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Abstract

We study the learnability of several fundamental concept classes in the agnostic learning framework of
Haussler [Hau92] and Kearns et al. [KSS94].

We show that under the uniform distribution, agnostically learning parities reduces to learning parities
with random classification noise, commonly referred to as the noisy parity problem. Together with the parity
learning algorithm of Blum et al. [BKW03], this gives the first nontrivial algorithm for agnostic learning of
parities. We use similar techniques to reduce learning of two other fundamental concept classes under the
uniform distribution to learning of noisy parities. Namely, we show that learning of DNF expressions reduces
to learning noisy parities of just logarithmic number of variables and learning of k-juntas reduces to learning
noisy parities of k variables.

We give essentially optimal hardness results for agnostic learning of monomials over {0, 1}n and halfs-
paces over Qn. We show that for any constant ε finding a monomial (halfspace) that agrees with an unknown
function on 1/2 + ε fraction of examples is NP-hard even when there exists a monomial (halfspace) that
agrees with the unknown function on 1− ε fraction of examples. This resolves an open question due to Blum
and significantly improves on a number of previous hardness results for these problems. We extend these
result to ε = 2− log1−λ n for any constant λ > 0 under stronger complexity assumptions.

0Preliminary versions of the results in this paper appeared in [Fel06b] and [FGKP06].
∗Supported by grants from the National Science Foundation NSF-CCR-0310882, NSF-CCF-0432037, and NSF-CCF-0427129.



1 Introduction

Parities, monomials, and halfspaces are among the most fundamental concept classes in learning theory. Each
of these concept classes is long-known to be learnable when examples given to the learning algorithm are guar-
anteed to be consistent with a function from the concept class [Val84, BEHW87, Lit88]. Real data is rarely
completely consistent with a simple concept and therefore this strong assumption is a significant limitation of
learning algorithms in Valiant’s PAC learning model [Val84]. A general way to address this limitation was sug-
gested by Haussler [Hau92] and Kearns et al. [KSS94] who introduced the agnostic learning model. In this
model, informally, nothing is known about the process that generated the examples and the learning algorithm
is required to do nearly as well as is possible using hypotheses from a given class. This corresponds to a com-
mon empirical approach when few or no assumptions are made on the data and a fixed space of hypotheses is
searched to find the “best” approximation of the unknown function.

This model can also be thought of as a model of adversarial classification noise by viewing the data as
coming from f∗ ∈ C but with labels corrupted on an η∗ fraction of examples (f∗ is the function in C that has
the minimum error η∗). Note however, that unlike in most other models of noise the learning algorithm is not
required to recover the corrupted labels but only to classify correctly “almost” (in the PAC sense) 1−η∗ fraction
of examples.

Designing algorithms that learn in this model is notoriously hard and very few positive results are known
[KSS94, LBW95, GKS01, KKMS05]. In this work we give the first non-trivial positive result for learning of
parities and strong hardness results for learning monomials and halfspaces in this model. Our results apply to
the standard agnostic learning model in which the learning algorithm outputs a hypothesis from the same class
as the class against which its performance is measured. By analogy to learning in the PAC model this restrictions
is often referred to as proper agnostic learning.

1.1 Learning Parities Under the Uniform Distribution

A parity function is the XOR of some set of variables T ⊆ [n], where [n] denotes the set {1, 2, . . . , n}. In
the absence of noise, one can identify the set T by running Gaussian elimination on the given examples. The
presence of noise in the labels, however, leads to a number of challenging and important problems. We address
learning of parities in the presence of two types of noise: random classification noise (each label is flipped with
some fixed probability η randomly and independently) and adversarial classification noise (that is the agnostic
learning). When learning with respect to the uniform distribution these problems are equivalent to decoding of
random linear binary codes (from random and adversarial errors, respectively) both of which are long-standing
open problems in coding theory [BMvT78, McE78, BFKL93]. Below we summarize the known results about
these problems.

• Adversarial Noise: Without any restrictions on the distribution of examples the problem of (proper)
agnostic learning parities is known to be NP-hard. This follows easily from a celebrated result of Håstad
[Has01]. We are unaware of non-trivial algorithms for this problem under any fixed distribution, prior
to our work. The problem of learning parities with adversarial noise under the uniform distribution is
equivalent to finding a significant Fourier coefficient of a Boolean function and related to the problem of
decoding Hadamard codes. If the learner can ask membership queries (or queries that allow the learner to
get the value of function f at any point), a celebrated result of Goldreich and Levin gives a polynomial time
algorithm for this problem [GL89]. Later algorithms were given by Kushilevitz and Mansour [KM91],
Levin [Lev93], Bshouty et al. [BJT04], and Feldman [Fel06a].

• Random Noise: The problem of learning parities in the presence of random noise, or the noisy parity
problem is a notorious open problem in computational learning theory. Blum, Kalai and Wasserman give
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an algorithm for learning parity functions on n variables in the presence of random noise in time 2O( n
log n

)

for any constant η [BKW03]. Their algorithm works for any distribution of examples. We will also
consider a natural restriction of this problem in which the set T is of size at most k. The only known
algorithm for this problem is the brute-force search in which one takes O( 1

1−2ηk log n) samples and then
finds the parity on k variables that best fits the data through exhaustive search in time O(nk).

In this work, we focus on learning parities under the uniform distribution. We reduce a number of fundamen-
tal open problems on learning under the uniform distribution to learning noisy parities, establishing the central
role of noisy parities in this model of learning.

Learning Parities with Adversarial Noise

We show that under the uniform distribution, learning parities with adversarial noise reduces to learning parities
with random noise. In particular, our reduction and the result of Blum et al. imply the first non-trivial algorithm
for learning parities with adversarial noise under the uniform distribution.

Theorem 1 For any constant η < 1/2, parities are learnable under the uniform distribution with adversarial
noise of rate η in time O(2

n
log n ).

Equivalently, this gives the first non-trivial algorithm for agnostically learning parities. The restriction on
the noise rate in the algorithm of Blum et al. translates into a restriction on the optimal agreement rate of
the unknown function with a parity (namely it has to be a constant greater than 1/2). Hence in this case the
adversarial noise formulation is cleaner.

Our main technical contribution is to show that an algorithm for learning noisy parities gives an algorithm
that finds significant Fourier coefficients (i.e. correlated parities) of a function from random samples. Thus an
algorithm for learning noisy parities gives an analogue of the Goldreich-Levin/Kushilevitz-Mansour algorithm
for the uniform distribution, but without membership queries. This result is proved using Fourier analysis.

Learning DNF formulae

Learning of DNF expressions from random examples is a famous open problem originating from Valiant’s
seminal paper on PAC learning [Val84]. In this problem we are given access to examples of a Boolean function
f on points randomly chosen with respect to distribution D, and ε > 0. The goal is to find a hypothesis that
ε-approximates f with respect toD in time polynomial in n, s = DNF-size(f) and 1/ε, where DNF-size(f)
is the number of terms in the DNF formula for f with the minimum number of terms. The best known algorithm
for learning DNF in this model was given by Klivans and Servedio [KS01] and runs in time 2Õ(n1/3).

For learning DNF under the uniform distribution a simple quasipolynomial algorithm was given by Verbeurgt
[Ver90]. His algorithm essentially collects all the terms of size log (s/ε) + O(1) that are consistent with the
target function, i.e. do not accept negative points and runs in time O(nlog (s/ε)). We are unaware of an algorithm
improving on this approach. Jackson [Jac97] proved that DNFs are learnable under the uniform distribution
if the learning algorithm is allowed to ask membership queries. This breakthrough and influential result gives
essentially the only known approach to learning of unrestricted DNFs in polynomial time.

We show that learning of DNF expressions reduces to learning parities of O(log (s/ε)) variables with noise
rate η = 1/2− Õ(ε/s) under the uniform distribution.

Theorem 2 Let A be an algorithm that learns parities of k variables over {0, 1}n for every noise rate η < 1/2
in time T (n, k, 1

1−2η ) using at most S(n, k, 1
1−2η ) examples. Then there exists an algorithm that learns DNF

expressions of size s in time Õ( s4

ε2
· T (n, log B,B) · S(n, log B,B)2), where B = Õ(s/ε).
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Learning k-juntas

A Boolean function is a k-junta if it depends only on k variables out of n. Learning of k-juntas was proposed by
Blum and Langley [BL97, Blu94], as a clean formulation of the problem of efficient learning in the presence of
irrelevant features. Moreover, for k = O(log n), a k-junta is a special case of a polynomial-size decision tree or
a DNF expression. Thus, learning juntas is a first step toward learning polynomial-size decision trees and DNFs
under the uniform distribution. A brute force approach to this problem would be to take O(k log n) samples,
and then run through all nk subsets of possible relevant variables. The first non-trivial algorithm was given only
recently by Mossel et al. [MOS03], and runs in time roughly O(n0.7k). Their algorithm relies on new analysis
of the Fourier transform of juntas. However, even the question of whether one can learn k-juntas in polynomial
time for k = ω(1) still remains open (cf. [Blu03a]).

We give a stronger and simpler reduction from learning noisy parities of size k to the problem of learning
k-juntas.

Theorem 3 Let A be an algorithm that learns parities of k variables on {0, 1}n for every noise rate η < 1/2
in time T (n, k, 1

1−2η ). Then there exists an algorithm that learns k-juntas in time O(22kk · T (n, k, 2k−1)).

This reduction also applies to learning k-juntas with random noise. A noisy parity of k variables is a special
case of a k-junta. Thus we can reduce the noisy junta problem to a special case, at the cost of an increase in the
noise level. By suitable modifications, the reduction from DNF can also be made resilient to random noise.

Even though at this stage our reductions for DNFs and juntas do not yield new algorithms they establish
connections between well-studied open problems. Our reductions allow one to focus on functions with known
and simple structure viz parities, in exchange for having to deal with random noise. They show that a non-trivial
algorithm for learning parities of O(log n) variables will help make progress on a number of important questions
regarding learning under the uniform distribution.

1.2 Hardness of Proper Agnostic Learning of Monomials and Halfspaces

Monomials are conjunctions of possibly negated variables and halfspaces are linear threshold functions over the
input variables. These are perhaps the most fundamental and well-studied concept classes and are known to
be learnable in a variety of settings. In this work we address proper agnostic learning of these concept classes.
Uniform convergence results in Haussler’s work [Hau92] (see also [KSS94]) imply that learnability these classes
in the agnostic model is equivalent to the ability to come up with a function in C that has the optimal agreement
rate with the given set of examples. For both monomials and halfspaces it is known that finding a hypothesis
with the best agreement rate is NP-hard [JP78, AL88, HvHS95, KL93, KSS94]. However, for most practical
purposes a hypothesis with agreement rate close to the optimum would be sufficient. This reduces the agnostic
learning of a function class to a natural combinatorial approximation problem or, more precisely, to the following
two problems: approximately minimizing the disagreement rate and approximately maximizing the agreement
rate (sometimes referred to as co-agnostic learning). In this work we give essentially optimal hardness results
for approximately maximizing the agreement rate with monomials and halfspaces.

1.2.1 Monomials

Monomials are long-known to be learnable in the PAC model and its various relatives [Val84]. They are also
known to be learnable attribute-efficiently [Lit88, Hau88] and in the presence of random classification noise
[Kea98]. With the exception of Littlestone’s Winnow algorithm that produces halfspaces as its hypotheses
these learning algorithms are proper. This situation contrasts the complexity of proper learning in the agnostic
learning model. Angluin and Laird proved that finding a monotone (that is without negations) monomial with
the maximum agreement rate (this problem is denoted MMon-MA) is NP-hard [AL88]. This was extended to
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general monomials by Kearns and Li [KL93] (the problem is denoted Mon-MA). Ben-David et al. gave the first
inapproximability result for this problem, proving that the maximum agreement rate is NP-hard to approximate
within a factor of 770

767 − ε for any constant ε > 0 [BDEL03]. This result was more recently improved by Bshouty
and Burroughs to the inapproximability factor of 59

58 − ε [BB02].
The problem of approximately minimizing disagreement with a monomial (denoted Mon-MD) was first

considered by Kearns et al. who give an approximation preserving reduction from the SET-COVER problem to
Mon-MD [KSS94] (similar result was also obtained by Höffgen et al. [HvHS95]). This reduction together with
the hardness of approximation results for SET-COVER due to Lund and Yannakakis [LY94] (see also [RS97])
implies that Mon-MD is NP-hard to approximate within a factor of c log n for some constant c.

On the positive side, the only non-trivial approximation algorithm is due to Bshouty and Burroughs and
achieves 2 − log n

n -approximation for the agreement rate [BB02]. Note that factor 2 can always be achieved by
either constant 0 or constant 1 function.

In this work, we give the following inapproximability results for Mon-MA.

Theorem 4 For every constant ε > 0, Mon-MA is NP-hard to approximate within a factor of 2− ε.

Then, under a slightly stronger assumption, we show that the second order term is small.

Theorem 5 For any constant λ > 0, there is no polynomial-time algorithm that approximates Mon-MA within
a factor of 2− 2− log1−λ n, unless NP ⊆ RTIME(2(log n)O(1)

).

Theorem 5 also implies strong hardness results for Mon-MD.

Corollary 1 For any constant λ > 0, there is no polynomial time algorithm that approximates Mon-MD within
a factor of 2log1−λ n, unless NP ⊆ RTIME(2(log n)O(1)

).

In practical terms, these results imply that even very low (subconstant) amounts of adversarial noise in the
examples make finding a term with agreement rate larger (even by very small amount) than 1/2, NP-hard, in
other words even weak agnostic learning of monomials is NP-hard. This resolves an open problem due to Blum
[Blu98, Blu03b].

All of our results hold for the MMon-MA problem as well. A natural equivalent formulation of the MMon-MA
problem is maximizing the number of satisfied monotone disjunction constraints, that is, equations of the form
t(x) = b, where t(x) is a disjunction of (unnegated) variables and b ∈ {0, 1}. We denote this problem by
MAX-B-MSAT where B is the bound on the number of variables in each disjunction (see Definition 4 for more
details). A corollary of our hardness result for MMon-MA is the following theorem

Theorem 6 For any constant ε, there exists a constant B such that MAX-B-MSAT is NP-hard to approximate
within 2− ε.

This result gives a form of the PCP theorem with imperfect completeness.
Finally, we show that Theorems 4 and 5 can be easily used to obtain hardness of agnostic learning results

for classes richer than monomials, thereby improving on several known results and establishing hardness of
agreement max/minimization for new function classes.

It is important to note that our results do not rule out agnostic learning of monomials when the disagreement
rate is very low (i.e. 2− log1−o(1) n), weak agnostic learning with agreement lower than 1/2 + 2− log1−o(1) n, or
non-proper agnostic learning of monomials.

Our proof technique is based on using Feige’s multi-prover proof system for 3SAT-5 (3SAT with each vari-
able occurring in exactly 5 clauses) together with set systems possessing a number of specially-designed prop-
erties. The set systems are then constructed by a simple probabilistic algorithm. As in previous approaches,
our inapproximability results are eventually based on the PCP theorem. However, previous results reduced the
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problem to an intermediate problem (such as MAX-CUT, MAX-E2-SAT, or SET-COVER) thereby substantially
losing the generality of the constraints. We believe that key ideas of our technique might be useful in dealing
with other constraint satisfaction problems involving constraints that are conjunctions or disjunctions of Boolean
variables.

1.2.2 Halfspaces

The problem of learning a halfspace is one of the oldest and well-studied problems in machine learning, dating
back to the work on Perceptrons in the 1950s [Agm64, Ros62, MP69]. If such a halfspace does exist, one can
find it in polynomial time using efficient algorithms for Linear Programming. When the data can be separated
with a significant margin simple online algorithms like Perceptron and Winnow are usually used (which also
seem to be robust to noise [Gal90, Ama94]). In practice, positive examples often cannot be separated from
negative using a linear threshold. Therefore much of the recent research in this area focuses on finding provably
good algorithms when the data is noisy or inconsistent [BFKV97, ABSS97, Coh97, KKMS05]. Halfspaces are
properly PAC learnable even in the presence of random noise: Blum et al. [BFKV97] show that a variant of the
Perceptron algorithm can be used in this setting (see also [Coh97]).

The problem of maximizing agreements with a halfspace was first considered by Johnson and Preparata
who prove that finding a halfspace that has the optimal agreement rate with the given set of examples over Zn

is NP-hard [JP78] (see also Hemisphere problem in [GJ79]). In the context of agnostic learning Höffgen et al.
show that the same is true for halfspaces over {0, 1}n [HvHS95]. A number of results are known on hardness
of approximately maximizing the agreement with a halfspace (this problem is denoted HS-MA). Amaldi and
Kann [AK95], Ben-David et al. [BDEL00], and Bshouty and Burroughs [BB02] prove that HS-MA is NP-hard
to approximate within factors 262

261 , 418
415 , and 85

84 , respectively.
The results of Höffgen et al. imply that approximating the minimum disagreement rate of a halfspace within

c log n is NP-hard for some constant c. Further Arora et al. [ABSS97] improve this factor to 2log0.5−δ n under
stronger complexity assumption NP 6⊆ DTIME(2(log n)O(1)

).
We give the optimal (up to the second order terms) hardness result for HS-MA with examples over Qn.

Namely we show that even if there is a halfspace that correctly classifies 1− ε fraction of the input, it is hard to
find a halfspace that is correct on a 1

2 + ε fraction of the inputs for any ε > 0 assuming P 6= NP. Under stronger
complexity assumptions, we can take ε to be as small as 2−

√
log n where n is the size of the input.

Theorem 7 If P 6= NP then for any constant ε > 0 no polynomial time algorithm can distinguish between the
following cases of the halfspace problem over Qn:

• 1− ε fraction of the points can be correctly classified by some halfspace.

• No more than 1/2 + ε fraction of the points can be correctly classified by any halfspace.

Moreover if we assume that NP * DTIME(2(log n)O(1)
) we can take ε = 2−Ω(

√
log n).

As in the case of monomials this result implies that even weak agnostic learning of halfspaces is a hard
problem. In an independent work Guruswami and Raghavendra showed that an analogous hardness result is true
even for halfspaces over points in {0, 1}n [GR06].

The crux of our proof is to first show a hardness result for solving systems of linear equations over the reals.
Equations are easier to work with than inequalities since they admit certain tensoring and boosting operations
which can be used for gap amplification. We show that given a system where there is a solution satisfying a 1−ε
fraction of the equations, it is hard to find a solution satisfying even an ε fraction. We then reduce this problem
to the halfspace problem. The idea of repeated tensoring and boosting was used by Khot and Ponnuswami for
equations over Z2 in order to show hardness for Max-Clique [KP06]. The main technical difference in adapting
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this technique to work over Q is keeping track of error-margins. For the reduction to halfspaces, we need to
construct systems of equations where in the ‘No’ case, many equations are unsatisfiable by a large margin.
Indeed our tensoring and boosting operations resemble taking tensor products of codes and concatenation with
Hadamard codes over finite fields.

We note that the approximability of systems of linear equations over various fields is a well-studied problem.
Håstad shows that no non-trivial approximation is possible over Z2 [Has01]. Similar results are known for
equations over Zp and finite groups [Has01, HER04]. However, to our knowledge this is the first optimal
hardness result for equations over Q. On one hand, the Fourier analytic techniques that work well for finite
groups and fields do not seem to apply over Q. On the other hand, the fact that we are not restricted to equations
with constantly many variables makes our task much simpler. A natural open question is whether a similar
hardness result holds for equations of constant size over Q.

1.2.3 Relation to Non-proper Agnostic Learning of Monomials and Halfspaces

A natural and commonly considered extension of the basic agnostic model allows the learner to output hypothe-
ses in arbitrary (efficiently evaluatable) form. While it is unknown whether this strengthens the agnostic learning
model several positive results are only known in this non-proper setting. Kalai et al. recently gave the first non-
trivial algorithm for learning monomials [KKMS05] in time 2Õ(

√
n). They also gave a breakthrough result for

agnostic learning of halfspaces by showing a simple algorithm that agnostically learns halfspaces with respect to
the uniform distribution on the hypercube up to any constant accuracy. Their algorithms output linear thresholds
of parities as hypotheses.

An efficient agnostic learning algorithm for monomials or halfspaces (not necessarily proper) would have
major implications on the status of other open problems in learning theory. For example, it is known that a DNF
expression can be weakly approximated by a monomial (that is equal with probability 1/2+γ for a non-negligible
γ). Therefore, as it was observed by Kearns et al. [KSS94], an agnostic learning algorithm for monomials would
find a function that weakly learns a DNF expression. Such learning algorithm can then be converted to a regular
PAC learning algorithm using any of the the boosting algorithms [Sch90, Fre90]. In contrast, at present the
best PAC learning algorithm even for DNF expressions runs in time 2Õ(n1/3) [KS01]. It is also known that
any AC0 circuit can be approximated by the sign of a low-degree polynomial over the reals with respect to
any distribution [BRS91, ABFR91]. Thus, an efficient algorithm for agnostic learning of halfspaces would
imply a quasipolynomial algorithm for learning AC0 circuits – a problem for which no nontrivial algorithms are
known. Another evidence of the hardness of the agnostic learning of halfspaces was recently given by Feldman
et al. [FGKP06] who show that this problem is intractable assuming the hardness of Ajtai-Dwork cryptosystem
[AD97] (this result also follows easily from an independent work of Klivans and Sherstov [KS06]). Kalai et al.
proved that agnostic learning of halfspaces with respect to the uniform distribution implies learning of parities
with random classification noise – a major open problem in learning theory (see Section 3 for more details on
the problem).

1.3 Organization of This Paper

In Section 2 we define the relevant learning models. Section 3 describes our result on agnostic learning of parities
and its applications to learning of DNFs and juntas. In Sections 4 and 5 we prove the hardness of agnostically
learning monomials and halfspaces respectively.
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2 Learning Models

The learning models discussed in this work are based on Valiant’s well-known PAC model [Val84]. In this
model, for a concept c and distribution D over X , an example oracle EX(c,D) is an oracle that upon request
returns an example 〈x, c(x)〉 where x is chosen randomly with respect to D. For ε ≥ 0 we say that function
g ε-approximates a function f with respect to distribution D if PrD[f(x) = g(x)] ≥ 1 − ε. For a concept
class C, we say that an algorithm A efficiently learns C, if for every ε > 0, c ∈ C, and distribution D over
X , A given access to EX(c,D) outputs, with probability at least 1/2, a hypothesis h that ε-approximates c.
The learning algorithm is efficient if it runs in time polynomial in 1/ε, and the size s of the learning problem
where the size of the learning problem is equal to the length of an input to c plus the description length of c in
the representation associated with C. An algorithm is said to weakly learn C if it produces a hypothesis h that
(1
2 −

1
p(s))-approximates (or weakly approximates) c for some polynomial p.

Random classification noise model introduced by Angluin and Laird formalizes the simplest type of white
label noise. In this model for any η ≤ 1/2 called the noise rate the regular example oracle EX(c,D) is replaced
with the noisy oracle EXη(c,D). On each call, EXη(c,D), draws x according to D, and returns 〈x, c(x)〉 with
probability η and 〈x,¬c(x)〉 with probability 1− η. When η approaches 1/2 the label of the corrupted example
approaches the result of a random coin flip, and therefore the running time of algorithms in this model is allowed
to polynomially depend on 1

1−2η .

2.1 Agnostic Learning Model

The agnostic PAC learning model by Haussler [Hau92] and Kearns et al. [KSS94] in order to relax the assump-
tion that examples are labeled by a concept from a specific concept class. In this model no assumptions are
made on the function that labels the examples, in other words, the learning algorithm has no prior beliefs about
the target concept (and hence the name of the model). The goal of the agnostic learning algorithm for a concept
class C is to produce a hypothesis h ∈ C whose error on the target concept is close to the best possible by a
concept from C.

Formally, for two Boolean functions f and h and a distribution D over the domain, we define ∆D(f, h) =
PrD[f 6= h]. Similarly, for a concept class C and a function f define ∆D(f, C) = infh∈C{∆D(f, h)}. Kearns et
al. define the agnostic PAC learning model as follows [KSS94].

Definition 1 An algorithm A agnostically (PAC) learns a concept class C if for every ε > 0, a Boolean function
f and distribution D over X , A, given access to EX(f,D), outputs, with probability at least 1/2, a hypothesis
h ∈ C such that ∆D(f, h) ≤ ∆D(f, C) + ε. As before, the learning algorithm is efficient if it runs in time
polynomial in s and 1/ε.

One can also consider a more general agnostic learning in which the examples are drawn from an arbitrary
distribution over X ×{0, 1} (and not necessarily consistent with a function). Clearly our negative results would
apply in this more general setting and our positive result can be easily extended to it.

The agnostic learning model can also be thought of as a model of adversarial noise. By definition, a Boolean
function f differs from some function in c ∈ C on ∆D(f, C) fraction of the domain. Therefore f can be thought
of as c corrupted by noise of rate ∆D(f, C). Unlike in the random classification noise model the points on
which a concept can be corrupted are unrestricted and therefore we refer to it as adversarial classification noise.
Note that an agnostic learning algorithm will not necessarily find a hypothesis that approximates c – any other
function in C that differs from f on at most ∆D(f, C) + ε fraction of the domain is acceptable. This way to
view the agnostic learning is convenient when the performance of a learning algorithm depends on the rate of
disagreement (that is the noise rate).
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3 Learning Parities with Noise

In this section, we describe our reductions from learning of parities with adversarial noise to learning of parities
with random noise. We will also show applications of this reduction to learning of DNF and juntas. We start by
describing the main technical component of our reductions: an algorithm that using an algorithm for learning
noisy parities, finds a heavy Fourier coefficient of a Boolean function if one exists. Following Jackson, we call
such an algorithm a weak parity algorithm.

The high-level idea of the reduction is to modify the Fourier spectrum of a function f so that it is “almost”
concentrated at a single point. For this, we introduce the notion of a probabilistic oracle for real-valued functions
f : {0, 1}n → [−1, 1]. We then present a transformation on oracles that allows us to clear the Fourier coefficients
of f belonging to a particular subspace of {0, 1}n. Using this operation we show that one can simulate an oracle
which is close (in statistical distance) to a noisy parity.

3.1 Fourier Transform

Our reduction uses Fourier-analytic techniques which were first introduced to computational learning theory
by Linial et al. [LMN93]. In this context we view Boolean functions as functions f : {0, 1}n → {−1, 1}.
All probabilities and expectations are taken with respect to the uniform distribution unless specifically stated
otherwise. For a Boolean vector a ∈ {0, 1}n let χa(x) = (−1)a·x, where ‘·’ denotes an inner product modulo
2, and let weight(a) denote the Hamming weight of a.

We define an inner product of two real-valued functions over {0, 1}n to be 〈f, g〉 = Ex[f(x)g(x)]. The
technique is based on the fact that the set of all parity functions {χa(x)}a∈{0,1}n forms an orthonormal basis of
the linear space of real-valued functions over {0, 1}n with the above inner product. This fact implies that any
real-valued function f over {0, 1}n can be uniquely represented as a linear combination of parities, that is f(x) =∑

a∈{0,1}n f̂(a)χa(x). The coefficient f̂(a) is called Fourier coefficient of f on a and equals Ex[f(x)χa(x)];

a is called the index and weight(a) the degree of f̂(a). We say that a Fourier coefficient f̂(a) is θ-heavy if
|f̂(a)| ≥ θ. Let L2(f) = Ex[(f(x))2]1/2. Parseval’s identity states that

(L2(f))2 = Ex[(f(x))2] =
∑

a

f̂2(a)

3.2 Finding Heavy Fourier Coefficients

Given the example oracle for a Boolean function f the main idea of the reduction is to transform this oracle into
an oracle for a noisy parity χa such that f̂(a) is a heavy Fourier coefficient of f . First we define probabilistic
oracles for real-valued functions in the range [−1,+1].

Definition 2 For any function f : {0, 1}n → [−1, 1] a probabilistic oracle O(f) is the oracle that produces
samples 〈x, b〉, where x is chosen randomly and uniformly from {0, 1}n and b ∈ {−1,+1} is a random variable
with expectation f(x).

For a Boolean f this defines exactly EX(f, U). Random classification noise can also be easily described in
this formalism. For θ ∈ [−1, 1], and f : {0, 1}n → {−1,+1}, define θf : {0, 1}n → [−1,+1] as θf(x) = θ ·
f(x). A simple calculation shows that O(θf) is just an oracle for f(x) with random noise of rate η = 1/2−θ/2.
Our next observation is that if the Fourier spectra of f and g are close to each other, then their oracles are close
in statistical distance.

Claim 1 The statistical distance between the outputs of O(f) and O(g) is upper-bounded by L2(f − g).
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Proof: The probability that O(f) outputs 〈x, 1〉 is (1 + f(x))/2 and the probability that it outputs 〈x,−1〉 is
(1− f(x))/2. Therefore the statistical distance between O(f) and O(g) equals Ex [|f(x)− g(x)|]. By Cauchy-
Schwartz inequality

(Ex [|f(x)− g(x)|])2 ≤ Ex

[
(f(x)− g(x))2

]
and therefore the statistical distance is upper bounded by L2(f − g). �

We now describe the main transformation on a probabilistic oracle that will be used in our reductions. For a
function f : {0, 1}n → [−1, 1] and a matrix A ∈ {0, 1}m×n define an A-projection of f to be

fA(x) =
∑

a∈{0,1}n,Aa=1m

f̂(a)χa(x),

where the product Aa is performed mod 2.

Lemma 1 For the function fA defined above:

1. fA(x) = Ep∈{0,1}mf(x⊕AT p)χ1m(p).

2. Given access to the oracle O(f) one can simulate the oracle O(fA).

Proof: Note that for every a ∈ {0, 1}n and p ∈ {0, 1}m,

χa(AT p) = (−1)aT ·(AT p) = (−1)(Aa)T ·p = χAa(p)

Thus if Aa = 1m then Ep[χa(AT p)χ1m(p)] = Ep[χAa⊕1m(p)] = 1 otherwise it is 0. Now let

gA(x) = E
p∈{0,1}m

[f(x⊕AT p)χ1m(p)].

We show that gA is the same as the function fA by computing its Fourier coefficients.

ĝA(a) = Ex[Ep[f(x⊕AT p)χ1m(p)χa(x)]]
= Ep[Ex[f(x⊕AT p)χa(x)]χ1m(p)]

= Ep[f̂(a)χa(AT p)χ1m(p)]

= f̂(a)Ep[χa(AT p)χ1m(p)]

Therefore ĝA(a) = f̂(a) if Aa = 1m and ĝA(a) = 0 otherwise. This is exactly the definition of fA(x).
For Part 2, we sample 〈x, b〉, choose random p ∈ {0, 1}m and return 〈x⊕AT p, b ·χ1m(p)〉. The correctness

follows from Part 1 of the Lemma. �

We will use Lemma 1 to project f in a way that separates one of its significant Fourier coefficients from the
rest. We will do this by choosing A to be a random m× n matrix for appropriate choice of m.

Lemma 2 Let f : {0, 1}n → [−1, 1] be any function, and let s 6= 0n be any vector. Choose A randomly and
uniformly from {0, 1}m×n. With probability at least 2−(m+1), the following conditions hold:

f̂A(s) = f̂(s) (1)∑
a∈{0,1}n\{s}

f̂A
2
(a) ≤ L2

2(f)2−m+1 (2)

9



Proof: Event (1) holds if As = 1m, which happens with probability 2−m.
For every a ∈ {0, 1}n \ {s, 0n} and a randomly uniformly chosen vector v ∈ {0, 1}n,

Pr
v

[v · a = 1 | v · s = 1] = 1/2

Therefore, Pr
A

[Aa = 1m | As = 1m] = 2−m

Whereas for a = 0n, PrA[Aa = 1m] = 0. Hence

EA

 ∑
a∈{0,1}n\{s}

f̂A
2
(a)

∣∣∣∣∣∣ As = 1m


≤

∑
a∈{0,1}n\{s}

2−mf̂2(a) ≤ 2−mL2
2(f).

By Markov’s inequality,

Pr
A

 ∑
a∈{0,1}n\{s}

f̂A
2
(a) ≥ 2−m+1L2

2(f)

∣∣∣∣∣∣ As = 1m


≤ 1/2.

Thus conditioned on event (1), event (2) happens with probability at least 1/2. So both events happen with
probability at least 2−(m+1). �

Finally, we show that using this transformation, one can use an algorithm for learning noisy parities to get a
weak parity algorithm.

Theorem 8 Let A be an algorithm that learns parities of k variables over {0, 1}n for every noise rate η < 1/2
in time T (n, k, 1

1−2η ) using at most S(n, k, 1
1−2η ) examples. Then there exists an algorithm WP-R that for every

function f : {0, 1}n → [−1, 1] that has a θ-heavy Fourier coefficient s of degree at most k, given access to O(f)
finds s in time O(T (n, k, 1/θ) · S2(n, k, 1/θ)) with probability at least 1/2.

Proof: Let S = S(n, k, 1
1−2η ). The algorithm WP-R proceeds in two steps:

1. Let m = d2 log Se + 3. Let A ∈ {0, 1}m×n be a randomly chosen matrix and O(fA) be the oracle for
A-projection of f . Run the algorithm A on O(fA).

2. If A stops in T (n, k, 1/θ) steps and outputs r with weight(r) ≤ k, check that r is at least θ/2-heavy
and if so, output it.

Let s be a θ-heavy Fourier coefficient of degree at most k. Our goal is to simulate an oracle for a function
that is close to a noisy version of χs(x).

By Lemma 2, in Step 1, with probability at least 2−m−1 , we create a function fA such that f̂A(s) = θ and∑
a 6=s

f̂A
2
(a) ≤ 2−m+1L2

2(f) ≤ L2
2(f)
4S2

≤ 1
4S2

.

By Claim 1, the statistical distance between the oracle O(fA) and oracle O(f̂A(s)χs(x)) is bounded by

L2(fA − f̂A(s)χs(x)) =

∑
a 6=s

(f̂A
2
(a))

1/2

≤ 1
2S

,
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hence this distance is small. Since A uses at most S samples, with probability at least 1
2 it will not notice

the difference between the two oracles. But O(f̂A(s)χs(x)) is exactly the noisy parity χs with noise rate
1/2 − f̂A/2 . If f̂A ≥ θ we will get a parity with η ≤ 1/2 − θ/2 < 1/2 and otherwise we will get a negation
of χs with η ≤ 1/2 − θ/2. Hence we get (1 − 2η)−1 ≤ 1/θ, so the algorithm A will learn the parity s
when executed either with the oracle O(fA) or its negation. We can check that the coefficient produced by A
is indeed heavy using Chernoff bounds, and repeat until we succeed. Using O(2m) = O(S2) repetitions, we
will get a θ/2-heavy Fourier coefficient of degree k with probability at least 1/2. We can boost this by repeating
the algorithm. A-projection always clears the coefficient f̂(0n) and therefore we need to check whether this
coefficient is θ-heavy separately. �

Remark 1 A function f can have at most L2
2(f)/θ2 θ-heavy Fourier coefficients. Therefore by repeating WP-R

O((L2
2(f)/θ2) · log (L2(f)/θ)) = Õ(L2

2(f)/θ2) times we can, with high probability, obtain all the θ-heavy
Fourier coefficients of f as it is required in some applications of this algorithm.

3.3 Learning of Parities with Adversarial Noise

A weak parity algorithm is in its essence an algorithm for learning of parities with adversarial noise. In particular,
Theorem 8 gives the following reduction from adversarial to random noise.

Theorem 9 The problem of learning parities with adversarial noise of rate η < 1
2 reduces to learning parities

with random noise of rate η.

Proof: Let f be a parity χs corrupted by noise of rate η. Then f̂(s) = E[fχs] ≥ (1 − η) + (−1)η = 1 − 2η.
Now apply the reduction from Theorem 8 setting k = n. We get an oracle for the function f̂(s)χs(x), which is
χs(x) with random noise of level η. �

Blum et al. give a sub-exponential algorithm for learning noisy parities.

Lemma 3 [BKW03] Parity functions on {0, 1}n can be learned in time and sample complexity 2O( n
log n

) in the
presence of random noise of rate η for any constant η < 1

2 .

This algorithm together with Theorem 9 gives Theorem 1.
One can also interpret Theorem 9 in terms of coding theory problems. Learning a parity function with noise

is equivalent to decoding a random linear code from the same type of noise. Therefore Theorem 8 implies the
following result.

Theorem 10 Assume that there exists an algorithm RandCodeRandError that corrects a random linear [m,n]
code from random errors of rate η with probability at least 1/2 (over the choice of the code, errors, and the
random bits of the algorithm) in time T (m,n). Then there exists an algorithm RandCodeAdvError that corrects
a random linear [M,n] code from up to η · M errors with probability at least 1/2 (over the choice of the code
and the random bits of the algorithm) in time O(M · T (m,n)) for M = 8m2.

Note that for η ≥ 1/4 there might be more than one codeword within the relative distance η. In this case by
repetitively using RandCodeAdvError as in Remark 1, we can list-decode the random code.

3.4 Learning DNF Expressions

Jackson [Jac97] in his breakthrough result on learning DNF expressions with respect to the uniform distribution
gives a way to use a weak parity algorithm and the boosting algorithm due to Freund [Fre90] to build a DNF
learning algorithm. We can adapt Jackson’s approach to our setting. We give an outline of the algorithm and
omit the now-standard analysis.

We view a probability distribution D as a density function and define its L∞ norm. Jackson’s algorithm is
based on the following Lemma (we use a refinement from [BF02]).
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Lemma 4 ([BF02](Lemma 18)) For any Boolean function f of DNF-size s and any distributionD over {0, 1}n

there exists a parity function χa such that |ED[fχa]| ≥ 1
2s+1 and

weight(a) ≤ log ((2s + 1)L∞(2nD)).

This lemma implies that DNFs can be weakly learned by finding a parity correlated with f under distri-
bution D(x) which is the same as finding a parity correlated with the function 2nD(x)f(x) under the uniform
distribution. The range of 2nD(x)f(x) is not necessarily [−1, 1], whereas our WP-R algorithm was defined for
functions with this range. So in order to apply Theorem 8, we first scale 2nD(x)f(x) to the range [−1, 1] and
obtain the function D′(x)f(x), where D′(x) = D(x)/L∞(2nD) (L∞(D) is known to the boosting algorithm).
We then get the probabilistic oracle O(D′(x)f(x)) by flipping a±1 coin with expectationD′(x)f(x). Therefore
a θ-heavy Fourier coefficient of 2nD(x)f(x) can be found by finding a θ/L∞(2nD)-heavy Fourier coefficient
of D′(x)f(x) and multiplying it by L∞(2nD). We summarize this generalization in the following lemma.

Lemma 5 Let A be an algorithm that learns parities of k variables over {0, 1}n for every noise rate η < 1/2
in time T (n, k, 1

1−2η ) using at most S(n, k, 1
1−2η ) examples. Then there exists an algorithm WP-R’ that for

every real-valued function φ that has a θ-heavy Fourier coefficient s of degree at most k, given access to random
uniform examples of φ, finds s in time O(T (n, k, L∞(φ)/θ) · S(n, k, L∞(φ)/θ)2) with probability at least 1/2.

The running time of WP-R’ depends on L∞(2nD) (polynomially if T is a polynomial) and therefore gives
us an analogue of Jackson’s algorithm for weakly learning DNFs. Hence it can be used with a boosting algorithm
that produces distributions that are polynomially-close to the uniform distribution; that is, the distribution func-
tion is bounded by p2−n where p is a polynomial in learning parameters (such boosting algorithms are called
p-smooth). In Jackson’s result [Jac97], Freund’s boost-by-majority algorithm [Fre90] is used to produce distri-
bution functions bounded by O(ε−(2+ρ)) (for arbitrarily small constant ρ). More recently, Klivans and Servedio
have observed [KS03] that a later algorithm by Freund [Fre92] produces distribution functions bounded by Õ(ε).
Putting the two components together, we get the proof of Theorem 2.

3.5 Learning Juntas

For the class of k-juntas, we can get a simpler reduction with better parameters for noise. Since there are at most
2k non-zero coefficients and each of them is at least 2−k+1-heavy, for a suitable choice of m, the projection step
is likely to isolate just one of them. This leaves us with an oracle O(f̂(s)χs). Since f̂(s) ≥ 2−k+1, the noise
parameter is bounded by η < 1/2 − 2−k. Using Remark 1 we will obtain the complete Fourier spectrum of f
by repeating the algorithm O(k22k) times. The proof of Theorem 3 follows from these observations.

3.6 Learning in the Presence of Random Noise

Our reductions from DNFs and k-juntas can be made tolerant to random noise in the original function.
This is easy to see in the case of k-juntas. An oracle for f with classification noise η′ is the same as an

oracle for the function (1−2η′)f . By repeating the reduction used for k-juntas, we get an oracle for the function
O((1− 2η′)f̂sχs). Hence we have the following theorem:

Theorem 11 Let A be an algorithm that learns parities of k variables on {0, 1}n for every noise rate η < 1/2
in randomized time T (n, k, 1

1−2η ). Then there exists an algorithm that learns k-juntas with random noise of rate

η′ in time O(k22k · T (n, k, 2k−1

1−2η′ )).

A noisy parity of k variables is a special case of a k-junta. Thus we have reduced the noisy junta problem to
a special case viz. noisy parity, at the cost of an increase in the noise level.
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Handling noise in the DNF reduction is more subtle since Freund’s boosting algorithms do not necessarily
work in the presence of noise, in particular Jackson’s original algorithm does not handle noisy DNFs. Never-
theless, as shown by Feldman [Fel06a], the effect of noise can be offset if the weak parity algorithm can handle
a “noisy” version of 2nD(x)f(x). More specifically, we need a generalization of the WP-R algorithm that for
any real-valued function φ(x), finds a heavy Fourier coefficient of φ(x) given access to Φ(x), where Φ(x) is an
independent random variable with expectation φ(x) and L∞(Φ(x)) ≤ 2L∞(φ)

1−2η . It is easy to see that WP-R’ can
handle this case. Scaling by L∞(Φ(x)) will give us a random variable Φ′(x) in the range [−1, 1] with expec-
tation φ(x)/L∞(Φ(x)). By flipping a ±1 coin with expectation Φ′(x) we will get a ±1 random variable with
expectation φ(x)/L∞(Φ(x)). Therefore WP-R algorithm will find a heavy Fourier coefficient of φ(x) (scaled
by L∞(Φ(x)) ≤ 2L∞(φ)

1−2η ). Altogether we obtain the following theorem for learning noisy DNFs.

Theorem 12 Let A be an algorithm that learns parities of k variables on {0, 1}n for every noise rate η < 1/2
in time T (n, k, 1

1−2η ) using at most S(n, k, 1
1−2η ) examples. Then there exists an algorithm that learns DNF

expressions of size s with random noise of rate η′ in time Õ( s4

ε2
·T (n, log B, B

1−2η′ ) ·S(n, log B, B
1−2η′ )

2) where

B = Õ(s/ε).

4 Hardness of the Agnostic Learning of Monomials

In this section we prove our hardness result for agnostic learning of monomials and show some of its applica-
tions.

4.1 Preliminaries and Notation

For a vector v, we denote its ith element by vi (unless explicitly defined otherwise). In this section, we view all
Boolean functions to be of the form f : {0, 1}n → {0, 1}. A literal is a variable or its negation. A monomial
is a conjunction of literals or a constant (0 or 1). It is also commonly referred to as a conjunction. A monotone
monomial is a monomial that includes only unnegated literals or is a constant. We denote the function class of
all monomials by Mon and the class of all monotone monomials by MMon.

4.1.1 The Problem

We now proceed to define the problems of minimizing disagreements and maximizing agreements more for-
mally. For a domain X , an example is a pair (x, b) where x ∈ X and b ∈ {0, 1}. An example is called positive
if b = 1, and negative otherwise. For a set of examples S ⊆ X × {0, 1}, we denote S+ = {x | (x, 1) ∈ S}
and similarly S− = {x | (x, 0) ∈ S}. For any function f and a set of examples S, the agreement rate of f

with S is AgreeR(f, S) = |Tf∩S+|+|S−\Tf |
|S| , where Tf = {x | f(x) = 1}. For a class of functions C, let

AgreeR(C, S) = maxf∈C{AgreeR(f, S)}.

Definition 3 For a class of functions C and domain D, we define the Maximum Agreement problem C-MA as
follows: The input is a set of examples S ⊆ D × {0, 1}. The problem is to find a function h ∈ C such that
AgreeR(h, S) = AgreeR(C, S).

For α ≥ 1, an α-approximation algorithm for C-MA is an algorithm that returns a hypothesis h such
that α · AgreeR(h, S) ≥ AgreeR(C, S). Similarly, an α-approximation algorithm for the Minimum Dis-
agreement problem C-MD is an algorithm that returns a hypothesis h ∈ C such that 1 − AgreeR(h, S) ≤
α(1− AgreeR(C, S)).
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An extension of the original agnostic learning framework is the model in which a hypothesis may come from
a richer classH. The corresponding combinatorial problems were introduced by Bshouty and Burroughs and are
denoted C/H-MA and C/H-MD [BB02]. Note that an approximation algorithm for these problems can return a
value larger than AgreeR(C, S) and therefore cannot be used to approximate the value AgreeR(C, S).

Remark 2 An α-approximation algorithm for C′-MA(MD) where C ⊆ C′ ⊆ H is an α-approximation algorithm
for C/H-MA(MD).

4.1.2 Agreement with Monomials and Set Covers

For simplicity we first consider the MMon-MA problem. The standard reduction of the general to the monotone
case [KLPV87] implies that this problem is at least as hard to approximate as Mon-MA. We will later observe
that our proof will hold for the unrestricted case as well. We start by giving two equivalent ways to formulate
MMon-MA.

Definition 4 The Maximum Monotone Disjunction Constraints problem MAX-MSAT is defined as follows: The
input is a set C of monotone disjunction constraints, that is, equations of the form t(x) = b where, t(x) is a
monotone disjunction and b ∈ {0, 1}. The output is a point z ∈ {0, 1}n that maximizes the number of satisfied
equations in C. For an integer function B, MAX-B-MSAT is the same problem with each disjunction containing
at most B variables.

To see the equivalence of MMon-MA and MAX-MSAT, let ti be the variable “xi is present in the disjunction
t”. Then each constraint t(z) = b in MMon-MA is equivalent to ∨zi=0ti = 1 − b. Therefore we can interpret
each point in an example as a monotone disjunction and the disjunction t as a point in {0, 1}n.

Another equivalent way to formulate MMon-MA (and the one we will be using throughout our discussion)
is the following.
Input: S = (S+, S−, {S+

i }i∈[n], {S−i }i∈[n]) where S+
1 , . . . , S+

n ⊆ S+ and S−1 , . . . , S−n ⊆ S−.
Output: A set of indices I that maximizes the sum of two values, Agr−(S, I) = |

⋃
i∈I S−i | and Agr+(S, I)

= |S+|−|
⋃

i∈I S+
i |. We denote this sum by Agr(S, I) = Agr−(S, I)+Agr+(S, I) and denote the maximum

value of agreement by MMaxAgr(S).
To see that this is an equivalent formulation, let S−i = {x | x ∈ S− and xi = 0} and S+

i = {x | x ∈
S+ and xi = 0}. Then for any set of indices I ⊆ [n], the monotone monomial tI = ∧i∈Ixi is consistent with
all the examples in S− that have a zero in at least one of the coordinates with indices in I , that is, with examples
in

⋃
i∈I S−i . It is also consistent with all the examples in S+ that do not have zeros in coordinates with indices

in I , that is, S+ \
⋃

i∈I S+
i . Therefore the number of examples with which tI agrees is exactly Agr(S, I).

It is also possible to formulate Mon-MA in a similar fashion. We need to specify an additional bit for each
variable that tells whether this variable is negated in the monomial or not (when it is present). Therefore the
formulation uses the same input and the following output.
Output(Mon-MA): A set of indices I and a vector a ∈ {0, 1}n that maximizes the value

Agr(S, I, a) = |
⋃
i∈I

Z−
i |+ |S+| − |

⋃
i∈I

Z+
i |,

where Z
+/−
i = S

+/−
i if ai = 0 and Z

+/−
i = S+/− \ S

+/−
i if ai = 1. We denote the maximum value of

agreement with a general monomial by MaxAgr(S).

4.2 Hardness of Approximating Mon-MA and Mon-MD

It is easy to see that MMon-MA is similar to the SET-COVER problem. Indeed, our hardness of approximation
result will employ some of the ideas from Feige’s hardness of approximation result for SET-COVER [Fei98].
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4.2.1 Feige’s Multi-Prover Proof System

Feige’s reduction from the SET-COVER problem is based on a multi-prover proof system for 3SAT-5. The basis
of the proof system is the standard two-prover protocol for 3SAT in which the verifier chooses a random clause
and a random variable in that clause. It then gets the values of all the variables in the clause from the first prover
and the value of the chosen variable from the second prover. The verifier accepts if the clause is satisfied and the
values of the chosen variable are consistent [ALM+98]. Feige then amplifies the soundness of this proof system
by repeating the test ` times (based on Raz’ parallel repetition theorem [Raz98]). Finally, the consistency checks
are distributed to k provers with each prover getting `/2 clause questions and `/2 variable questions. This is
done using an asymptotically-good code with k codewords of length ` and Hamming weight `/2. The verifier
accepts if at least two provers gave consistent answers. More formally, for integer k and ` such that ` ≥ c` log k
for some fixed constant c`, Feige defines a k-prover proof system for 3SAT-5 where:

1. Given a 3CNF-5 formula φ over n variables, verifier V tosses a random string r of length ` log (5n) and

generates k queries q1(r), . . . qk(r) of length ` log (
√

5
3n).

2. Given answers a1, . . . ak of length 2` from the provers, V computes V1(r, a1), . . . , Vk(r, ak) ∈ [2`] for
fixed functions1 V1, . . . , Vk.

3. V accepts if there exist i 6= j such that Vi(r, ai) = Vj(r, aj).

4. If φ ∈ 3SAT-5, then there exist a k-prover P̄ for which V1(r, a1) = V2(r, a2) = · · · = Vk(r, ak) with
probability 1 (note that this is stronger than the acceptance predicate above).

5. If φ 6∈ 3SAT-5, then for any P̄ , V accepts with probability at most k22−c0` for some fixed constant c0.

4.2.2 Balanced Set Partitions

As in Feige’s proof, the second part of our reduction is a set system with certain properties tailored to be used
with the equality predicate in the Feige’s proof system. Our set system consists of two main parts. The first part
is sets divided into partitions in a way that sets in the same partition are highly correlated (e.g., disjoint) and sets
from different partitions are uncorrelated. Covers by uncorrelated sets are balanced in the sense that they cover
about the same number of points in S+ and S− and therefore the agreement rate is close to 1/2. Therefore these
sets force any approximating algorithm to use sets from the same partition.

The second part of our set system is a collection of uncorrelated smaller sets. These smaller sets do not sub-
stantially influence small covers but make any cover by a large number of sets balanced. Therefore unbalanced
covers have to use a small number of sets and have sets in the same partition. Intuitively, this makes it possible
to use an unbalanced cover to find consistent answers to verifiers questions. In this sense, the addition of smaller
sets is analogous to the use of the random skew in the Håstad’s long code test [Has01].

Formally, a balanced set partition B(m,L,M, k, γ) has the following properties:

1. There is a ground set B of m points.

2. There is a collection of L distinct partitions p1, . . . , pL.

3. For i ≤ L, partition pi is a collection of k disjoint sets Bi,1, . . . , Bi,k ⊆ B whose union is B.

4. There is a collection of M sets C1, . . . , CM .
1These functions choose a single variable from each answer to a clause question.

15



5. Let ρs,t = 1− (1− 1
k2 )s(1− 1

k )t. For any I ⊆ [M ] and J ⊆ [L]× [k] with all elements having different
first coordinate, it holds ∣∣∣∣∣∣

∣∣∣(⋃i∈I Ci

) ⋃ (⋃
(i,j)∈J Bi,j

)∣∣∣
m

− ρ|I|,|J |

∣∣∣∣∣∣ ≤ γ .

To see why a balanced set partition could be useful in proving hardness for MMon-MA, consider an instance
S of MMon-MA defined as follows. For B(m,L,M, k, γ) as above, let S+ = S− = B, S−j,i = Bj,i, and
S+

j,i = Bj,1. Now for any j ∈ [L], and an index set Ij = {(j, i) | i ∈ [k]}, |Agr(S, Ij)| ≥ (2 − 1
k − γ)m. On

the other hand, for any index set I that does not include two indices with the same first coordinate, we have that
|Agr(S, I)| ≤ (1 + 2γ)m. For sufficiently large k and sufficiently small γ, this creates a multiplicative gap of
2− ε between the two cases.

4.2.3 Creating Balanced Set Partitions

In this section, we show a straightforward randomized algorithm that produces balanced set partitions.

Theorem 13 There exists a randomized algorithm that on input k, L, M, γ produces, with probability at least
1
2 , a balanced set partition B(m,L,M, k, γ) for m = Õ(k2γ−2 log (M + L)) in time O((M + L)m).

Proof: First we create the sets Bj,i. To create each partition j ∈ [L], we roll m k-sided dice and denote the
outcomes by d1, . . . , dm. Set Bj,i = {r | dr = i}. This clearly defines a collection of disjoint sets whose union
is [m]. To create M sets C1, . . . , CM , for each i ∈ [M ] and each r ∈ [m], we include r in Ci with probability
1
k2 .

Now let I ⊆ [M ] and J ⊆ [L] × [k] be a set of indices with different first coordinate (corresponding to
sets from different partitions) and let U =

(⋃
i∈I Ci

) ⋃ (⋃
(i,j)∈J Bi,j

)
. Elements of these sets are chosen

independently and therefore for each r ∈ [m],

Pr[r ∈ U ] = 1− (1− 1
k2

)|I|(1− 1
k
)|J | = ρ|I|,|J |

independently of other elements of [m]. Using Chernoff bounds, we get that for any δ > 0,

Pr
[∣∣∣∣ |U |m

− ρ|I|,|J |

∣∣∣∣ > δ

]
≤ 2e−2mδ2

,

which is exactly the property 5 of balanced set partitions (for δ = γ). Our next step is to ensure that property
5 holds for all possible index sets I and J . This can be done by first observing that it is enough to ensure that
this condition holds for δ = γ/2, |I| ≤ k2 ln 1

δ and |J | ≤ k ln 1
δ . This is true since for |I| ≥ k2 ln 1

δ and every t,
ρ|I|,t ≥ 1− δ. Therefore |U |/m− ρ|I|,t ≤ 1− ρ|I|,t ≤ δ < γ. For the other side of the bound on the size of the
union, let I ′ be a subset of I of size k2 ln 1

δ and U ′ be the union of sets with indices in I ′ and J . It then follows
that

ρ|I|,t −
|U |
m

≤1− |U ′|
m

≤ 1− (ρk2 ln 1
δ
,t − δ)

≤1− (1− δ) + δ = γ.

The second condition, |J | ≤ k ln 1
δ , is obtained analogously.
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There are at most M s different index sets I ⊆ [M ] of size at most s and at most (kL)t different index sets
J of size at most t. Therefore, the probability that property 5 does not hold is at most

((kL)k ln 1
δ + Mk2 ln 1

δ ) · 2e−2mδ2
.

For
m ≥ 2k2γ−2 · ln (kL + M) · ln 2

γ
+ 2,

this probability is less than 1/2. �
We can now proceed to the reduction itself.

4.2.4 Main Reduction

Below we describe our main transformation from Feige’s proof system to MMon-MA. To avoid confusion we
denote the number of variables in a given 3CNF-5 formula by d and use n to denote the number of sets in the
produced MMon-MA instance (that corresponds to the number of variables in the original formulation).

Theorem 14 For every ε > 0 (not necessarily constant), there exists an algorithm Athat given a 3CNF-5
formula φ over d variables, produces an instance S of MMon-MA on base sets S+ and S− of size T such that

1. Aruns in time 2O(`) plus the time to create a balanced set partition B(m, 2`, 4`, 1
4ε ,

ε
4), where ` = c1 log 1

ε
for some constant c1.

2. |S+| = |S−| = T = (5d)`m, where m is the size of the ground set of the balanced set partition.

3. n = 4
ε (4

√
5
3 · d)`.

4. If φ ∈3SAT-5, then MMaxAgr(S) ≥ (2− ε)T .

5. If φ 6∈3SAT-5, then |MMaxAgr(S)− T | ≤ ε · T .

Proof: Let k = 1
4ε , γ = ε/4, and V be Feige’s verifier for 3SAT-5. Given φ, we construct an instance S of

MMon-MA as follows. Let R denote the set of all possible random strings used by V , let Qi denote the set of
all possible queries to prover i and let Ai = {0, 1}2` denote the set of possible answers of prover i. Let L = 2`,
M = 22`, and B(m,L,M, k, γ) be a balanced set partition. We set S+ = S− = R × B, and for every r ∈ R
and B′ ⊆ B, let (r, B′) denote the set {(r, b) | b ∈ B′}. We now proceed to define the sets in S. For i ∈ [k],
q ∈ Qi and a ∈ Ai we set

S−(q,a,i) =
⋃

qi(r)=q

(r, BVi(r,a),i ∪ Ca) and

S+
(q,a,i) =

⋃
qi(r)=q

(r, BVi(r,a),1 ∪ Ca) .

Intuitively, sets S−(q,a,i) (or S+
(q,a,i)) correspond to prover i responding a when presented with query q. We can

also immediately observe that answers from different provers that are mapped to the same value (and hence
cause the verifier to accept) correspond to sets in S− that are almost disjoint and strongly overlapping sets in
S+. To formalize this intuition, we prove the following claims.

Claim 2 If φ ∈3SAT-5, then MMaxAgr(S) ≥ (2− ε)T for T = m|R|.

17



Proof: Let P̄ be the k-prover that always answers consistently and let Pi(a) denote the answer of the ith prover
to question q. Now consider the set of indices

I = {(q, Pi(q), i) | i ∈ [k], q ∈ Qi} .

For each r ∈ R, the prover P̄ satisfies

V1(r, P1(q1(r))) =V2(r, P2(q2(r))) = · · ·
=Vk(r, Pk(qk(r))) = c(r) .

Therefore, ⋃
i∈[k]

S−(qi(r),Pi(qi(r)),i)
⊆

⋃
i∈[k]

(r, Bc(r),i) = (r, B) .

This means that sets with indices in I cover all the points in S− = R×B. On the other hand for each r,⋃
i∈[k]

S+
(qi(r),Pi(qi(r)),i)

=
⋃

i∈[k]

(r, Bc(r),1 ∪ CPi(qi(r)))

=(r, Bc(r),1) ∪ (r,
⋃

i∈[k]

CPi(qi(r))) .

This implies that for each r only (r, Bc(r),1 ∪ CPi(qi(r))) is covered in (r, B). By property 5 of balanced set
partitions, the size of this set is at most

(1− (1− 1
k
)(1− 1

k2
)k + γ)m ≤(1− (1− 1

k
)2 + γ)m

≤(
2
k

+ γ)m < εm .

This means that at most ε fraction of S+ is covered by the sets with indices in I . Therefore,

Agr(S, I) ≥ (1 + 1− ε)m|R| = (2− ε)T .

�
For the case when φ 6∈ 3SAT-5, let I be any set of indices for the instance S. Let Sr denote an instance of

MMon-MA obtained by restricting S to points with the first coordinate equal to r. We denote corresponding
restrictions of the base sets by S−r and S+

r . It is easy to see that Agr(S, I) =
∑

r∈R Agr(Sr, I). We say that r
is good if |Agr(Sr, I)−m| > ε

2m, and let δ denote the fraction of good r’s. Then it is clear that

Agr(S, I) ≤ δ · 2T + (1− δ)(1 + ε/2)T ≤ (1 + ε/2 + 2δ)T , and

Agr(S, I) ≥ (1− δ)(1− ε/2)T ≥ (1− ε/2− δ)T .

Hence
|Agr(S, I)− T | ≤ (ε/2 + 2δ)T. (3)

Claim 3 There exists a prover P̄ that will make the verifier V accept with probability at least δ(k2 ln 4
ε )
−2.
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Proof: We define P̄ with the following randomized strategy. Let q be a question to prover i. Define Ai
q =

{a | (q, a, i) ∈ I} and Pi to be the prover that presented with q answers with a random element from Ai
q. We

show that properties of B imply that there exist i and j such that ai ∈ Ai
qi(r)

, aj ∈ Ai
qj(r)

, and Vi(r, ai) =
Vj(r, aj). To see this, denote V i

q = {Vi(a) | a ∈ Ai
q}. Then

Agr−(Sr, I) =

∣∣∣∣∣∣S−r ∩

 ⋃
(q,a,i)∈I

S−(q,a,i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
 ⋃

i∈[k], j∈V i
qi(r)

Bj,i

 ⋃  ⋃
i∈[k], a∈Ai

qi(r)

Ca


∣∣∣∣∣∣∣ .

Now, if for all i 6= j, V i
qi(r)

∩V j
qj(r)

= ∅, then all elements in sets V 1
q1(r), . . . , V

k
qk(r) are distinct and therefore

by property 5 of balanced set partitions,∣∣∣∣Agr−(Sr, I)
m

− 1 + (1− 1
k2

)s(1− 1
k
)t

∣∣∣∣ ≤ γ ,

where s = | ∪i∈[k] Ai
qi(r)

| and t =
∑

i∈[k] |V i
qi(r)

|. Similarly,

Agr+(Sr, I) = m−

∣∣∣∣∣∣S−r ∩

 ⋃
(q,a,i)∈I

S−(q,a,i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
 ⋃

i∈[k], j∈V i
qi(r)

Bj,1

 ⋃  ⋃
i∈[k], a∈Ai

qi(r)

Ca


∣∣∣∣∣∣∣

and therefore ∣∣∣∣Agr+(Sr, I)
m

− (1− 1
k2

)s(1− 1
k
)t

∣∣∣∣ ≤ γ .

This implies that |Agr(Sr, I) − m| ≤ 2γm = ε
2m, contradicting the assumption that r is good. Hence, let i′

and j′ be the indices for which V i′

qi′ (r)
∩ V j′

qj′ (r)
6= ∅. To analyze the success probability of the defined strategy,

we observe that if s ≥ k2 ln 4
ε , then (1− 1

k2 )s < ε
4 and consequently∣∣∣∣∣∣∣

⋃
i∈[k], a∈Ai

qi(r)

Ca

∣∣∣∣∣∣∣ ≥ (1− ε

4
− γ)m .

Therefore Agr+(Sr, I) ≤ ( ε
4 − γ)m and Agr−(Sr, I) ≥ (1 − ε

4 − γ)m. Altogether, this would again imply
that |Agr(Sr, I)−m| ≤ ( ε

4 + γ)m = ε
2 , contradicting the assumption that r is good.

For all i ∈ [k], |Ai
qi(r)

| ≤ s ≤ k2 ln 4
ε . In particular, with probability at least (k2 ln 4

ε )
−2, Pi′ will choose ai′

and Pj′ will choose aj′ such that Vi′(r, ai′) = Vj′(r, aj′), causing V to accept. As this happens for all good r’s,
the success probability of P̄ is at least δ(k2 ln 4

ε )
−2. �

Using the bound on the soundness of V , Claim 3 implies that δ(k2 ln 4
ε )
−2 ≤ k22−c0`, or δ ≤

(k3 ln 4
ε )

22−c0`. Thus for
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` =
1
c0

log (
4
ε
(k3 ln

4
ε
)2) ≤ c1 log

1
ε

(4)

we get δ ≤ ε
4 . We set c1 to be at least as large as c` (constant defined in Section 4.2.1). For δ ≤ ε

4 equation 3
gives |Agr(S, I)− T | ≤ εT . The total number of sets used in the reduction (which corresponds to the number
of variables n is k · |Q| · |A| where |Q| is the number of different queries that a prover can get and |A| is the
total number of answers that a prover can return (both |A| and |Q| are equal for all the provers). Therefore, by

the properties of Feige’s proof system, n = 4
ε (4

√
5
3 · d)`. �

An important property of this reduction is that all the sets that are created S
+/−
(q,a,i) have size at most ε|Q||B|,

where |Q| is the number of possible queries to a prover (it is the same for all the provers). Hence each set covers
at most ε|Q|/|R| < ε fraction of all the points. This implies that a monomial with a negated variable will be
negative on all but fraction ε of all the positive examples and will be consistent with all but at most fraction ε of
all the negative examples. In other words, a non-monotone monomial will always agree with at least (1 − ε)T
examples and at most (1 + ε)T examples.

Corollary 2 Theorem 14 holds even when the output S is an instance of Mon-MA, that is, with MaxAgr(S) in
place of MMaxAgr(S).

Remark 3 For each r ∈ R and b ∈ B, (r, B) belongs to at most k · M = poly(1
ε ) sets in S. This means

that in the MMon-MA instance each example will have poly(1
ε ) zeros. This, in turn, implies that an equivalent

instance of MAX-MSAT will have poly(1
ε ) variables in each disjunction.

4.2.5 Results and Applications

We are now ready to use the reduction from Section 4.2.4 with balanced set partitions from Section 4.2.3 to
prove our main theorems.

Theorem 15 (same as 4) For every constant ε′ > 0, MMon/Mon-MA is NP-hard to approximate within a
factor of 2− ε′.

Proof: We use Theorem 14 for ε = ε′/2. Then k, γ, and ` are constants and therefore B(m, 2`, 4`, 1
4ε ,

ε
4) can

be constructed in constant randomized time. The reduction creates an instance of Mon-MA of size polynomial
in d and runs in time dO(`) = poly(d). By derandomizing the construction of B in a trivial way, we get a
deterministic polynomial-time reduction that produces a gap in Mon-MA instances of 2−ε

1+ε > 2− ε′. �
Furthermore, Remark 3 implies that for any constant ε, there exists a constant B such that MAX-B-MSAT

is NP-hard to approximate within 2− ε, proving Theorem 6.
Theorem 4 can be easily extended to subconstant ε.

Theorem 16 (same as 5) For any constant λ > 0, there is no polynomial-time algorithm that approximates
MMon/Mon-MA within a factor of 2− 2− log1−λ n, unless NP ⊆ RTIME(2(log n)O(1)

).

Proof: We use Theorem 14 with ε′ = 2− logr d for some r to be specified later. Then k = 4 · 2logr d,
γ = 2− logr d/4 and ` = c1 · logr d. Therefore B(m, 2`, 4`, 1

4ε′ ,
ε′

4 ) can be constructed in polynomial in 2logr d

randomized time and m = 2c2 logr d. The rest of the reduction takes time 2O(`) = 2O(logr d) and creates an
instance of MMon-MA over n = dc3 logr d = 2c3 logr+1 d variables. Therefore, for r = 1

λ , ε′ ≤ 2− log1−λ n. �
It is easy to see that the gap in the agreement rate between 1−ε and 1/2+ε implies a gap in the disagreement

rate of 1/2−ε
ε > 1

3ε (for small enough ε). That is, we get the following multiplicative gap for approximating
Mon-MD.
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Corollary 3 (same as 1) For any constant λ > 0, there is no polynomial time algorithm that approximates
MMon/Mon-MD within a factor of 2log1−λ n, unless NP ⊆ RTIME(2(log n)O(1)

).

A simple application of these results is hardness of approximate agreement maximization with function
classes richer than monomials. More specifically, let C be a class that includes monotone monomials. As-
sume that for every f ∈ C such that f has high agreement with the sample, one can extract a monomial with
“relatively” high agreement. Then we could approximate the agreement or the disagreement rate with mono-
mials, contradicting Theorems 4 and 5. A simple and, in fact, the most general class with this property, is the
class of threshold functions with low integer weights. Let THW (C) denote the class of all functions equal to
1
2 + 1

2sign(
∑

i≤k wi(2fi − 1)), where k, w1, . . . , wk are integer,
∑

i≤k |wi| ≤ W , and f1, . . . , fk ∈ C (this
definition of a threshold function is simply sign(

∑
i≤k wifi) when fi and the resulting function are in the range

{−1,+1}). The following lemma is a straightforward generalization of a simple lemma due to Goldmann et al.
[GHR92] (the original version is for δ = 0).

Lemma 6 Let C be a class of functions and let f ∈ THW (C). If for some function g and distribution D,
PrD[f = g] ≥ 1 − δ, then for one of the input functions h ∈ C to the threshold function f , it holds that
|PrD[h = g]− 1/2| ≥ 1−δ(W+1)

2W .

Proof: Let D′ be the distribution D conditioned on f(x) = g(x). By the definition of D′, PrD′ [f = g] = 1.
We can therefore apply the original lemma and get that there exists h ∈ C such that |PrD′ [h = g]− 1/2| ≥ 1

2W .
Therefore |PrD[h = g]− 1/2| ≥ 1−δ(W+1)

2W . �
Hence we obtain the following results.

Corollary 4 For any constant λ > 0 and t = 2log1−λ n, there is no polynomial-time algorithm that approximates
MMon/THt(Mon)-MD within a factor of t, unless NP ⊆ RTIME(2(log n)O(1)

).

Corollary 5 For every constant k and ε > 0, MMon/THW (Mon)-MA is NP-hard to approximate within a
factor of 1 + 1

W − ε.

Proof: The reduction in Theorem 4 proves hardness of distinguishing instances of MMon-MA with the maxi-
mum agreement rate r being ≥ 1− ε′

2 and instances for which |r − 1/2| ≤ ε′

2 . If there exists an algorithm that,
given sample with r ≥ 1− ε′

2 , can produce a function f ∈ THW (Mon) such that f agrees with at least W
W+1 + ε′

fraction of examples then, by Lemma 6, one of the monomials used by f has agreement rate r′ that satisfies

|r′ − 1
2
| ≥ 1− δ(W + 1)

2W
≥

1− ( 1
W+1 − ε′)(W + 1)

2W

=
ε′(W + 1)

2W
>

ε′

2
.

Therefore MMon/THW (Mon)-MA cannot be approximated within 1−ε′
W

W+1
+ε′

≥ 1 + 1
W − ε for an appropriate

choice of ε′. �
A k-term DNF can be expresses as THk+1(Mon). Therefore Corollary 5 improves the best known inap-

proximability factor for (2-term DNF)-MA from 59
58 − ε [BB02] to 4/3− ε and gives the first results on hardness

of agreement maximization with thresholds of any constant number of terms.

5 Hardness of the Agnostic Learning of Halfspaces

In this section we prove a hardness result for agnostic learning of halfspaces over Qm. As in the case of
monomials, we obtain this result by proving hardness of approximately maximizing agreements with a halfspace,
that is HS-MA(see Section 4.1.1 for the formal definition.
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More specifically we show that the trivial factor 2 approximation algorithm for this problem is essentially
the best one can do. The proof is by reduction from the gap version of 5-regular vertex cover to an intermediate
problem called MaxLin-Q, and then finally to the learning halfspaces problem. The following is the combina-
torial version of the problem of learning a halfspace over Qm with adversarial noise (as stated in Arora et al.
[ABSS97]).

We begin by defining the MaxLin-Q problem. Informally, we are given a system of equations over rationals
and we are expected to find an assignment that satisfies as many equations as possible. We will show that even if
a large fraction, say 99%, of the equations can be satisfied, one can not efficiently find an assignment such that
more than 1% of the equations are “almost” satisfied. That is, the difference in the left hand side and right hand
side of all but 1% of the equations is “large”.

Definition 5 Given a system of linear equations with rational coefficients

{ai0 +
m∑

j=1

aijxj = 0}i=1,2,...,N

as input, the objective of the MaxLin-Q problem is to find (x1, x2, . . . , xm) ∈ Qm that satisfies the maximum
number of equations. A system of equations is said to be a (N, c, s, t) MaxLin-Q instance if the number of
equations in the system is N and one of the following conditions holds:

• At least cN of the equations can be satisfied by some assignment, or

• In any assignment,

|ai0 +
m∑

j=1

aijxj | < t

is true for at most sN values of i ∈ [N ].

The goal of the MaxLin-Q problem when given such an instance is to find out which of the two cases is true. If
the system of equations satisfies the first condition, we say it has completeness c. In the other case, we say it has
soundness s under tolerance t.

An instance of MaxLin-Q can be specified by a matrix

A =


a10 a11 . . . a1m

a20 a21 . . . a2m
...

...
...

aN0 aN1 . . . aNm


We will refer to A itself as an instance of MaxLin-Q. We may also use the rows of A to represent the equations
in the instance. The MaxLin-Q problem is to find a vector X = (1, x1, x2, . . . , xn) such that AX has as many
zeros as possible. In all the instances of MaxLin-Q that we consider, the number of variables will be less than
the number of equations in the system. Also, the size of each entry of the matrix will be proportional to the
number of equations. Hence, we refer to N itself as the size of the instance.

The main steps in the reduction from vertex cover to the learning halfspaces problem are as follows:

• Obtain a (N, c, s, t) instance of MaxLin-Q from the vertex cover instance for some fixed constants c, s
and t (see Definition 5).

• Convert the above instance to a (N ′, 1 − ε, ε, t′) gap where ε is a very small function of N ′. To achieve
this, we use two operations called tensoring and boosting.

• Convert the instance of the MaxLin-Q problem obtained to an instance of the halfspace problem.
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5.1 A Small Hardness Factor for MaxLin-Q

We first state the gap version of the NP-hardness result for regular vertex cover.

Lemma 7 [PY91, ALM+98] There exist constants d and ζ such that given a 5-regular graph with n vertices,
it is NP-hard to decide whether there is a vertex cover of size ≤ dn or every vertex cover is of size at least
(1 + ζ)dn.

Arora et al. [ABSS97] give a reduction from the above gap version of vertex cover of regular graphs to
MaxLin-Q. They show that if there is a “small” vertex cover, the reduction produces a MaxLin-Q instance in
which a “large” fraction of the equations can be satisfied. But when there is no small vertex cover, only a small
fraction of the equations can be exactly satisfied. We show that the proof can be strengthened so that if there is
no small vertex cover, only a small fraction of equations can be satisfied even within a certain tolerance.

Lemma 8 There exists a polynomial time algorithm that when given a 5-regular graph G = (V,E) with n
vertices as input produces a (N, c0, s0, t0) MaxLin-Q instance A over n variables as output where N = nO(1),
c0 and s0 are absolute constants satisfying s0 < c0, t0 = 1/3 and:

• If G has a vertex cover of size dn, then at least c0 fraction of the equations in A can be satisfied.

• If G has no vertex cover smaller than (1 + ζ)dn, then for any vector X = (1, x1, x2, . . . , xn), at least
(1− s0) fraction of the entries in AX have magnitude ≥ t0.

Proof:The instance A contains one variable xi for every vertex vi ∈ V . Corresponding to every vertex, there is
a constraint xi = 0. Corresponding to every edge between vi and vi′ , we add three constraints

−1 + xi + xi′ = 0
−1 + xi = 0
−1 + xi′ = 0

In all, A has n + 3M equations, where M = |E| = 5n/2. If there is a vertex cover V0 of size dn, set xi = 1 if
vi ∈ V0 and xi = 0 otherwise. This satisfies at least (1− d)n + 2M equations.

Suppose there is no vertex cover smaller than (1 + ζ)dn. We will show that not too many of the n + 3M
equations in A can be satisfied under a tolerance of 1/3. Under a tolerance of 1/3, the n equations for the
vertices relax to |xi| < 1/3, and the equations for an edge relax to

| − 1 + xi + xi′ | < 1/3
| − 1 + xi| < 1/3
| − 1 + xi′ | < 1/3

Note that no more than two of the three inequalities for an edge can be simultaneously satisfied. We will show
that given any rational assignment to the xis, there is a {0, 1} assignment that is just as good or better. Consider
any X = (1, x1, x2, . . . , xn), where xi ∈ Q. Set yi = 0 if xi < 1/3 and yi = 1 otherwise. It is clear that yi

satisfies the inequality for vertex vi if xi does. Now suppose at least one of the three inequalities for an edge
(vi, v

′
i) is satisfied by the xis. Then, either xi > 1/3 or xi′ > 1/3. In this case, at least one of yi and yi′ is set to

1. But then two of the equalities
yi + yi′ = 1

yi = 1
yi′ = 1

are satisfied. Therefore, the yi are at least as good an assignment as the xi.
Let Y = (1, y1, y2, . . . , yn). If there is no vertex cover of size less than (1 + ζ)dn, AY must contain at

least (1 + ζ)dn + M entries that are 1. That is, AY contains at most (1− (1 + ζ)d)n + 2M zeros. The claim
about the soundness follows. �
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5.2 Amplifying the Gap for MaxLin-Q

We define two operations called tensoring and boosting. Tensoring converts a (N, 1 − ε, 1 − δ, t) MaxLin-Q
instance to a (N2, 1− ε2, 1− δ2, t2) MaxLin-Q instance. We use this to get the completeness close to 1. But as
a side-effect, it also gets the soundness close to 1. We use boosting to overcome this problem. A (σ, ρ)-boosting
converts a (N, c, s, t) MaxLin-Q instance to a ((ρN)σ, cσ, sσ, t/2) MaxLin-Q instance. We amplify the (c, s)
gap for MaxLin-Q in four steps:

• Obtain a (1− ε, 1−Kε) gap for very large constant K using tensoring.

• Obtain a (1 − ε0, ε0) gap for a very small constant ε0 > 0 by using a boosting operation. This gap is
sufficient to prove a 2− ε hardness factor for the halfspace problem for any constant ε > 0.

• Improve the completeness even further to 1−o(1) while keeping the soundness below a constant, say 1/20.
This is done by alternately tensoring and boosting many times. At this stage, it is essential to use a more
efficient variation of boosting called pseudo-boosting. A (σ, ρ)-pseudo-boosting converts a (N, c, s, t)
MaxLin-Q instance to a (O(ρ)σN, cσ, sΩ(σ), t/2) MaxLin-Q instance. Since we require cσ > sΩ(σ) for
the reduction to be meainingful, we need some minimum gap between c and s. This is guaranteed by the
first two steps.

• Using one more boosting operation, decrease the soundness. This gives the (N ′, 1−ε, ε, t′) instance where
ε = 2−Ω(

√
log N ′) as desired.

5.2.1 Large constant gap for MaxLin-Q

We define the first operation called tensoring. This operation is similar to an operation defined by Dumer et
al. [DMS03] on linear codes. Informally, the tensoring of a system of equations contains one equation for the
“product” of every pair of equations. In this product, we replace the occurance of xj1xj2 with xj1j2 and xj with
x0j respectively.

Definition 6 The tensoring of the system of equations

{ai0 +
m∑

j=1

aijxj = 0}i=1,2,...,N

is the system

{ai10ai20 + ai10(
m∑

j2=1

ai2j2x0j2) + ai20(
m∑

j1=1

ai1j1x0j1) + (
m∑

j1=1

m∑
j2=1

ai1j1ai2j2xj1j2)

= 0}i1,i2=1,...,N

In the matrix representation, the tensoring of
a10 a11 . . . a1m

a20 a21 . . . a2m
...

...
...

aN0 aN1 . . . aNm




1
x1
...

xm

 = 0
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is the system
a10 a11 . . . a1m

a20 a21 . . . a2m
...

...
...

aN0 aN1 . . . aNm




1 x01 . . . x0m

x01 x11 . . . x1m
...

...
...

x0m xm1 . . . xmm




a10 a20 . . . aN0

a11 a21 . . . aN1
...

...
...

a1m a2m . . . aNm

 = 0

where the the xijs in the second matrix are the variables in the new instance.

Lemma 9 Let A be a (N, c, s, t) instance of MaxLin-Q. Let B be obtained by tensoring A. Then B is a
(N2, 1− (1− c)2, 1− (1− s)2, t2) instance

Proof:Suppose there is a vector X = (1, x1, x2, . . . , xm) such that AX has a zero in cN fraction of the entries.
Define x0j = xj and xj1j2 = xj1xj2 for j1 ≥ 1. This satisfies all but (1 − c)2N2 of the equations in B. It
remains to show the claim about the soundness.

Suppose that for any vector X = (1, x1, x2, . . . , xm), at least s fraction of the entries in AX have magnitude
greater than or equal to t. Consider any assignment to the variables (xj1j2) in B. Let X∗ denote the matrix

1 x01 . . . x0m

x01 x11 . . . x1m
...

...
...

x0m xm1 . . . xmm


We will show that at least (1−s)2N2 entries in AX∗AT have magnitude≥ t2. Let X = (1, x01, x02, . . . , x0m).
The vector AX has at least (1 − s)N entries with magnitude ≥ t. Let J be the set of indices of these entries.
Let V = (AX∗)T . Note that since the first column of X∗ is X , V has at least (1 − s)N entries in the first
row that have magnitude ≥ t. Let V j denote the jth column of V . Note that if j ∈ J , AV j contains at least
(1− s)N entries that have magnitude ≥ t2. Therefore, AX∗AT = V T AT = (AV )T has at least (1− s)2N2

entries with magnitude ≥ t2. �
We now define an operation called boosting. Roughly speaking, we pick σ equations at a time from the

MaxLin-Q instance A. We add ρσ linear combinations of these to the boosted instance B. The intention is that
even if one of the σ equations fails under some assignment, a lot of the ρσ corresponding equations in B must
fail. This is accomplished by using a construction similar to Hadamard code.

Definition 7 Let A be a MaxLin-Q instance with N equations. Let ρ, σ be two arbitrary numbers. We
define the (ρ, σ)-boosting to be the MaxLin-Q instance B obtained as follows. For every possible choice
(Ai1 ,Ai2 , . . . ,Aiσ) of σ rows of A and a vector (ρ1, ρ2, . . . , ρσ) ∈ [ρ]σ, add a row ρ1Ai1+ρ2Ai2+. . .+ρσAiσ

to B. We call the ρσ rows of B that correspond to a choice of (Ai1 ,Ai2 , . . . ,Aiσ) a cluster.

The idea behind adding ρσ equations to each cluster is the following. If b1 ≥ t, then for any b, ρ1b1 + b lies
in the interval (−t/2, t/2) for at most one value of ρ1 ∈ [ρ]. Similarly, for any given values of ρ2, . . . , ρσ and
b2, . . . , bσ,

∑σ
i=1 ρibi, lies in the interval (−t/2, t/2) for at most one value of ρ1 ∈ [ρ]. An analogy to Hadamard

codes is that if a bit in a string is 1, then half of the positions in its Hadamard code are 1.

Lemma 10 Let A be a (N, c, s, t) MaxLin-Q instance. Let B be a (ρ, σ)-boosting of B. Then B is a
((ρN)σ, 1− σ(1− c), sσ + ρ−1, t/2) instance.
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Proof:There are Nσ choices for (Ai1 ,Ai2 , . . . ,Aiσ) and ρσ choices for (ρ1, ρ2, . . . , ρσ). This proves the claim
about the size of B.

Fix an assignment that satisfies c fraction of the equations in A. Let W denote the set of equations in
A that are satisfied by this assignment. The probability that all of the σ equations in a random choice of
(Ai1 ,Ai2 , . . . ,Aiσ) are in W is at least cσ ≥ 1− σ(1− c). When this happens, all the equations in the cluster
corresponding to the choice of (Ai1 ,Ai2 , . . . ,Aiσ) are satisfied by the same assignment.

Now suppose for any X = (1, x1, x2, . . . , xm), at least sN fraction of the entries in AX have magnitude
≥ t. Fix any assignment X to the variables in A. Consider σ rows Ai1 ,Ai2 , . . . ,Aiσ from A. Now suppose
|Ai1X| ≥ t. Let b ∈ Q. Then, for at most one value of ρ1 ∈ [ρ], ρ1Ai1X + b has magnitude less than t/2.
Therefore, for all but a 1/ρ fraction of (ρ1, ρ2, . . . , ρσ) ∈ [ρ]σ,

|(ρ1Ai1 + ρ2Ai2 + . . . + ρσAiρ)X| ≥ t/2

If (Ai1 ,Ai2 , . . . ,Aiσ) are σ random rows of A, the probability that none of Ai1X, Ai2X, . . . ,AikX have
magnitude ≥ t is at most sσ. Therefore, at most sσ + (1 − sσ)ρ−1 ≤ sσ + ρ−1 fraction of the entries in BX
have magnitude less than t/2. This proves the claim about the soundness. �

We now use tensoring and boosting to obtain a 1− ε0 versus ε0 gap for MaxLin-Q.

Lemma 11 For any constants ε0 > 0, 0 < s < c ≤ 1 and t > 0, there exists a polynomial time algorithm that
when given a (N, c, s, t) MaxLin-Q instance A as input produces a (N1, 1 − ε0, ε0, t1) instance where t1 > 0
is a constant.

Proof:Let B be the instance obtained by repeatedly tensoring A l times. Then, B is a (NL, 1 − (1 − c)L, 1 −
(1− s)L, tL) MaxLin-Q instance, where L = 2l. Choose l large enough so that(

1− c

1− s

)L

ln(2/ε0) ≤ ε0

Now we use (ρ, σ)-boosting on B where ρ = 2/ε0 and

σ =
ln(2/ε0)
(1− s)L

The result is a (N1, c1, s1, t1) instance where

c1 ≥ 1− σ(1− c)L ≥ 1− ln(2/ε0)
(1− s)L

(1− c)L ≥ 1− ε0

and
(1− (1− s)L)σ ≤ (1/e)σ(1−s)L

= e− ln(2/ε0) = ε0/2

Therefore, s1 = (1− (1− s)L)σ + ρ−1 ≤ ε0 and t1 = tL/2. �
Note that combining Lemma 11 with Lemma 15 suffices to show a 2 − ε hardness factor for the halfspace

problem for any constant ε > 0. We now focus on obtaining an improved hardness result where ε is sub-constant.

5.2.2 Super-constant gap for MaxLin-Q

We will now prove a (1 − ε, ε) hardness for MaxLin-Q for a sub-constant (as a function of the size N ) value
of ε. One hurdle to be overcome is the rapid increase in the size of the instance produced by both tensoring
(from N to N2) and boosting (from N to Nσ). To overcome this problem we now define a pseudo-random
boosting, or simply pseudo-boosting, that acheives a similar improvement in soundness (with a similar expense
in completeness) as normal boosting does, but increases the size by only a constant factor.

26



Definition 8 A walk of length σ on a graph G is an ordered sequence of vertices (v1, v2, . . . , vσ) such that there
is an edge between vi and vi+1 in G for all 1 ≤ i < σ.

Definition 9 Let A be a MaxLin-Q instance with N equations. Let ρ, σ be two arbitrary numbers. We define the
(ρ, σ)-pseudo-boosting to be the MaxLin-Q instance B obtained as follows. Let GN be the 5-regular Gabber-
Galil graph on N vertices. Associate every vertex v of GN to an equation Av in A. For every possible walk
(v1, v2, . . . , vσ) of length σ on GN and a vector (ρ1, ρ2, . . . , ρσ) ∈ [ρ]σ, add a row ρ1Av1+ρ2Av2+. . .+ρσAvσ

to B. We call the ρσ rows of B that correspond to a walk on the rows of A a cluster.

The specific kind of expander used in pseudo-boosting is not important. We would like to point out that since
Gabber-Galil graphs are defined only for integers of the form 2p2, we might have to add some trivially satisfied
equations to A. This only improves the completeness of A. The soundness suffers by at most O(1/

√
N), which

is a negligible increase if the soundness of the instance A were constant. Hence, we ignore this issue from now
on. Before we analyze pseudo-boosting, we mention some results about expanders that will be useful.

Lemma 12 Let W denote a subset of the vertices of a regular graph G. If |W | ≥ (1 − ε)N , then at most σε
fraction of the walks of length σ contain a vertex from W̄ .

Proof:Pick a walk uniformly at random from all possible walks of length σ on G. The probability that the ith

vertex of the walk is contained in W̄ is at most ε. This is because the graph is regular and hence all vertices are
equally likely to be visited as the ith vertex. Applying union bound over all the σ possible locations for a vertex
in the walk, the probability that at least one of the vertices in the walk is contained in W̄ is no more than σε. �

Lemma 13 [LW95, Section 15] Let W be a subset of the vertices of GN . Let |W | ≤ N/10. There exists a
constant r such that for sufficiently large N , at most rσ fraction of all walks of length σ in GN are contained
within W .

Lemma 14 Let A be a (N, c, 1/10, t) MaxLin-Q instance. Let B be a (ρ, σ)-pseudo-boosting of B. Then B
is a (5σ−1ρσN, 1− σ(1− c), rσ + ρ−1, t/2) instance, where r is the constant guaranteed by Lemma 13.

Proof:The proof of the lemma will closely parallel that of Lemma 10. The number of walks of length σ begin-
ning from each vertex in a graph GN is 5σ−1. Corresponding to each walk, we add ρσ rows to B. This proves
the claim about the size of B.

Fix an assignment that satisfies c fraction of the equations in A. Let W denote the set of equations in A that
are satisfied by this assignment. From Lemma 12, we know that at most σ(1− c) fraction of walks of length σ
visit a row from W̄ . If all of the σ rows visited by a walk are satisfied, then all the equations of B in the cluster
corresponding to this walk are also satisfied under the same assignment.

Now suppose for any X = (1, x1, x2, . . . , xm), at least N/10 fraction of the entries in AX have magnitude
≥ t. Fix any assignment X to the variables in A. If (Av1 ,Av2 , . . . ,Avσ) is a random walk on GN , then from
Lemma 13, the probability that none of Av1X, Av2X, . . . ,Avk

X have magnitude ≥ t is at most rσ for large
enough N . Therefore, as in Lemma 10, at most rσ + (1 − rσ)ρ−1 ≤ rσ + ρ−1 fraction of the entries in BX
have magnitude less than t/2. This proves the claim about the soundness. �

We now use tensoring with pseudo-boosting to obtain a super-constant hardness factor for MaxLin-Q.

Theorem 17 There exists a 2(log n)O(1)
time reduction that when given a 5-regular graph G on n vertices outputs

a MaxLin-Q instance A2 of size N2 = 2(log n)O(1)
such that

• If there is a vertex cover of size dn, then there is an assignment that satisfies 1− 2−Ω(
√

log N2) fraction of
the equations.
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• If every vertex cover is of size ≥ (1 + ζ)dn, then under any assignment, at most 2−Ω(
√

log N2) fraction of
the equations can be satisfied within a tolerance as large as 2−O(

√
log N2).

where d and ζ are the constants mentioned in Lemma 7

We first use Lemma 8 and Lemma 11 to convert a vertex cover instance to a (N1, 1 − ε0, ε0, t1) MaxLin-Q
instance A1. We then alternately tensor and pseudo-boost A1 so that the soundness stays below 1/20, but
the completeness progressively comes closer to 1. As a final step, we pseudo-boost once more so that the
completeness is 1− ε and the soundness is ε for a small value ε as desired.
Proof:Fix

ε0 = min
{

log r−1

4 log 40
,

1
20

}
,

σ0 = d(4ε0)−1e and ρ0 = 40.
We first use Lemma 8 and Lemma 11 to convert the graph to a (N1, 1 − ε0, 1/20, t1) MaxLin-Q instance

A1, where N1 = nO(1). Suppose B1 is the result of tensoring and (ρ0, σ0)-pseudo-boosting A1 once. Then B1

is a (O(N1)2, 1− σ0ε
2
0, r

σ
0 + ρ−1

0 , t21/2) instance (The claim about soundness follows since the soundness after
tensoring is 1 − (1 − 1/20)2 ≤ 1/10 and we can apply Lemma 14 to bound the soundness after the pseudo-
boosting). Since σ0ε0 ≤ 1/2 < 1, after one round of tensoring and pseudo-boosting, the completeness comes
closer to 1. Also, the soundness stayed below 1/20 after one round since rσ

0 +ρ−1
0 ≤ 2log r/(4ε0) +1/40 ≤ 1/20.

Now, let A2 be the result of repeatedly tensoring and (ρ0, σ0)-pseudo-boosting A1 l times. Let L = 2l. Then
A2 is a (N2, c2, 1/20, t2) instance where N2 = O(N1)L, c2 = 1−O(1)L and t2 = Ω(1)L.

As a final step, we now use (ρ2, σ2)-pseudo-boosting on A2 where ρ2 = d2.2Le, σ2 =
⌈

1 + L

log(1/r)

⌉
. This

produces a (N3, c3, s3, t3) instance where N3 = O(ρ2)σ2N2 = 2O(L2)NL
1 , c3 = 1−O(L)O(1)L = 1−O(1)L,

s3 = rσ
2 + ρ−1

2 ≤ 2−L and t3 = Ω(1)L. Choose L = log N1. Then log N3 = O(log2 N1), which implies
L = Ω(

√
log N3). That is, A3 is a (N3, 1− 2−Ω(

√
log N3), 2−Ω(

√
log N3), 2−O(

√
log N3)) instance. �

5.3 From MaxLin-Q to the Halfspace Problem

Lemma 15 There exists a polynomial time algorithm that when given a (N, c, s, t) instance A of MaxLin-Q
produces a instance of the halfspace problem with 2N points such that:

• If there is a solution to the MaxLin-Q instance that satisfies ≥ cN of the equations, there is a halfspace
that correctly classifies ≥ 2cN of the points.

• If A has soundness s under tolerance t, then no halfspace can correctly classify more than (1 + s)N of
the points.

Proof:We can rewrite each equation of A as two inequalities

−t′ < ai0 +
n∑

j=1

aijxj < t′

for any t′ ∈ Q satisfying 0 < t′ ≤ t. We select a value of t′ in this range such that t′ /∈ {±ai0}i=1,2...N .
Homogenizing the above, one can rewrite A as a system of 2N inequalities

(ai0 + t′)x0 +
∑n

j=1 aijxj > 0
(ai0 − t′)x0 +

∑n
j=1 aijxj < 0

(5)
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where i ∈ {1, 2, . . . , N}. If we could satisfy cN equations in A, the new system has a solution satisfying 2cN
inequalities by setting x0 to 1. Suppose there is a solution satisfying (1 + s)N of the inequalities in (5). Note
that if we set x0 ≤ 0, then since t′ > 0, we will satisfy at most half of the inequalities, hence we can assume
x0 > 0. So we can scale the values of xis so that x0 is 1. Then, (x1, x2, . . . xn) is a solution to A that satisfies s
fraction of the equalities within tolerance t′ ≤ t.

The condition t′ /∈ {±ai0}i=1,2...N ensures that the coefficient of x0 in all the 2N inequalities of (5) is non-
zero. Now divide each inequality by the coefficient of x0 and flip the direction of the inequality if we divided by
a negative number. This way, we can convert the system (5) to an equivalent system of 2N inequalities, where
each inequality is of the form

x0 +
n∑

j=1

hijxj > 0 or x0 +
n∑

j=1

hijxj < 0 (6)

where i ∈ {1, 2, . . . , 2N}. We now define the halfspace instance. The halfspace instance produced is over Rn.
For an inequality of the first form in (6), add the point (hi1, hi2, . . . , hin) to S+. For an inequality of the second
form add the point (hi1, hi2, . . . , hin) to S−.

Suppose that there is an assignment (x0, x1, . . . , xn) satisfying 2cN inequalities in (5). Then the hyperplane
x0 +

∑n
j=1 xjhj = 0 correctly classifies cN points in (S+, S−).

Now suppose there is a hyperplane x0+
∑n

j=1 xjhj = 0 that correctly classifies (1+s)N points in (S+, S−)
for some s > 0. Clearly, x0 > 0. Scale the xi so that x0 = 1. Now, (x1, x2, . . . , xn) is an assignment satisfying
(1 + s)N inequalities in (6), and equivalently in (5). This completes the proof of the lemma. �

We can now prove Theorem 7.

Proof:We give a reduction from the vertex cover problem on 5-regular graphs mentioned in Lemma 7. The
reduction will have running time 2(log n)O(1)

for n vertex graphs.
Let G be the input graph with n vertices. We use the reduction mentioned in Theorem 17 to produce a

(N2, c2, s2, t2) MaxLin-Q instance A, where c2 = 1 − ε, s2 = ε, ε = 2−Ω(
√

log N2) and t = 2−O(
√

log N2) > 0.
We transform A2 to a halfspace instance (S+, S−) as described in Lemma 15. Note that N ′ = |S+| + |S−| =
4N2. Now, if there is a vertex cover of size ≤ dn in G, there is a halfspace that correctly classifies c2 fraction
of the points. On the other hand, if there is no vertex cover of size smaller than (1 + ζ)dn in G, there is no
halfspace that correctly classifies ≥ 1/2(1 + s2) fraction of the points.

Therefore the gap obtained is c2/(1/2(1 + s2)) = 2(1− ε)/(1 + ε) = 2(1−O(ε)) = 2− 2−Ω(
√

log N ′). �

6 Conclusions

We have shown connections between several well-studied open problems on learning under the uniform dis-
tribution. Our reductions imply that in a sense, the class of noisy parities is the hardest concept class for this
model of learning. A natural question is whether one can reduce learning noisy parities of O(log n) variables to
learning DNF (or juntas). On the positive side, a non-trivial algorithm for learning parities of O(log n) variables
will help make progress on a number of important questions regarding learning under the uniform distribution.
Indeed it is plausible that there exists a better algorithm than exhaustive search for this variant of the problem,
as in the case of (unrestricted) noisy parity [BKW03].

It would be interesting to see whether the construction of balanced set partitions in Theorem 13 can be de-
randomized. We remark that derandomizing this construction would, in particular, produce a bipartite expander
graph with an almost optimal expansion factor.

For halfspaces, a natural question is whether one can extend our hardness result for learning halfspaces to
more general concept classes. One possible generalization would be to allow the sign of a low-degree polynomial
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as hypothesis. Kalai et al. [KKMS05] use this hypothesis class to design algorithms for agnostic learning of
halfspaces under some natural distributions. Similarly, for the problem of learning parities with adversarial
noise, one could allow the algorithm to produce a low degree polynomial over Z2 as hypothesis. To the best of
our knowledge, there are no negative results known for these problems.
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