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Abstract. We study the problem embedding arpoint metric space into an-
othern-point metric space while minimizing distortion. We show that there is no
polynomial time algorithm to approximate the minimum distortion within a factor
of 2((logn)'/4~%) for any constand > 0, unless NPC DTIME (nPo¥(os 7)),

We give a simple reduction from ttiETRIC LABELING problem which was
shown to be inapproximable by Chuzhoy and Naor [10].

1 Introduction

Given anembedding : X — Y from a finite metric spacéX, dx ) into another metric
spacqY,dy ), define

Expansiolff) := max M,

i,jEX,i#] dX(i>j)

Contractiorff) := Jr??x#J FRTIONIG))

Thedistortionof f is the product of Expansidifi) and Contractiofy).

The problem of embedding one metric space into another has been well studied in
Mathematics, especially in the context of bi-lipschitz embeddings. Metric embeddings
have also played an increasing role in Computer Science; see Indyk’s survey [12] for
an overview of their algorithmic applications. Much of the research in this area has
focussed on embedding finite metrics intaigefultarget space such ds, ¢, or dis-
tributions over tree metrics. For example, Bourgain's Theorem [8] shows that every
n-point metric space embeds infg with distortion O(log n). Fakcharoenphol, Rao,

and Talwar [11], improving on the work of Bartal [7], show that everpoint met-

ric embeds into a distribution over tree metrics with distortidflog n). Recently, the
class ofnegative typemetrics has received much attention, as they arise naturally as a
solution of a SDP-relaxation for ttePARSEST CUTproblem. Arora, Lee, and Naor

[3], building on techniques from Arora, Rao, and Vazirani [4], show that exgpgint
negative type metric embeds intpwith distortionO(+/log n log log n).
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Given two spaceéX, dx) and(Y,dy), letcy (X) denote the minimum distortion
needed to embed’ into Y. A natural computational problem is to determinng( X),
exactly or approximately (call it th&1IN-DISTORTION problem). Of course, the
complexity of the problem depends on the nature of the two spaces. It is known that
¢, (X)) can be computed in polynomial time for amypoint metricX, using a straight-
foward SDP-relaxation. It is however NP-hard to determine whethéX ) = 1. When
the target space is the line metric, the problem is hard, even to approximate within a
factor n® for some constant < 8 < 1, as shown by Badoiu, Chuzhoy, Indyk, and
Sidiropoulos [6].

One variant of the problem is whexi andY are of equal size and explicitly given
(call it theMIN-DISTORTION= problem). Though a very natural problem, it has not
been studied until recently, and not much is known about its complexity. The prob-
lem was formulated by Kenyon, Rabani, and Sinclair [14] motivated by applications to
shape matching and object recognition. Note that when both are shortest path metrics
on n-vertex graphs, determining whethsr(X) = 1 is same as determining whether
the two graphs are isomorphic. On the positive side, Kemgtal. give a dynamic pro-
gramming based algorithm when the metrics are one-dimensional and the distortion is
at most2 + /5. In this case, the bijectiofi between the two point sets must obey cer-
tain properties regarding how the points are relatively ordered, which enables efficient
computation of all such possible embeddings in a recursive manner. On the negative
side, Papadimitriou and Safra [15] showed thatX) (when|X| = |Y) is hard to
approximate within a factor df, and the result holds even when both point sets are in
R3. They give a clever reduction fro@RAPH 3-COLORING

In this paper, we prove the following inapproximability result.

Theorem 1 (Inapproximability of MIN-DISTORTIONT) For any constanty > 0,
there is no polynomial time algorithm to approximate the distortion required to embed
ann-point metric space into anotherpoint metric space within a factor ¢fog n)/4~9,
unlessNP C DTIME (nPo(logn)),

2 Preliminaries

In this section we formally state the probleviiN-DISTORTION=, and some of the
tools we require for the construction in the next section. We will be concerned only with
finite metric spaces i.e. metrics on finite sets of points.

Definition 1 The problem oMIN-DISTORTION= is, given twan point metric spaces
(X,dx) and (Y, dy), computing an embeddinfyof X into Y with the minimum dis-
tortion.

A related problem isMETRIC LABELING which was introduced by Kleinberg and
Tardos [13].

Definition 2 The problem oMETRIC LABELLING is the following. Given a weighted
graph G(V, E, {w.}.cr) and a metric spacé¢X, d), along with a cost functior :



V x X — R, the goal is to find a mappinly of VV to X such that the following quantity
is minimized,

Y wlu,w)-d(h(u),h(v) + Y e(u, f(u).

(u,v)€EE(Q) ueV

The problem is essentially of finding a ‘labeling’ of the vertices of the gi@ptith
the points in the metric spack, so as to minimize the sum of the connection costs
(cost of labelling vertices iGr with points in.X) and weighted ‘stretch’ of the edges of
G. A special case OMETRIC LABELING is the(0, 00)-EXTENSION problem in
which, essentially, the connection costs @@ oo. It is formally defined as follows.

Definition 3 The problem of0, co)-EXTENSIONis the following. Given a weighted
graph G(V, E, {w. }.cr) and a metric spacéX, d), along with a subset of allowed
labelss(u) C X for every vertex. € V(G), the goal is to find a mappinfy of V to X,

satisfyingh(u) € s(u) for all u € V(G), such that the following quantity is minimized,

Z w(u,v) - d(h(u), h(v)).

(u,v)EE(G)

It has been shown thAdETRIC LABELING is equivalent to its special case of
(0,00)-EXTENSION[9]. For METRIC LABELING Kleinberg and Tardos [13] ob-
tained arD(log n log log n) approximation, where is the size of the metri&’, which
was improved t@)(log n) [11]. Chuzhoy and Naor [10] give a hardness of approxima-
tion factor of(log n)'/2~% for METRIC LABELING. The instance that they construct
is the (0, 00)-EXTENSION version of METRIC LABELING, and moreover7 is
unweighted.

Definition 4 A 3-SAT(5)formula¢ is a 3-CNFformula in which every variable ap-
pears in exacthyp clauses.

The reduction in [10] starts with an instance of & X-3-SAT(5) problem in which,
given a3-SAT(5)formulag, the goal is to find an assignment to the variables that sat-
isfies the maximum number of clauses. The following is the well known PCP theorem

(2] [5].

Theorem 2 (PCP theorem): There exists a positive constastich that, given an in-
stancegp of MAX-3-SAT(5) there is no polynomial time algorithm to decide whether
there is an assignment to the variablesiathat satisfies all the clauses (Yes instance)
or that no assignment satisfies more than ¢ fraction of the clauses, unle§s= NP.

Overview of reduction. The construction of [10] yields €, co)-EXTENSION ver-

sion with graphG and target metridZ, where bothG and H are unweighted graphs,

with the metric onH being the shortest path metric. They show that in the Yes case,
there is an embedding &f(G) into V (H) such that the end points of an edge®dére
mapped onto end points of some edgefyfso that the stretch of every edgeGhis 1.
However, in the No case in any such embedding, for at least a constant fraction of edges
of G, their end points are mapped onto pairs of verticeH iwhich aref2(k) distance



apart, wheré: is a parameter used in the construction so khatf(log |V (H)|)'/2~9.
This yields a hardness of approximation factoflof n)'/2~% for METRIC LABEL-
ING for anyé > 0.

The main idea behind our reduction is to start with the instance constructed in [10]
and view the graplt also as a metric, and the mappilgs an embedding @F into H.
This makes sense since their instance(i8,ac)-EXTENSION version and moreover
G is unweighted, in which case the quantity to be optimized is just the average stretch
of every edge irG by the embedding.

The reduction proceeds in three steps where the first step constructs the instance of
[10]. The second involves adding additional points in the two metrics in order to equal-
ize the number of points in both the metrics and third step enforces the constraints of
allowed labels, by adding some more points in the two metrics. The entire construction
and analysis is presented in the following section.

3 Reduction from MAX-3-SAT(5)

Our reduction fromMAX-3-SAT(5) is based on the construction in [10] for the hard-
ness oMETRIC LABELING. We modify the instance diETRIC LABELING to
obtain a ‘gap’ instance dflIN-DISTORTION=. In this section we describe the entire
construction and analysis of the hardness factor.

3.1 Construction

We describe thé-prover protocol used in [10]. Let be aMAX-3-SAT(5) formula,
and letn be the number of clausesdnLet Py, P, ..., P, bek provers (the parameter
k will be set tof(poly(logn))). The protocol is as follows,

— For each(i, j), 1 <i < j < k, the verifier chooses a claugg; from ¢ uniformly
at random, and randomly seleats a distinguished variable fromY;;. P; is sent
C;; and returns an assignment to the variableg’gf P; is sentx;; and returns
as assignment to the variahilg;. Every other prover is sent botl}; andx;; and
returns assignments to all the variables of the clause. Hence, the verifier(ééends
coordinates to each prover.

— The verifier accepts if the answers of all the provers are consistent and satisfy all
the clauses of the query.

We will denote the set of random strings used by the verifieRaBorr € R, let
q;(r) be the query sent to provét, whenr is the random string chosen by the verifier.
Let Q; = U,¢;(r) be the set of all possible queries of B. Forg € Q;, let A;(q) be
the set of all answers pthat satisfy all the clausesinLet P; andP; (1 <i < j < k)
be any two provers, ang € @Q; andg; € @Q); be two queries such that for some R,
¢ = ¢i(r) andg; = ¢;(r). Let A; € A;(¢;) andA; € A;(q;) be respective answers to
these queries. Then}; and A; are calledwveakly consisterif the assignments t@';;
in A; andz;; in A; are consistent and satisfy the cladsg. They are callegtrongly



consistentf they are also consistent in all the other coordinates and also satisfy all the
other clauses. The following theorem is due to Chuzhoy and Naor [10].

Theorem 3 There is a constant < £ < 1 such that ifp is a Yes instance, then there is
a strategy of theé: provers such that the verifier accepts, andé is a No instance, then
for any pair of proversP; andP;, the probability that their answer is weakly consistent
is at mostl — £.

We now construct our instance BFIN-DISTORTION= starting from avIAX-3-
SAT(5)formulag. The reduction proceeds in three stages. At each stage we obtain two
metric spaces, with the first stage yielding exactlyMieTRIC LABELING instance
of [10] and at the end of the third stage we obtain two metric spaces of equal size which
constitute the desired instanceMfN-DISTORTION=.

STEP I. In this step we construct two grapi§ and H; which are same as the graphs
constructed in theETRIC LABELING instance of [10]. The construction of the
graph@; is as follows.

— For every provelP; and every; € Q;, there is a vertex(i, q).
— For every random string € R, there is a vertex(r).
— There is an edge of lengthbetweerv(r) andv(i, q) if ¢ = ¢;(r).

Call the vertices o€+, as ‘query’ vertices. The grapH; is constructed in the following
manner.

— For everyi (1 < i < k), everyq € Q;, and answer; € A;(q), there is a vertex
v(i, q, Ay).

— For everyr € R and every pairwise strongly consistent answéy{sA,, ..., Ay
to the querieg (1), g2(r), . . ., gx (1) respectively (wherel; € A;(q;(r)) for1 <
1 < k), thereis a vertex(r, A1, Aa, ..., Ag).

— There is an edge of lengthbetweernv(i, ¢, 4;) andv(r, Ay, As, ..., Ag) if ¢ =
q;(r) and theith coordinate of the tuplgd;, Ao, ..., Ag) is A;.

The vertices ofi; will be referred to as ‘label’ vertices. Figure 1 shows the local
structure ofG; and H;. It can be seen that for every ‘query’ vertexn G4, there is
a set of ‘label’ vertices(u) in Hy, such that{s(u)}.cv(q,) is a partition ofV (H).
For the sake of convenience, we modify our notation t&16%,) = {u1, us,...,un},
whereN = |V(G1)| andV (H;) = UX s(u;), and letéi, 04, ..., ¢i, be the elements
of s(u;), wherem; = |s(u;)|. Also note that there is an edge between the setg and
s(u;) in Hy only if there is an edge between andu, in G;. The graphs7; and H;
with the partition{s(u;)}.,ev(c,) constitute the instance ?NETRIC LABELING
of [10]. They show that in the Yes case, there is a labeling of exery V (G1) with
a label froms(u;) such that each edge 16, is mapped to an edge i, while in
the No case in every such labeling, a constant fraction of edgés iare mapped to
pairs of verticeq2(k) distance apart ithf;. Figure 2 illustrates this structure 6f, and
H,. Letdg, anddy, denote the shortest path metric @q and H; respectively. Note
that eventually we want two metric spaces of equal cardinality, in the next step of the
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Fig. 2. Structure ofG; andH;.



construction we achieve that goal.

STEP II. We first modrfyGl as follows. For every verten; (1 < ¢ < N)in Gy, we
addm; — 1 verticest{, t5,.. .1, ; and add an edge from eathto u; of lengthv/%.
Let G5 be the new graph created in this process @éngbe the shortest path metric on
G». The transformation is shown in Figure 3.

Uj

Fig. 3. Transformation fronG, to Ga.

We truncatedy;, from below tov/k and from above td0k, i.e. if the distance be-
tween a particular pair of points is less theft then it is set to/k and if it is greater
than10k then itis set td 0k, otherwise it remains the same. We also trundatefrom
above tol0k , but not from below. Let; be the new resultant graph adg, be this
new metric onV (H, ). Observe tha/s and H, have the same number of vertices.

Step Ill. We now have two graph§s and H, with equal number of vertices. How-
ever, we desire that any ‘good’ embedding of verticesGefinto H, map the set
{us, i, ... t},, 1} onto the sek(u;). For this we add new vertices to both the graphs
in the foIIowrng manner Lety; = 27N, For everyi (1 < i < N), we addm; ver-
ticesai,ab,...,al  to Gy, wherea!, m, 1s at a distancey; from u; and srmrlarlya

is at a distance oih from t; for eachj = 1,2,...,m; — 1. Similarly, in the graph
H, we add vertices vertices;, 35, ..., 3, , such thatﬁ; is at a distance of; from

E; forj =1,2,...,m,. Let G3 and H3 be the graphs formed in this manner (refer to
Figure 4), with the metricd¢, anddy, extended to the new vertices according to the
distances defined above. Note that we have ensured:thand H3 have equal number
of vertices. We outpufzs and Hs along with the respective metriek;, anddg, on
V(Gs) andV (Hj3) respectively, as the instanceldiN-DISTORTION=.

Remark Note that all the distances R, and H, were at leasl. In G5 and H3 each,
we addedn; edges of length—*"  fori = 1,..., N. So, any bijection between(G5)
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andV (Hs3) must map edges of lengt " in G5 to edges of lengtR—*" in H; for
1=1,..., N, otherwise at least one edge will be stretched or contracted by a factor of
at leas2? . Therefore, this ensures that in any embedding ¢fnto Hs, for any given

i (1 <i< N)these{ai,...,al, }is mapped onto the s¢B;,..., 3, } and the set

{ug, ), ... t, 1} is mapped onto the séti, ..., ¢!, }, otherwise the distortion is at
least2™ .
3.2 Analysis

Yes instance Suppose that thBIAX-3-SAT(5) formula had a satisfying assignment,
sayo to the variables. We will construct an embeddihgf V(G3) into V(Hs) such
that no edge 73 is contracted, whereas any edgein is stretched by at most a fac-
tor of O(v/k), which leads to an embedding with distortion at mogt/%). For anyi

(1 <1 < N), consider the vertex;. We recall that,; was a ‘query’ vertex, and(u; ) is
the set of ‘label’ vertices correspondingidga We setf (u;) to be a label vertex in(u;)
given by the satisfying assignmemnt The mapf takesti,t5,...,t., _, arbitrarily to
the remainingn; — 1 vertices ins(u;). The verteXa;'- (1 <j<m;—1)is mapped
to 3, such that3;, at distance;; to f(t}). Similarly, the vertex;,,, is mapped g3,
which is at a distance of; from f(u;).

Consider any two vertices; andu;, in in G; that are adjacent. Sineeis a satisfy-
ing assignment, we have that the vertigés;) and f (u; ) are also adjacent iff;. And
since adjacent vertices remain adjacerjnand adjacent vertices i, have distance
Vk in Hs, therefore the stretch of the edge;, u;) in Gs is Vk. The edge(u;, t')

(1 < j < m; — 1) has length/k and since the diameter of the metric B3 (andGs)

is O(k), the stretch of the edge is at mast\/k). Also, clearly the distances of the
edges(ti,al), ..., (t4,, _1,ab, 1), (u;, ouy, ) are not stretched or contracted. One key
fact that we have utilized is that there is an edgef{ir) betweens(u;) ands(u,) only

if u; andu;, are adjacent infz;. This ensures that there is no edge @n) contracts,
which guarantees that no distancedp contracts. Therefore, there is an embedding of
the vertices ofi' into H3 with distortion at mosO (V'k).

No instance.Suppose that th®1AX-3-SAT(5) formula has no satisfying assignment
that satisfies more that— ¢ fraction of the clauses. In this case, as a consequence of
Proposition 4.4 and Lemma 4.5 of [10], we have that in every mappofd/ (G) into
V(H1), such thay(u) € s(u), for allu € V(G), there is a constant fraction of edges
of G; whose end points are mapped to pairs of vertice&/ pthat aref(k) distance
apart inH;. Since we truncate the metric dp;, from above ta2(k), itis also true for

the truncated metric oH;.

As noted in the remark after step lll of the construction, any embeddirg
V(Gs) into V(H3) which does not satisfy the condition thatu;) € s(u;) for all
i =1,2,..., N incurs a distortion of at leag" > k. Therefore we may assume that
the above condition holds fgf. Now, using what we stated above, we get that there is
a unit distance edg@:;, u;/) is stretched by a factor d2(k), i.e.dg, (f (ui), f(wir) >



2(k) - de, (u;, u;7). Note that unit distances iy, are preserved id/s and the trun-
cation of distances off; to vk from below only helps us. Therefore, in this case the
distortion is at leasf2(k).

Construction size.Since each query consists of at méétclauses, the size at is at
most3 - n*” and there are at mo&t” answers to each query. Also, since in steps Il and
Il we blow up the size only polynomially, we have that the total size of the construction
is at mostO(k*).

Hardness factor. In the Yes case we have an embeddingG®f into Hs with dis-
tortion at mostO(v/%), while in the No case any embedding has distortion at least
(k). Therefore, we have a hardness facf2f/k) and choosing: = poly(logn),

we havek = 2((log|V(G3)|)'/?>~9). Therefore, we get that there is no polynomial
time algorithm to approximate the distortion of embedding twpoint metrics within

a factor of (log(n))*/*~% of the optimal for any positive constadt unless NPC
DTIME (nPoY(eg ™)), This proves Theorem 1.

4 Conclusion

In this paper we have shown a hardness factofl@f»)'/4~? for approximating the
distortion required to embed two generalpoint metrics. An interesting question is
whether such a superconstant lower bound also holds for constant dimensional metrics.
Papadimitriou and Safra [15] prove3dactor hardness of approximating the distortion

for 3-dimensional metrics. Extending such a constant factor hardn@sditoensional,

or 1-dimensional metrics is an important question. On the algorithmic side the only
positive result is for the case when the metrics are 1-dimensional and the optimum
distortion is at mos® + /5 [14], and extending it to higher dimensions remains an
open question. For genenalpoint metrics, no non-trivial upper bound is known, and it
would be interesting if a reasonable upper bound can be derived for this problem.
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