V22.0453-001: Honors Theory of Computation

Final Exam

Instructions: Solve all the problems. You can assume all the results taught in class.

Due on Thu, Dec 16, at 9:30am (slide under office door (# 416)).

Here are definitions of standard complexity classes:

\[L = \text{DSPACE}(O(\log n)) \]
\[NL = \text{NSPACE}(O(\log n)) \]
\[P = \bigcup_{k=1,2,...} \text{DTIME}(n^k) \]
\[NP = \bigcup_{k=1,2,...} \text{NTIME}(n^k) \]
\[PSPACE = \bigcup_{k=1,2,...} \text{DSPACE}(n^k) \]
Problem 1: [15 Points]
For each of the following statements, answer whether it is true or false with a brief explanation. No credit will be given without an explanation.

1. There is a language in PSPACE that is not in L.
2. The following language is decidable:
 \[A = \{ \langle \phi \rangle \mid \phi \text{ is a boolean formula that has exactly one satisfying assignment} \}. \]
3. Let \(f : \{0,1\}^n \to \{0,1\} \) be a boolean function defined as follows:
 \[f(x) = 1 \text{ if and only if } \text{ the string } x \text{ has more 1's than 0's.} \]
 Then \(f \) can be computed by a circuit of polynomial (in \(n \)) size.

Problem 2: [20 Points]
Show that between the following two languages, \(L_1 \) is decidable and \(L_2 \) is undecidable.

1. \(L_1 = \{ \langle M \rangle : M \text{ is a TM and } M \text{ takes more than 453 steps on some input} \} \).
 \text{Hint: In } k \text{ steps, the tape head can access at most first } k \text{ cells of the input.}
2. \(L_2 = \{ \langle M \rangle : M \text{ is a TM and } M \text{ takes more than 453 steps on some input in } L(M) \} \).
 \text{Hint: Use a reduction from the undecidable language } \{ \langle M' \rangle \mid M' \text{ accepts } \varepsilon \}.

Problem 3: [15 Points]
A graph \(G \) is called bipartite if its set of vertices can be partitioned into two sets \(A \) and \(B \) such that every edge has one endpoint in \(A \) and one endpoint in \(B \). Let
\[\text{NON-BIPARTITE} = \{ \langle G \rangle \mid G \text{ is not bipartite} \}. \]

- Show that a graph is non-bipartite if and only if it has a cycle of odd length.
- Show that NON-BIPARTITE \(\in \) NL.

Problem 4: [10 Points]
Recall that a vertex cover in a graph \(G \) is a subset \(S \) of vertices such that for every edge \(e \) in the graph, at least one of the endpoints of \(e \) is contained in \(S \). Consider the following decision problem:
\[\text{VERTEX-COVER} = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } k \}. \]
If \(P=NP \), show that there is a polynomial time algorithm that given an \(n \)-vertex graph \(G \) and an integer \(k \), \(1 \leq k \leq n \), finds a vertex cover of size \(k \) if one exists and outputs NO otherwise.

\text{Hint: VERTEX-COVER} \(\in \) NP and if \(P=NP \), then it can be decided in polynomial time by some algorithm. Show how one can use this algorithm to actually find a vertex cover of size \(k \) (if it exists) in polynomial time.
Problem 5: [10 Points]
Let FACTOR be the following language:

$$\text{FACTOR} = \{ \langle n, a, b \rangle \mid n, a, b \text{ are positive integers represented in binary such that } \exists d, a \leq d \leq b, \text{ and } d \text{ divides } n \}.$$

I.e. $\langle n, a, b \rangle \in \text{FACTOR}$ if and only if n has an integer divisor in the range $[a, b]$.

• Show that $\text{FACTOR} \in \text{NP}$.

• Show that if $\text{P}=\text{NP}$, one can factorize integers in polynomial time, i.e. find a complete factorization of given integer n in time poly$(\log n)$ (Hint: Use binary search).

Problem 6: [10 Points]
Let $\Sigma = \{(,)\}$ and BALANCED be the language over alphabet Σ consisting of all strings with balanced parentheses. For example, the following strings are in BALANCED

$$((), ()(), ()(((())())$$

whereas following strings are not in BALANCED

$$((()) (())())()$$

• Show that BALANCED is a context free language. Give both: a grammar as well as a pushdown automaton.

• Show that BALANCED $\in \text{L}$.