You are expected to solve all the problems, but for grading purposes, submit written solutions to any 4 of the problems. Due on Mon, March 16th. Collaboration is allowed; please mention your collaborators.

1. Show that $\Sigma_k = \text{NP}^{\text{SAT}_{k-1}}$.

 We define $L \in \Sigma_k$ if and only if there is a deterministic polynomial time verifier V such that

 $$x \in L \iff \exists y_1 \forall y_2 \cdots Q_k y_k \ V(x, y_1, \ldots, y_k) = 1$$

 where length of y_1, y_2, \ldots, y_k is bounded by a polynomial in $|x|$.

2. • Show that $\text{PSPACE} = \text{NP}^{\text{PSPACE}} = \text{PSPACE}$

 • Show that if $\text{PH} = \text{PSPACE}$, then PH collapses to some finite level.

 • Can PH have a complete problem (complete under polynomial time reductions)?

3. **(DP-completeness)** This problem studies the class DP (D stands for difference). A language $L \in DP$ if and only if there are languages $B \in \text{NP}$ and $C \in \text{coNP}$ so that $L = B \cap C$.

 • The problem SAT-UNSAT is defined as follows: Given Boolean formulae ϕ, ψ, decide if ϕ is satisfiable And ψ is unsatisfiable. Show that this problem is DP-complete (under polynomial time reductions).

 1
A graph G is in HC-CRITICAL if G is not Hamiltonian but adding any edge to G will make it Hamiltonian. Show that HC-CRITICAL is in DP.

4. • Show that $\text{NP}^{\text{BPP}} \subseteq \text{BPP}^{\text{NP}}$ (Hint: First show that a language in NP^{BPP} is accepted by a polytime NTM that makes a single query to a BPP oracle and that too at the end).

• Show that if $\text{NP} \subseteq \text{BPP}$, then PH collapses to BPP.

5. (NEXP-completeness) Define $\text{NEXP} = \cup_{k=1,2,...} \text{NTIME}(2^{n^k})$.

Show that the following problem is NEXP-complete: Given $<M,x,n>$, consisting of description of a NTM M, input x and an integer n in binary, does M have an accepting computation on x in n steps.

6. A circuit C is called an implicit representation of another circuit C^* if C takes as input a binary integer i such that $n+1 \leq i \leq N$, and outputs a triple (TYPE,j,k) where

• Input to C^* is an n-bit string $x_1x_2\ldots x_n$.

• $\text{TYPE} \in \{\text{AND}, \text{OR}, \text{NOT}\}$ indicates the type of i^{th} gate in circuit C^*.

• $1 \leq j,k \leq N$.

• The input of the i^{th} gate in C^* is the output of the j^{th} and k^{th} gates of C^* (if TYPE= NOT, then k is ignored. If $1 \leq j,k \leq n$, then the j^{th} or k^{th} gate is taken to be an input bit x_i).

• The N^{th} gate in C^* is its output gate.

Note that we could have $N = 2^n$, the circuit C could be of size $\text{poly}(\log N) = \text{poly}(n)$ and still implicitly represent a circuit C^* of size N (in short, a circuit can implicitly represent another circuit of size exponential in its own size).

Let IMPLICIT CIRCUIT-SAT be the following problem: Given a circuit C that is an implicit representation of circuit C^*, decide if C^* is satisfiable. Show that this problem is NEXP-complete (Hint: Use the regular structure of the circuit produced in Cook’s reduction).

7. • Show that $\text{NP}^{\text{NP} \cap \text{coNP}} = \text{NP}$.

• Generalize this to $\text{NP}^{\Sigma_1 \cap \Pi_k} = \Sigma_k$.

2
8. The problem Graph Consistency (GC) asks, for two given sets A and B of graphs, whether there exists a graph G such that every graph $g \in A$ is isomorphic to a (not necessarily induced) subgraph of G but each graph $h \in B$ is not isomorphic to any subgraph of G. Show that GC is in Σ_2. (Optional: show that it is Σ_2-complete).

9. Show that if $\Sigma_k = \Pi_k$ for some k, then $PH = \Sigma_k$.