Problem 1

Solution: Let M_L be the Turing machine that recognizes L. This means that on every $w \in L$, M_L accepts, and on every $x \notin L$, M_L either rejects or never halts.

Note that Σ^* is a countable set. Let x_1, x_2, x_3, \ldots denote an ordering of all strings in Σ^*. For example, one can order strings in increasing order of length, and strings with the same length can be ordered lexicographically.

Note also that the set $\mathbb{N} \times \mathbb{N}$ is countable (where \mathbb{N} is the set of natural numbers). Let $(i_1, j_1), (i_2, j_2), (i_3, j_3), \ldots$ denote an ordering of $\mathbb{N} \times \mathbb{N}$. For example, one can order the pairs in increasing order of the sum of two co-ordinates, and pairs with the same sum can be ordered in increasing order of the first co-ordinate.

Define the required machine M as follows:

For $k = 1, 2, 3, \ldots$ do:

- Let (i_k, j_k) be the k^{th} pair in the ordering of $\mathbb{N} \times \mathbb{N}$.
- Simulate the machine M_L on string x_{i_k} for j_k steps.
- If M_L accepts, then print the string x_{i_k} on the output tape, and print the symbol #.

Clearly, M prints only those strings that are accepted by M_L, i.e. the strings in L. On the other hand, for any $w \in L$, w is accepted by M_L in (say) t steps. Suppose $w = x_i$ in the ordering of Σ^*. When the machine M works on the pair (i, t) (it will, eventually), it prints x_i on the output tape.

Problem 2

Solution: It is clear that Set-Cover $\in \text{NP}$, as an NTM can decide whether $\langle S = \{S_1, \ldots, S_m\}, k \rangle \in \text{Set-Cover}$ by nondeterministically guessing a subcollection $\{S_{i_1}, \ldots, S_{i_k}\}$ of size k, and verifying whether $\bigcup_{j=1}^k S_{i_j} = \bigcup_{j=1}^m S_j$.

To show that Set-Cover is NP-Complete, we give a polynomial-time reduction from Vertex-Cover to Set-Cover, as follows:

On input a Vertex-Cover instance $\langle G = (V, E), k \rangle$:

1. Let $U = E$, that is, the universe U is the set of edges in G.

2. For each vertex $v \in V$ in G, define $S_v = \{(u, v) : (u, v) \in E\}$. That is, S_v is the set of all edges incident with v.

3. Let $S = \{S_v : v \in V\}$. That is, the collection S consists of S_v for every vertex $v \in V$.

4. Output $\langle S, k \rangle$.

Clearly the reduction takes polynomial time. We now show that the reduction is correct, that is,
\((G, k) \in \text{Vertex-Cover}\) if and only if \((S, k) \in \text{Set-Cover}\).

If \(\{v_1, \ldots, v_k\}\) is a vertex cover in \(G\), then \(\bigcup_{i=1}^{k} S_{v_i} = E = U\), and thus \(\{S_{v_1}, \ldots, S_{v_k}\}\) is a set cover in \(S = \{S_v : v \in V\}\). Conversely, if \(\{S_{v_1}, \ldots, S_{v_k}\}\) is a set cover in \(S\), then \(\bigcup_{i=1}^{k} S_{v_i} = E = U\), and thus \(\{v_1, \ldots, v_k\}\) is a vertex cover in \(G\).

We therefore conclude that Set-Cover is \textbf{NP-Complete}.

\textbf{Problem 3}

\textbf{Solution to Part 1:} Suppose that \(P = NP\). Then there is a polynomial-time algorithm \(A\) that decides 3-SAT. We now describe an algorithm \(B\) that actually finds a satisfying solution to any given 3-SAT instance \(\varphi\) that is satisfiable by invoking algorithm \(A\) \(n\) times, where \(n\) is the number of variables in \(\varphi\). Therefore, if \(A\) runs in polynomial-time, then \(B\) runs in polynomial-time.
Algorithm B:
On input $\varphi(x_1, \ldots, x_n)$:

1. Run algorithm A on φ to decide whether φ is satisfiable. If not, then output NO and halt.
 If φ is satisfiable, then the rest of the algorithm finds a satisfying assignment in n iterations, as follows.

2. Define formulas $\varphi_0(x_2, \ldots, x_n) = \varphi(0, x_2, \ldots, x_n)$ and $\varphi_1(x_2, \ldots, x_n) = \varphi(1, x_2, \ldots, x_n)$. That is, φ_0 and φ_1 are the resulting formulas after x_1 is substituted by constants 0 and 1 respectively. If φ is satisfiable, then clearly at least one of φ_0 and φ_1 must be satisfiable, as in any satisfying assignment x_1 is assigned either 0 or 1. Thus, in the first iteration, first run algorithm A on φ_0 to decide whether φ_0 is satisfiable, and if so, set $a_1 = 0$; else φ_1 must be satisfiable, and set $a_1 = 1$. Assign $x_1 = a_1$, and repeat the above for φ_{a_1} until all variables have been assigned. That is:

3. In general, in the i-th iteration, with a_1, \ldots, a_{i-1} already assigned to x_1, \ldots, x_{i-1} in the first $i-1$ iterations so that $\varphi_{a_1, \ldots, a_{i-1}}(x_i, \ldots, x_n) = \varphi(a_1, \ldots, a_{i-1}, x_i, \ldots, x_n)$ is satisfiable, set

 $\varphi_{a_1, \ldots, a_{i-1}, 0}(x_{i+1}, \ldots, x_n) = \varphi(a_1, \ldots, a_{i-1}, 0, x_{i+1}, \ldots, x_n),$

 and

 $\varphi_{a_1, \ldots, a_{i-1}, 1}(x_{i+1}, \ldots, x_n) = \varphi(a_1, \ldots, a_{i-1}, 1, x_{i+1}, \ldots, x_n).$

 Then as above, at least one of $\varphi_{a_1, \ldots, a_{i-1}, 0}$ and $\varphi_{a_1, \ldots, a_{i-1}, 1}$ must be satisfiable. Thus, first run algorithm A on $\varphi_{a_1, \ldots, a_{i-1}, 0}$ to decide whether it is decidable, and if so, set $a_i = 0$; else $\varphi_{a_1, \ldots, a_{i-1}, 1}$ must be satisfiable, and set $a_i = 1$.

4. Repeat the above process until all variables x_1, \ldots, x_n have been assigned, and output the assignment $x_1 = a_1, \ldots, x_n = a_n$.

If φ is not satisfiable, then algorithm B outputs NO at the beginning. If φ is satisfiable, then the assignment $x_1 = a_1, \ldots, x_n = a_n$ found by B satisfies φ as explained in the description of algorithm B. The claimed polynomial running time of B can be easily verified.

Solution to Part 2: Define the language

$$\text{MAX-3-SAT} = \{\langle \varphi, k \rangle : \varphi \text{ is in 3-CNF and } \exists \text{ an assignment that satisfies } k \text{ clauses of } \varphi \}.$$

Clearly MAX-3-SAT $\in \text{NP}$, as an NTM can decide whether $\langle \varphi, k \rangle$ \in MAX-3-SAT by nondeterministically guessing an assignment and verifying whether it satisfies k clauses of φ. Therefore if $\textbf{P} = \textbf{NP}$, then there is a polynomial-time algorithm C that decides MAX-3-SAT. We now construct the following algorithm D that finds an assignment that satisfies the maximum number of clauses in a given φ using this algorithm C. Algorithm D uses essentially the same technique as algorithm B does.
Algorithm D:

On input $\varphi(x_1, \ldots, x_n) = C_1 \land \cdots \land C_m$, where m is the number of clauses in φ:

For $k = m$ downto 0:

1. If $k = 0$, then output any assignment and halt. Else,

2. Run algorithm C on $\langle \varphi, k \rangle$ to decide whether there is an assignment that satisfies k clauses of φ. If C outputs NO, then go to the next iteration. Else (if C outputs YES), we find such an assignment as follows:

3. Set $\varphi_0(x_2, \ldots, x_n) = \varphi(0, x_2, \ldots, x_n)$ and $\varphi_1(x_2, \ldots, x_n) = \varphi(1, x_2, \ldots, x_n)$ as in algorithm B. Then at least one of φ_0 and φ_1 has an assignment that satisfies at least k clauses. Thus first run algorithm C on $\langle \varphi_0, k \rangle$, and if C accepts, set $a_1 = 0$; else set $a_1 = 1$. Repeat this for φ_{a_1} in a way similar to algorithm B, until all variables have been assigned.

4. Output $x_1 = a_1, \ldots, x_n = a_n$ and halt.

It is not hard to see that algorithm D finds an assignment that satisfies the maximum number of clauses of a given formula φ, and it takes polynomial time provided that C runs in polynomial time.

Problem 4

Solution: We show that Subset-Sum is a special case of Knapsack. Consider special instances of Knapsack where the volumes and costs are the same, i.e. $v_i = c_i \forall i$, and the volume bound equals the target cost, i.e. $B = t$. The Knapsack problem asks whether there exists a set $S \subseteq \{1, 2, \ldots, n\}$ such that

$$\sum_{i \in S} c_i \geq t \text{ and } \sum_{i \in S} v_i \leq B \quad (1)$$

which is same as asking whether there exists S such that

$$\sum_{i \in S} v_i \geq t \text{ and } \sum_{i \in S} v_i \leq t$$

which is same as asking whether there exists S such that

$$\sum_{i \in S} v_i = t$$

which is an instance of Subset-Sum.

Therefore, since Subset-Sum is a NP-hard problem, so is Knapsack. On the other hand, Knapsack is in NP (guess the set S and verify whether Condition (??) is satisfied). Hence Knapsack is NP-complete.

Problem 5