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Abstract. We study the problem embedding ann-point metric space into an-
othern-point metric space while minimizing distortion. We show that there is no
polynomial time algorithm to approximate the minimum distortion within a factor
of Ω((log n)1/4−δ) for any constantδ > 0, unless NP⊆ DTIME(npoly(log n))).
We give a simple reduction from theMETRIC LABELING problem which was
shown to be inapproximable by Chuzhoy and Naor [10].

1 Introduction

Given anembeddingf : X 7→ Y from a finite metric space(X, dX) into another metric
space(Y, dY ), define

Expansion(f) := max
i,j∈X,i 6=j

dY (f(i), f(j))
dX(i, j)

,

Contraction(f) := max
i,j∈X,i 6=j

dX(i, j)
dY (f(i), f(j))

.

Thedistortionof f is the product of Expansion(f) and Contraction(f).

The problem of embedding one metric space into another has been well studied in
Mathematics, especially in the context of bi-lipschitz embeddings. Metric embeddings
have also played an increasing role in Computer Science; see Indyk’s survey [12] for
an overview of their algorithmic applications. Much of the research in this area has
focussed on embedding finite metrics into ausefultarget space such as`2, `1 or dis-
tributions over tree metrics. For example, Bourgain’s Theorem [8] shows that every
n-point metric space embeds into`2 with distortionO(log n). Fakcharoenphol, Rao,
and Talwar [11], improving on the work of Bartal [7], show that everyn-point met-
ric embeds into a distribution over tree metrics with distortionO(log n). Recently, the
class ofnegative typemetrics has received much attention, as they arise naturally as a
solution of a SDP-relaxation for theSPARSEST CUTproblem. Arora, Lee, and Naor
[3], building on techniques from Arora, Rao, and Vazirani [4], show that everyn-point
negative type metric embeds into`2 with distortionO(

√
log n log log n).
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Given two spaces(X, dX) and(Y, dY ), let cY (X) denote the minimum distortion
needed to embedX into Y . A natural computational problem is to determinecY (X),
exactly or approximately (call it theMIN-DISTORTION problem). Of course, the
complexity of the problem depends on the nature of the two spaces. It is known that
c`2(X) can be computed in polynomial time for anyn-point metricX, using a straight-
foward SDP-relaxation. It is however NP-hard to determine whetherc`1(X) = 1. When
the target space is the line metric, the problem is hard, even to approximate within a
factor nβ for some constant0 < β < 1, as shown by Badoiu, Chuzhoy, Indyk, and
Sidiropoulos [6].

One variant of the problem is whenX andY are of equal size and explicitly given
(call it theMIN-DISTORTION= problem). Though a very natural problem, it has not
been studied until recently, and not much is known about its complexity. The prob-
lem was formulated by Kenyon, Rabani, and Sinclair [14] motivated by applications to
shape matching and object recognition. Note that when both are shortest path metrics
on n-vertex graphs, determining whethercY (X) = 1 is same as determining whether
the two graphs are isomorphic. On the positive side, Kenyonet al.give a dynamic pro-
gramming based algorithm when the metrics are one-dimensional and the distortion is
at most2 +

√
5. In this case, the bijectionf between the two point sets must obey cer-

tain properties regarding how the points are relatively ordered, which enables efficient
computation of all such possible embeddings in a recursive manner. On the negative
side, Papadimitriou and Safra [15] showed thatcY (X) (when |X| = |Y |) is hard to
approximate within a factor of3, and the result holds even when both point sets are in
R3. They give a clever reduction fromGRAPH 3-COLORING.

In this paper, we prove the following inapproximability result.

Theorem 1 (Inapproximability ofMIN-DISTORTION=) For any constantδ > 0,
there is no polynomial time algorithm to approximate the distortion required to embed
ann-point metric space into anothern-point metric space within a factor of(log n)1/4−δ,
unlessNP⊆ DTIME(npoly(log n)).

2 Preliminaries

In this section we formally state the problemMIN-DISTORTION=, and some of the
tools we require for the construction in the next section. We will be concerned only with
finite metric spaces i.e. metrics on finite sets of points.

Definition 1 The problem ofMIN-DISTORTION= is, given twon point metric spaces
(X, dX) and (Y, dY ), computing an embeddingf of X into Y with the minimum dis-
tortion.

A related problem isMETRIC LABELING which was introduced by Kleinberg and
Tardos [13].

Definition 2 The problem ofMETRIC LABELLING is the following. Given a weighted
graph G(V, E, {we}e∈E) and a metric space(X, d), along with a cost functionc :



V ×X 7→ R, the goal is to find a mappingh of V to X such that the following quantity
is minimized,

∑

(u,v)∈E(G)

w(u, v) · d(h(u), h(v)) +
∑

u∈V

c(u, f(u)).

The problem is essentially of finding a ‘labeling’ of the vertices of the graphG with
the points in the metric spaceX, so as to minimize the sum of the connection costs
(cost of labelling vertices inG with points inX) and weighted ‘stretch’ of the edges of
G. A special case ofMETRIC LABELING is the(0,∞)-EXTENSIONproblem in
which, essentially, the connection costs are0 or∞. It is formally defined as follows.

Definition 3 The problem of(0,∞)-EXTENSION is the following. Given a weighted
graph G(V, E, {we}e∈E) and a metric space(X, d), along with a subset of allowed
labelss(u) ⊆ X for every vertexu ∈ V (G), the goal is to find a mappingh of V to X,
satisfyingh(u) ∈ s(u) for all u ∈ V (G), such that the following quantity is minimized,

∑

(u,v)∈E(G)

w(u, v) · d(h(u), h(v)).

It has been shown thatMETRIC LABELING is equivalent to its special case of
(0,∞)-EXTENSION[9]. For METRIC LABELING Kleinberg and Tardos [13] ob-
tained anO(log n log log n) approximation, wheren is the size of the metricX, which
was improved toO(log n) [11]. Chuzhoy and Naor [10] give a hardness of approxima-
tion factor of(log n)1/2−δ for METRIC LABELING. The instance that they construct
is the (0,∞)-EXTENSION version ofMETRIC LABELING, and moreoverG is
unweighted.

Definition 4 A 3-SAT(5) formulaφ is a 3-CNF formula in which every variable ap-
pears in exactly5 clauses.

The reduction in [10] starts with an instance of theMAX-3-SAT(5) problem in which,
given a3-SAT(5) formulaφ, the goal is to find an assignment to the variables that sat-
isfies the maximum number of clauses. The following is the well known PCP theorem
[2] [5].

Theorem 2 (PCP theorem): There exists a positive constantε such that, given an in-
stanceφ of MAX-3-SAT(5) there is no polynomial time algorithm to decide whether
there is an assignment to the variables ofφ that satisfies all the clauses (Yes instance)
or that no assignment satisfies more than1− ε fraction of the clauses, unlessP= NP.

Overview of reduction. The construction of [10] yields a(0,∞)-EXTENSION ver-
sion with graphG and target metricH, where bothG andH are unweighted graphs,
with the metric onH being the shortest path metric. They show that in the Yes case,
there is an embedding ofV (G) into V (H) such that the end points of an edge ofG are
mapped onto end points of some edge ofH, so that the stretch of every edge inG is 1.
However, in the No case in any such embedding, for at least a constant fraction of edges
of G, their end points are mapped onto pairs of vertices inH which areΩ(k) distance



apart, wherek is a parameter used in the construction so thatk = θ(log |V (H)|)1/2−δ.
This yields a hardness of approximation factor of(log n)1/2−δ for METRIC LABEL-
ING for anyδ > 0.

The main idea behind our reduction is to start with the instance constructed in [10]
and view the graphG also as a metric, and the mappingh as an embedding ofG into H.
This makes sense since their instance is a(0,∞)-EXTENSIONversion and moreover
G is unweighted, in which case the quantity to be optimized is just the average stretch
of every edge inG by the embeddingh.

The reduction proceeds in three steps where the first step constructs the instance of
[10]. The second involves adding additional points in the two metrics in order to equal-
ize the number of points in both the metrics and third step enforces the constraints of
allowed labels, by adding some more points in the two metrics. The entire construction
and analysis is presented in the following section.

3 Reduction from MAX-3-SAT(5)

Our reduction fromMAX-3-SAT(5) is based on the construction in [10] for the hard-
ness ofMETRIC LABELING. We modify the instance ofMETRIC LABELING to
obtain a ‘gap’ instance ofMIN-DISTORTION=. In this section we describe the entire
construction and analysis of the hardness factor.

3.1 Construction

We describe thek-prover protocol used in [10]. Letφ be aMAX-3-SAT(5) formula,
and letn be the number of clauses inφ. LetP1, P2, . . . , Pk bek provers (the parameter
k will be set toθ(poly(log n))). The protocol is as follows,

– For each(i, j), 1 ≤ i < j ≤ k, the verifier chooses a clauseCij from φ uniformly
at random, and randomly selectsxij a distinguished variable fromCij . Pi is sent
Cij and returns an assignment to the variables ofCij . Pj is sentxij and returns
as assignment to the variablexij . Every other prover is sent bothCij andxij and
returns assignments to all the variables of the clause. Hence, the verifier sends

(
k
2

)
coordinates to each prover.

– The verifier accepts if the answers of all the provers are consistent and satisfy all
the clauses of the query.

We will denote the set of random strings used by the verifier asR. For r ∈ R, let
qi(r) be the query sent to proverPi whenr is the random string chosen by the verifier.
Let Qi = ∪rqi(r) be the set of all possible queries of toPi. For q ∈ Qi, letAi(q) be
the set of all answers toq that satisfy all the clauses inq. LetPi andPj (1 ≤ i < j ≤ k)
be any two provers, andqi ∈ Qi andqj ∈ Qj be two queries such that for somer ∈ R,
qi = qi(r) andqj = qj(r). Let Ai ∈ Ai(qi) andAj ∈ Aj(qj) be respective answers to
these queries. Then,Ai andAj are calledweakly consistentif the assignments toCij

in Ai andxij in Aj are consistent and satisfy the clauseCij . They are calledstrongly



consistentif they are also consistent in all the other coordinates and also satisfy all the
other clauses. The following theorem is due to Chuzhoy and Naor [10].

Theorem 3 There is a constant0 < ε < 1 such that ifφ is a Yes instance, then there is
a strategy of thek provers such that the verifier accepts, and ifφ is a No instance, then
for any pair of proversPi andPj , the probability that their answer is weakly consistent
is at most1− ε

3 .

We now construct our instance ofMIN-DISTORTION= starting from aMAX-3-
SAT(5) formulaφ. The reduction proceeds in three stages. At each stage we obtain two
metric spaces, with the first stage yielding exactly theMETRIC LABELING instance
of [10] and at the end of the third stage we obtain two metric spaces of equal size which
constitute the desired instance ofMIN-DISTORTION=.

STEP I. In this step we construct two graphsG1 andH1 which are same as the graphs
constructed in theMETRIC LABELING instance of [10]. The construction of the
graphG1 is as follows.

– For every proverPi and everyq ∈ Qi, there is a vertexv(i, q).
– For every random stringr ∈ R, there is a vertexv(r).
– There is an edge of length1 betweenv(r) andv(i, q) if q = qi(r).

Call the vertices ofG1 as ‘query’ vertices. The graphH1 is constructed in the following
manner.

– For everyi (1 ≤ i ≤ k), everyq ∈ Qi, and answerAi ∈ Ai(q), there is a vertex
v(i, q, Ai).

– For everyr ∈ R and every pairwise strongly consistent answersA1, A2, . . . , Ak

to the queriesq1(r), q2(r), . . . , qk(r) respectively (whereAi ∈ Ai(qi(r)) for 1 ≤
i ≤ k), there is a vertexv(r,A1, A2, . . . , Ak).

– There is an edge of length1 betweenv(i, q, Ai) andv(r,A1, A2, . . . , Ak) if q =
qi(r) and theith coordinate of the tuple(A1, A2, . . . , Ak) is Ai.

The vertices ofH1 will be referred to as ‘label’ vertices. Figure 1 shows the local
structure ofG1 andH1. It can be seen that for every ‘query’ vertexu in G1, there is
a set of ‘label’ verticess(u) in H1, such that{s(u)}u∈V (G1) is a partition ofV (H1).
For the sake of convenience, we modify our notation to letV (G1) = {u1, u2, . . . , uN},
whereN = |V (G1)| andV (H1) = ∪N

i=1s(ui), and let`i
1, `

i
2, . . . , `

i
mi

be the elements
of s(ui), wheremi = |s(ui)|. Also note that there is an edge between the setss(ui) and
s(uj) in H1 only if there is an edge betweenui anduj in G1. The graphsG1 andH1

with the partition{s(ui)}ui∈V (G1) constitute the instance ofMETRIC LABELING
of [10]. They show that in the Yes case, there is a labeling of everyui ∈ V (G1) with
a label froms(ui) such that each edge inG1 is mapped to an edge inH1, while in
the No case in every such labeling, a constant fraction of edges inG1 are mapped to
pairs of verticesΩ(k) distance apart inH1. Figure 2 illustrates this structure ofG1 and
H1. Let dG1 anddH1 denote the shortest path metric onG1 andH1 respectively. Note
that eventually we want two metric spaces of equal cardinality, in the next step of the
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Fig. 1. Vertices ofG1 andH1. All edges are of length1.
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Fig. 2. Structure ofG1 andH1.



construction we achieve that goal.

STEP II. We first modifyG1 as follows. For every vertexui (1 ≤ i ≤ N ) in G1, we
addmi − 1 verticesti1, t

i
2, . . . t

i
mi−1 and add an edge from eachtij to ui of length

√
k.

Let G2 be the new graph created in this process anddG2 be the shortest path metric on
G2. The transformation is shown in Figure 3.

ui

ui

√

k
√

k

√

k

√

k

t1 t2

tj

tmi−1

G1 G2

Fig. 3. Transformation fromG1 to G2.

We truncatedH1 from below to
√

k and from above to10k, i.e. if the distance be-
tween a particular pair of points is less than

√
k then it is set to

√
k and if it is greater

than10k then it is set to10k, otherwise it remains the same. We also truncatedG1 from
above to10k , but not from below. LetH2 be the new resultant graph anddH2 be this
new metric onV (H2). Observe thatG2 andH2 have the same number of vertices.

STEP III. We now have two graphsG2 andH2 with equal number of vertices. How-
ever, we desire that any ‘good’ embedding of vertices ofG2 into H2 map the set
{ui, t

i
1, . . . , t

i
mi−1} onto the sets(ui). For this we add new vertices to both the graphs

in the following manner. Letηi = 2−iN . For everyi (1 ≤ i ≤ N ), we addmi ver-
ticesαi

1, α
i
2, . . . , α

i
mi

to G2, whereαi
mi

is at a distanceηi from ui and similarlyαi
j

is at a distance ofηi from tij for eachj = 1, 2, . . . ,mi − 1. Similarly, in the graph
H, we add vertices verticesβi

1, β
i
2, . . . , β

i
mi

, such thatβi
j is at a distance ofηi from

`i
j for j = 1, 2, . . . ,mi. Let G3 andH3 be the graphs formed in this manner (refer to

Figure 4), with the metricsdG3 anddH3 extended to the new vertices according to the
distances defined above. Note that we have ensured thatG3 andH3 have equal number
of vertices. We outputG3 andH3 along with the respective metricsdG3 anddH3 on
V (G3) andV (H3) respectively, as the instance ofMIN-DISTORTION=.

Remark.Note that all the distances inG2 andH2 were at least1. In G3 andH3 each,
we addedmi edges of length2−iN , for i = 1, . . . , N . So, any bijection betweenV (G3)
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Fig. 4. Transformation fromG2 to G3 andH2 to H3.



andV (H3) must map edges of length2−iN in G3 to edges of length2−iN in H3 for
i = 1, . . . , N , otherwise at least one edge will be stretched or contracted by a factor of
at least2N . Therefore, this ensures that in any embedding ofG3 into H3, for any given
i (1 ≤ i ≤ N ) the set{αi

1, . . . , α
i
mi
} is mapped onto the set{βi

1, . . . , β
i
mi
} and the set

{ui, t
i
1, . . . , t

i
mi−1} is mapped onto the set{`i

1, . . . , `
i
mi
}, otherwise the distortion is at

least2N .

3.2 Analysis

Yes instance.Suppose that theMAX-3-SAT(5) formula had a satisfying assignment,
sayσ to the variables. We will construct an embeddingf of V (G3) into V (H3) such
that no edge inG3 is contracted, whereas any edge inG3 is stretched by at most a fac-
tor of O(

√
k), which leads to an embedding with distortion at mostO(

√
k). For anyi

(1 ≤ i ≤ N ), consider the vertexui. We recall thatui was a ‘query’ vertex, ands(ui) is
the set of ‘label’ vertices corresponding toui. We setf(ui) to be a label vertex ins(ui)
given by the satisfying assignmentσ. The mapf takesti1, t

i
2, . . . , t

i
mi−1 arbitrarily to

the remainingmi − 1 vertices ins(ui). The vertexαi
j (1 ≤ j ≤ mi − 1) is mapped

to βi
j′ such thatβi

j′ at distanceηi to f(tij). Similarly, the vertexαi
mi

is mapped toβi
j′′

which is at a distance ofηi from f(ui).

Consider any two verticesui andui′ in in G1 that are adjacent. Sinceσ is a satisfy-
ing assignment, we have that the verticesf(ui) andf(ui′) are also adjacent inH1. And
since adjacent vertices remain adjacent inG3 and adjacent vertices inH1 have distance√

k in H3, therefore the stretch of the edge(ui, uj) in G3 is
√

k. The edge(ui, t
i
j)

(1 ≤ j ≤ mi − 1) has length
√

k and since the diameter of the metric onH3 (andG3)
is O(k), the stretch of the edge is at mostO(

√
k). Also, clearly the distances of the

edges(ti1, α
i
1), . . . , (t

i
mi−1, α

i
mi−1), (ui, αmi) are not stretched or contracted. One key

fact that we have utilized is that there is an edge (inH1) betweens(ui) ands(ui′) only
if ui andui′ are adjacent inG1. This ensures that there is no edge (inG1) contracts,
which guarantees that no distance inG3 contracts. Therefore, there is an embedding of
the vertices ofG3 into H3 with distortion at mostO(

√
k).

No instance.Suppose that theMAX-3-SAT(5) formula has no satisfying assignment
that satisfies more that1 − ε fraction of the clauses. In this case, as a consequence of
Proposition 4.4 and Lemma 4.5 of [10], we have that in every mappingg of V (G1) into
V (H1), such thatg(u) ∈ s(u), for all u ∈ V (G), there is a constant fraction of edges
of G1 whose end points are mapped to pairs of vertices ofH1 that areθ(k) distance
apart inH1. Since we truncate the metric ondH1 from above toΩ(k), it is also true for
the truncated metric onH1.

As noted in the remark after step III of the construction, any embeddingf of
V (G3) into V (H3) which does not satisfy the condition thatf(ui) ∈ s(ui) for all
i = 1, 2, . . . , N incurs a distortion of at least2N > k. Therefore we may assume that
the above condition holds forf . Now, using what we stated above, we get that there is
a unit distance edge(ui, ui′) is stretched by a factor ofΩ(k), i.e.dH3(f(ui), f(ui′) ≥



Ω(k) · dG1(ui, ui′). Note that unit distances inG1 are preserved inG3 and the trun-
cation of distances ofH1 to

√
k from below only helps us. Therefore, in this case the

distortion is at leastΩ(k).

Construction size.Since each query consists of at mostk2 clauses, the size ofR is at
most3 · nk2

and there are at most7k2
answers to each query. Also, since in steps II and

III we blow up the size only polynomially, we have that the total size of the construction
is at mostnO(k2).

Hardness factor. In the Yes case we have an embedding ofG3 into H3 with dis-
tortion at mostO(

√
k), while in the No case any embedding has distortion at least

Ω(k). Therefore, we have a hardness factorΩ(
√

k) and choosingk = poly(log n),
we havek = Ω((log |V (G3)|)1/2−δ). Therefore, we get that there is no polynomial
time algorithm to approximate the distortion of embedding twon-point metrics within
a factor of (log(n))1/4−δ of the optimal for any positive constantδ, unless NP⊆
DTIME(npoly(log n)). This proves Theorem 1.

4 Conclusion

In this paper we have shown a hardness factor of(log n)1/4−δ for approximating the
distortion required to embed two generaln point metrics. An interesting question is
whether such a superconstant lower bound also holds for constant dimensional metrics.
Papadimitriou and Safra [15] prove a3 factor hardness of approximating the distortion
for 3-dimensional metrics. Extending such a constant factor hardness to2-dimensional,
or 1-dimensional metrics is an important question. On the algorithmic side the only
positive result is for the case when the metrics are 1-dimensional and the optimum
distortion is at most2 +

√
5 [14], and extending it to higher dimensions remains an

open question. For generaln point metrics, no non-trivial upper bound is known, and it
would be interesting if a reasonable upper bound can be derived for this problem.
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