interesting on its own,
might be useful towards inapproximability of graph coloring problem.

• Lasserre Gaps: Theorem 5.6 states that there is an N -point negative type
metric that is locally `1-embeddable, but not globally `1-embeddable. In
computer science, this result can be thought of as an integrality gap result for
the so-called Sherali-Adams linear programming relaxation. An integrality
gap result is an explicit construction showing that there is a gap between the
true optimum and the optimum of the linear or semidefinite programming
relaxation. Such results are taken as evidence that LP/SDP relaxation would
not lead to a good approximation algorithm. There is a SDP relaxation
known as Lasserre relaxation that is at least as powerful as the Sherali-
Adams relaxation. It is a challenging open problem to prove integrality gap
results for the Lasserre relaxation (for any problem of interest such as Max-
Cut, Vertex Cover, or Unique Game). This could lead to interesting questions
in Fourier analysis and/or geometry.

• Small Set Expansion Problem: Raghavendra and Steurer [41] give a
connection between the small set expansion problem and the Unique Games
Conjecture. Given an N -vertex graph, the goal is to find a set of vertices
S of size δN that is nearly non-expanding, i.e. only a tiny fraction of edges
incident on S leave S. One could conjecture that finding such sets is com-
putationally intractable. Such a conjecture (see [41] for a formal statement)
implies the Unique Games Conjecture as shown in [41].
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• Bounded Spectral Norm: A result of Green and Sanders [23] states that
every function f : GF (2)n 7→ {0, 1} that has bounded spectral norm (defined
as the sum of absolute values of its Fourier coefficients) can be expressed as a
sum of a bounded number of functions each of which is an indicator function
of an affine subspace of GF (2)n. This result has the same flavor as “dicta-
torships are good; functions far from dictatorships are bad”, except that now
indicators of affine subspaces are considered as the “good” functions. Since
there is such a close connection between such theorems and inapproximability
results, it would be interesting to find an application to inapproximability, if
there is one.
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