
V22.0453-001: Honors Theory of Computation

Problem Set 4 Solutions

Problem 1

1. L1 = {〈M,w, t〉 : M halts on w in t steps}
Answer: L1 is decidable. The following TM decides L1:

On input 〈M,w, t〉:

(a) Simulate M on w for at most t steps.

(b) If M accepts, output ACCEPT. Else output REJECT.

2. L2 = {〈M〉 : ε ∈ L(M)}
Answer: L2 is undecidable. To show this, we use Rice’s theorem. Let TR denote the class
of all Turing-recognizable languages. Let P = {L ∈ TR : ε ∈ L}. Clearly P 6= ∅ and P 6= ∅.
Therefore, by Rice’s Theorem, L2 = LP = {〈M〉 : L(M) ∈ P} is undecidable.

3. L3 = {〈M〉 : M halts on ε}
Answer: L3 is undecidable. To show this, suppose that a TM D decides L3. Then the
following TM would decide the above L2, that is, whether ε ∈ L(M) for any given 〈M〉:
On input 〈M〉:

(a) Simulate D on 〈M〉.
(b) If D rejects (i.e. if M does not halt on ε), output REJECT.

(c) If D accepts, simulate M on ε.

(d) If M accepts ε, output ACCEPT. If M rejects ε, output REJECT.

However, L2 is undecidable. Therefore L3 is undecidable.

4. L4 = {〈M〉 : M halts on some input}
Answer: L4 is undecidable. We show that ATM reduces to L4. Since ATM is undecidable, it
follows that L4 is undecidable.

The reduction from ATM to L4 maps 〈M,w〉 to 〈M ′〉 where M ′ is the following TM with M
and w built in:

On input x:

(a) Simulate M on w.

(b) If M accepts w, output ACCEPT. If M rejects w, output REJECT.

If 〈M,w〉 ∈ ATM, that is, if w ∈ L(M), then L(M ′) = Σ∗, so 〈M ′〉 ∈ L4. If 〈M,w〉 6∈ ATM,
that is, if w 6∈ L(M), then L(M ′) = ∅, so 〈M ′〉 6∈ L4. Therefore the above mapping is a
reduction from ATM to L4.

1



5. L5 {〈M〉 : L(M) is context-free}
Answer: L5 is undecidable. To show this, we use Rice’s theorem. Let TR denote the class
of all Turing-recognizable languages. Let P = {L ∈ TR : L is a CFL}. Since every CFL is
Turing-recognizable, and there exist Turing-recognizable languages that are not context-free,
we have that P 6= ∅ and P 6= ∅. Therefore, by Rice’s Theorem, L5 = LP = {〈M〉 : L(M) ∈ P}
is undecidable.

Problem 2

1. ∃ constants c < d such that nd = O(nc)

Answer: FALSE. If c < d, then

lim
n→∞

nd

nc
=∞,

so nd 6= O(nc).

2. 1010 · n1000 = o(20.001n)

Answer: TRUE. By elementary techniques in calculus, we have

lim
n→∞

1010 · n1000

20.001n
= 0,

so 1010 · n1000 = o(20.001n).

3. n10 = o(2log
2 n)

Answer: TRUE. Note that n10 = 210 logn. Comparing the exponents of the two functions,
we have that 10 log n = o(log2 n). Therefore, n10 = o(2log

2 n).

4. 2
√

logn = o(
√
n)

Answer: TRUE. Note that
√
n = 2

1
2
logn. Comparing the exponents of the two functions,

we have that
√

log n = o(12 log n). Therefore, 2
√

logn = o(
√
n).

5. nlogn = o(2
√
n)

Answer: TRUE. Note that nlogn = 2log
2 n. omparing the exponents of the two functions, we

have that log2 n = o(
√
n). Therefore, nlogn = o(2

√
n).

Problem 3

Solution: We show that P is closed under the star operation by dynamic programming. Let
L ∈ P, and let A be a polynomial-time algorithm that decides L. We construct a polynomial-time
algorithm B that decides L∗, as follows. On input w = w1 · · ·wn, algorithm B constructs a table
T such that T [i, j] = 1 if wi · · ·wj ∈ L∗, and T [i, j] = 0 otherwise. Details follow.

Algorithm B:

On input w = w1 · · ·wn,

2



1. If w = ε, output ACCEPT and halt.

2. Initialize T [i, j] = 0 for each 0 ≤ i ≤ j ≤ n.

3. For i = 1 to n: 1

(a) Run M on wi to decide whether wi ∈ L.

(b) If wi ∈ L, then set T [i, i] = 1.

4. For ` = 2 to n: 2

For i = 1 to n− `+ 1: 3

(a) Let j = i+ `− 1. 4

(b) Run M on wi · · ·wj to decide whether wi · · ·wj ∈ L.

(c) If wi · · ·wj ∈ L, then set T [i, j] = 1.

(d) For k = i to j − 1: 5

If T [i, k] = 1 and T [k, j] = 1, then set T [i, j] = 1.

5. Output ACCEPT if T [1, n] = 1; else output REJECT. 6

It is not hard to see that Algorithm B correctly decides L∗ provided that Algorithm A correctly
decides L. Moreover, Algorithm B runs in O(n3) stages, and each stage takes polynomial-time as
A runs in polynomial-time. Therefore, Algorithm B is a polynomial-time algorithm that decides
L∗.

Problem 4

Solution: Clearly Double-SAT ∈ NP, since a NTM can decide Double-SAT as follows: On input
a Boolean formula ϕ(x1, . . . , xn), nondeterministically guess 2 assignments and verfify whether
both satisfy ϕ. To show that Double-SAT is NP-Complete, we give a reduction from SAT to
Double-SAT, as follows:

On input ϕ(x1, . . . , xn):

1. Introduce a new variable y.

2. Output formula ϕ′(x1, . . . , xn, y) = ϕ(x1, . . . , xn) ∧ (y ∨ y).

If ϕ(x1, . . . , xn) ∈ SAT , then ϕ has at least 1 satisfying assignment, and therefore ϕ′(x1, . . . , xn, y)
has at least 2 satisfying assignments as we can satisfy the new clause (y ∨ y) by assigning either
y = 1 or y = 0 to the new variable y, so ϕ′(x1, . . . , xn, y) ∈ Double-SAT. On the other hand,
if ϕ(x1, . . . , xn) 6∈ SAT , then clearly ϕ′(x1, . . . , xn, y) = ϕ(x1, . . . , xn) ∧ (y ∨ y) has no satisfying
assignment either, so ϕ′(x1, . . . , xn, y) 6∈ Double-SAT. Therefore, SAT ≤P Double-SAT, and hence
Double-SAT is NP-Complete.

1Test each substring of length 1
2` is the length of the substring
3i is the start position of the substring
4j is the end position of the substring
5k is the split position
6T [1, n] = 1 if and only if w = w1 · · ·wn ∈ L∗.

3



Problem 5

Solution:

(a) In an 6=-assignment to ϕ, each clause has at least one satisfied literal and one unsatisfied literal.
The negation of an 6=-assignment preserves this property, and thus is an 6=-assignment too.

(b) Let ϕ be any 3-CNF formula. Let ϕ′ be the 3-CNF formula which is the output of the given
reduction on input ϕ. We show that ϕ ∈ 3-SAT if and only if ϕ′ ∈ 6=SAT, and therefore the
reduction is correct.

Suppose that ϕ ∈ 3-SAT, that is, ϕ is satisfiable. Then we can obtain an 6=-assignment to ϕ′ by
extending a satisfying assignment to ϕ in such a way that we assign 1 to zi if both literals y1 and
y2 in clause Ci are unsatisfied7; else we assign 0 to zi. Finally we assign 0 to b. It is clear that the
extended assignment satisfies ϕ′, and moreover it is an 6=-assignment to ϕ′. Therefore, ϕ′ ∈ 6=SAT.

Suppose that ϕ′ ∈ 6=SAT, that is, ϕ′ has an 6=-assignment. Then we can obtain a satisfying
assignment to ϕ as follows. By part (a), we may assume without loss of generality that the 6=-
assignment assigns 0 to b, for otherwise, simply negate the assignment. This 6=-assignment cannot
assign 0 to all of y1, y2 and y3 as doing so would force one of the two clauses, (y1 ∨ y2 ∨ zi) and
(zi∨y3∨b), to have all 0’s. Hence restricting this assignment to the variables of ϕ yields a satisfying
assignment to ϕ.

(c) Clearly, 6= SAT ∈ NP, as it is easy to verify whether an assignment is an 6=-assignment. Thus
from part (b) it follows that 6= SAT is NP-Complete.

Problem 6
Clearly MAX-CUT is in NP. One can guess the partition of the graph into two parts and verify

that the number of edges cut is at least k.
Now we show that MAX-CUT is NP-complete by showing that 6= SAT ≤P MAX-CUT.
Let n be the number of variables and c be the number of clauses in the 6= SAT instance φ.

Follow the construction as described in the book. Let G be the resulting graph. For every literal
z, G contains 3c nodes each labeled as z (let’s call this ”block” of nodes corresponding to z). Add
all (3c)2 edges between the block of z and block of z. For every clause, there is a triangle between
three nodes that are labeled by the three literals that appear in that clause. We do not use the
same node in a block for more than one clause triangles.

Note that G now has 6cn nodes and (3c)2n+ 3c edges. Set k = (3c)2n+ 2c.
We show that 6= SAT has a 6=-assignment iff G has a cut of size at least k.
For the forward direction, take a 6=-assignment and place all nodes labeled by a TRUE literal on

one side of the cut and all nodes labeled by a FALSE literal on the other side of the cut. This cuts
all (3c)2n edges between the blocks. Also, since every clause gets a TRUE and a FALSE literal, for
every triangle, two of the three edges are cut. Thus overall (3c)2n+ 2c edges are cut.

For the backward direction, prove that any partition that cuts at least k edges must (1) place
every block on one side of the partition entirely (2) place blocks corresponding to complementary
literals on opposite sides (3) therefore the partition defines an assignment to literals (4) and then
every clause must have a TRUE as well as a FALSE literal so that two edges in that clause triangle
get cut.

7Note that in this case, the literal y3 must be satisfied.

4


