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Abstract

We present a representation learning method that learns features at multiple dif-
ferent levels of scale. Working within the unsupervised framework of denoising
autoencoders, we observe that when the input is heavily corrupted during training,
the network tends to learn coarse-grained features, whereas when the input is only
slightly corrupted, the network tends to learn fine-grained features. This motivates
the scheduled denoising autoencoder, which starts with a high level of noise that
lowers as training progresses. We find that the resulting representation yields a
significant boost on a later supervised task compared to the original input, or to a
standard denoising autoencoder trained at a single noise level.

1 Introduction

In most applications of representation learning, we wish to learn features at different levels of scale.
For example, in image data, some edges will span only a few pixels, whereas others, such as a
boundary between foreground and background, will span a large portion of the image. Similarly,
in text data, some features in the representation might model specialized topics that use only a few
words. For example a topic about electronics would often use words such as “big”, “screen” and
“tv”. Other features model more general topics that use many different words. Good representations
should model both of these phenomena, containing features at different levels of granularity.

Denoising autoencoders [Vincent et al., 2008, 2010, Glorot et al., 2011a] provide a particularly
natural framework in which to formalize this intuition. In a denoising autoencoder, the network is
trained so as to be able to reconstruct each data point from a corrupted version. The noise process
used to perform the corruption is chosen by the modeller, and is an important tuning parameter that
affects the final representation. On a digit recognition task, Vincent et al. [2010] noticed that using a
low level of noise leads to learning blob detectors, while increasing it results in obtaining detectors
of strokes or parts of digits. They also recognise that either too low or too high level of noise harms
the representation learnt. The relationship between the level of noise and spatial extent of the filters
was also noticed by Karklin and Simoncelli [2011] for a different feature learning model. Despite
impressive practical results with denoising autoencoders, e.g. Glorot et al. [2011b], Mesnil et al.
[2012], the choice of noise distribution is a tuning parameter whose effects are not fully understood.

In this paper, we introduce scheduled denoising autoencoders (ScheDA), which are based on the
intuition that by training the same network at multiple noise levels, we can encourage it to learn
features at different scales. The network is trained with a schedule of gradually decreasing noise
levels. At the initial, high noise levels, the training data is highly corrupted, which forces the network
to learn more global, coarse-grained features of the data. At low noise levels, the network is able
to learn features for reconstructing finer details of the training data. At the end of the schedule, the
network will include a combination of both coarse-grained and fine-grained features.

This idea is reminiscent of continuation methods, which have also been applied to neural networks
[Bengio et al., 2009]. The motivation of this work is significantly different though. Our goal is to
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encourage the network to learn a more diverse set of features, some which are similar to features
learnt at the initial noise level, and others which are similar to features learnt at the final noise level.
In Section 4.1.3, we verify quantitatively that this happens.

Experimentally, we find on both image and text data that scheduled denoising autoencoders learn
better representations than standard denoising autoencoders, as measured by the features’ perfor-
mance on a supervised task. On both classification tasks, the representation from ScheDA yields
lower test error than that from a denoising autoencoder trained at the best single noise level.

2 Background

The denoising autoencoder (DA) [Vincent et al., 2008] is based on the intuition that a good represen-
tation should contain enough information to reconstruct corrupted versions of an original input. Let
x ∈ Rd be the input to the network. The output of the network is a hidden representation y ∈ Rd′ ,
which is simply computed as fθ(x) = s(Wx + b), where the matrix W ∈ Rd′×d and the vector
b ∈ Rd′ are the parameters of the network, and s is a typically nonlinear transfer function, such as
a sigmoid. We write θ = (W,b). The function f is called an encoder because it maps the input
to a hidden representation. In an autoencoder, we have also a decoder that “reconstructs” the input
vector from the hidden representation, which is used when training the network. The decoder has
a similar form to the encoder, namely, gθ′(y) = t(W′y + b′), except that here W′ ∈ Rd×d′ and
b′ ∈ Rd. It can be useful to allow the transfer function t for the decoder to be different from that
for the encoder. Typically, W and W′ are constrained by W′ = WT , which has been justified
theoretically by Vincent [2011].

During training, our objective is to learn the encoder parameters W and b. As a byproduct, we
will need to learn the decoder parameters b′ as well. We do this by defining a noise distribution
p(x̃|x, ν). The amount of corruption is controlled by a parameter ν. We train the autoencoder
weights to be able to reconstruct a random input from the training distribution x from its corrupted
version x̃ by running the encoder and the decoder in sequence. Formally, this process is described
by the objective function

θ∗, θ′
∗ = arg min

θ,θ′
E(X,X̃)

[
L
(
X, gθ′(fθ(X̃))

)]
, (1)

where L is a loss function over the input space, such as squared error. Typically we minimize this
objective function using stochastic gradient descent with mini-batches, where at each iteration we
sample new values for both the uncorrupted and corrupted inputs.

In the absence of noise, this model is known simply as an autoencoder or autoassociator. A classic
result [Baldi and Hornik, 1989] states that when d′ < d, then under certain conditions, an autoen-
coder learns the same subspace as PCA. If the dimensionality of the hidden representation is too
large, i.e., if d′ > d, then the autoencoder can obtain zero reconstruction error simply by learning
the identity map. In a denoising autoencoder, in contrast, the noise forces the model to learn inter-
esting structure even when there are a large number of hidden units. Indeed, in practical denoising
autoencoders, often the best results are found with overcomplete representations for which d′ > d.

There are several tuning parameters here, including the noise distribution, the transformations s and
t and the loss function L. For the loss function L, for continuous x, squared error can be used.
For binary x or x ∈ [0, 1], as we consider in this paper, it is common to use the cross entropy loss
[Vincent et al., 2008, 2010],

L(x, z) = −
D∑
i=1

(xi log zi + (1− xi) log (1− zi)) .

For the transfer functions, common choices include the sigmoid s(v) = 1
1+e−v for both the encoder

and decoder, or to use a rectifier s(v) = max(0, v) in the encoder paired with sigmoid decoder.

One of the most important parameters in a denoising autoencoder is the noise distribution p. For
continuous x, Gaussian noise p(x̃|x, ν) = N(x̃; x, ν) can be used. For binary x or x ∈ [0, 1], it is
most common to use masking noise, that is, for each i ∈ 1, 2, . . . d, we sample x̃i independently as

p(x̃i|xi, ν) =
{

0 with probability ν,
xi otherwise.

(2)
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In either case, the level of noise ν affects the degree of corruption of the input. If ν is high, the
inputs are more heavily corrupted during training. The noise level has a significant effect on the
representations learnt. For example, if the input data are images, masking only a few pixels will bias
the process of learning the representation to deal well with local corruptions. On the other hand,
masking very many pixels will push the algorithm to use information from more distant regions.

It is also possible to train multiple layers of representations with denoising autoencoders by training
a denoising autoencoder with data mapped to a representation learnt by another denoising autoen-
coder. This model is known as the stacked denoising autoencoder [Vincent et al., 2008, 2010].

3 Scheduled denoising autoencoders

Our goal is to learn a single representation that combines the best aspects of representations learnt at
different levels of noise. The scheduled denoising autoencoder (ScheDA) aims to do this by training
a single DA sequentially using a schedule of noise levels, such that ν0 > · · · > νT ≥ 0. The initial
noise level ν0 is chosen to be a high noise level that corrupts most of the input. The final noise level
νT is chosen to be lower than the optimal noise level for a standard DA, i.e., chosen via a held-out
validation set or by cross-validation. In pseudocode,

while θ not converged do
Take a stochastic gradient step on (1), using noise level ν0.

end while
for t in 1, . . . , T do
νt := νt−1 −∆ν
for K steps do

Take a stochastic gradient step on (1), using noise level νt.
end for

end for

This method is reminiscent of deterministic annealing [Rose, 1998], which has been applied to
clustering problems, in which a sequence of clustering problems are solved at a gradually lowered
noise level. However, the meaning of “noise level” is very different. In deterministic annealing, the
noise is added to the mapping between inputs and cluster labels. This is to encourage data points to
move between cluster centroids early in the optimization process.

ScheDA is also conceptually related to curriculum learning [Bengio et al., 2009] and continuation
methods more generally [Allgower and Georg, 1980]. In curriculum learning, the network is trained
on a sequence of learning problems that have the property that the earlier tasks are “easier” than
later tasks. In ScheDA, it is less obvious that the earlier tasks are easier since the lowest achievable
reconstruction error is actually higher at the earlier high noise levels than at the later low noise levels.
We observe this in practice (cf. Figure 1). On the other hand, we found that, for a given learning
rate, the reconstruction error converges to a local minimum faster with large ν’s (cf. the right panel
of Figure 1). Thus, even though the problems that ScheDA starts with are harder in absolute terms,
finding the local minima for these problems is easier. This can be understood given the insight
provided by the work of Vincent [2011], who has shown that, for a DA trained with Gaussian noise
and squared error, minimising reconstruction error is equivalent to matching the score (with respect
to the input) of a nonparametric Parzen density estimator of the data, which depends on the level of
noise. An implication of this viewpoint is that if the density learnt by the Parzen density estimator
is harder to represent, it makes the DA learning problem harder too. Convolving the data with a
high level of noise transforms the data generating distribution into a much smoother one, which is
easier to capture. As the noise level is reduced, the density becomes more multimodal and harder to
represent.

4 Experiments

We evaluate ScheDA on two different data sets, an image classification data set (CIFAR-10), and a
text classification data set (Amazon product reviews, results in the appendix). We use a procedure
similar to one used, for example, by Coates et al. [2011]1. That is, in all experiments, we first

1We do not use any form of pooling, keeping our setup invariant to the permutation of the features.
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hidden units best DA test error best ScheDA test error
1000 0.4 45.34% 0.4→0.3→0.2, K=50 43.01%
2000 0.3 41.95% 0.7→0.65→ . . .→0.2→0.15, K=100 40.1%
5000 0.1 38.64% 0.2→0.15→0.1→0.05, K=50 36.77%

Table 1: Test errors on CIFAR-10 data set. Each ScheDA is characterised by the sequence of noise
levels it was trained with and the number of epochs for which it was trained at each level of noise
after the first noise level switch.
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Figure 1: Experimental results with CIFAR-10 for 2000 hidden units. Test errors (left) and recon-
struction error on training set (right) as a function of the number of epochs. Dashed lines indicate
a point when the level of noise was changed. Test errors were measured every 100 training epochs
initially (during the first 2000 epochs). After each change of the noise level, test error was measured
after the first, the third, the fifth epoch and then after every ten epochs. Reconstruction errors were
measured after each training epoch. For clarity, we do not show the results of DA (0.2), DA (0.4)
and DA (0.6), which yield higher test error than DA (0.3).

learn the representation in an unsupervised fashion and then use the learnt representation within
a linear classifier as a measure of its quality. In both experiments, in the unsupervised feature
learnining stage, we use masking noise as the corruption process, a sigmoid encoder and decoder
and cross entropy loss (Equation 2)2 following Vincent et al. [2008, 2010]. All experiments with
learning the representations were implemented using the Theano library [Bergstra et al., 2010]. To
do optimisation, we use stochastic gradient descent with mini-batches. For the classification step,
we use L2-regularised logistic regression implemented in LIBLINEAR [Fan et al., 2008], with the
regularisation parameter chosen to minimise the validation error.

4.1 Image recognition

We use the CIFAR-10 [Krizhevsky, 2009] data set for experiments with vision data. This data set
consists of 60000 colour images spread evenly between ten classes. There are 50000 training and
validation images and 10000 test images. Each image has a size of 32x32 pixels and each pixel
has three colour channels, which are represented with a number in {0, . . . , 255}. We divide the
training and validation set into 45000 training instances and 5000 validation instances. The only
preprocessing step we use is dividing the intensity of every pixel by 255 to get numbers in [0, 1].

To get the strongest possible DAs trained with a single noise level, we choose the noise level,
learning rate and number of training epochs in order to minimise classification error on the val-
idation set. We try all combinations of the following values of the parameters: noise level
∈ {0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05}, learning rate ∈ {0.002, 0.01, 0.05}, number of training
epochs ∈ {100, 200, . . . , 2000}. We choose these parameters separately for each size of the hidden
layer ∈ {1000, 2000, 5000}.
To train ScheDA models, we first pick the best DA for each level of noise we consider, optimising
the learning rate and the number of training epochs with respect to the validation error. Starting
from the best DA for given ν0, we continue the training, lowering the level of noise from νt−1

to νt := νt−1 − ∆ν and training the model for K epochs. We repeat this noise reduction step
until νt < 0 when the training stops. In our experiments we consider ∆ν ∈ {0.05, 0.1} and

2We also tried a rectified linear encoder combined with sigmoid decoder on the Amazon data set. The
results were very similar, so we do not show them here.
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DA (0.7) ScheDA (0.7→0.6→0.5) ScheDA (0.7→0.6→...→0.3) ScheDA (0.7→0.6→...→0.1)

Figure 2: A sample of filters (rows of the matrix W) learnt from CIFAR-10 with DA (0.7) and
ScheDAs starting with ν0 = 0.7. All sets of filters are similar, but those that were post-trained with
low level of noise are sharper. With schedules that end at a lower level of noise, the filters become
more local but not as much as when only training with a low level of noise (cf. Figure 3).

K ∈ {50, 100}. We use the learning rate of 0.01 for this stage as it turned out to always be optimal
or very close to optimal for the standard DA3. We pick the combination of parameters (ν0,∆ν,K)
and the number of noise reduction steps, T , using the validation error of a classifier after the last
training epoch at each level of noise νt. We denote a DA trained with the level of noise ν by DA (ν)
and ScheDA trained with a schedule of noise levels ν0, ν1, ..., νT by ScheDA (ν0→ν1→...→νT ).

The error obtained by the classifier trained with raw pixel data equals 59.78%. A summary of the
performance of DAs and ScheDAs for each number of hidden units can be found in Table 1. For each
size of the hidden layer we tried, ScheDA easily outperforms DA, with a relative error reduction of
about 5%. Our best model achieves the error of 36.77% which, to our knowledge, is the lowest ever
reported error for permutation invariant CIFAR-10, outperforming Le et al. [2013] who achieved
the error of 36.9%. Interestingly, our method is very robust to the parameters (ν0,∆ν,K) of the
schedule. See Section 4.1.1 for more details.

Figure 1 shows the test errors and reconstruction errors on the training data as a function of the
training epoch for selected DAs and ScheDAs with 2000 hidden units. It is worth noting that, even
though the schedules exhibiting the best performance go below the optimal ν for DA, training for
many iterations with a level of noise that is too low hurts performance (see the final parts of the
schedules shown in Figure 1). This may be due to the fact that structures learnt at low noise levels
are too local to help generalisation.

The performance of our method does not appear to be solely due to better optimisation of the training
objective. For example, DA (0.1) trained for 3000 epochs has a lower reconstruction error on the
training data than the ScheDA (0.7→0.6→...→0.1) shown in Figure 1, while the test error it yields
is higher by about 5%.

The features learnt with ScheDA are visibly noticeably different from those learnt with any single
level of noise as they contain a mixture of features that could be found for various values of ν.
Figure 2 and Figure 3 display visualisations of the filters learnt by a DA and ScheDA. It can be
seen in Figure 2 that when training ScheDA the features across the consecutive levels of noise
are similar, which indicates that it is the initial training with a higher level of noise that puts the
optimisation procedure in a basin of attraction of a different local minimum, which would not be
otherwise achievable. This is shown in Figure 3, which visualises features learnt by a DA trained
only with a low noise level, DA (0.1), and those learnt with ScheDA (0.7→0.6→...→0.1). The set of
features learnt by DA (0.1) contains more noisy features and very few edge detectors, which are all
very local. In contrast, features learnt with the schedule contain a more diverse set of edge detectors
which can be learnt with high noise level (Figure 2) as well as some blob detectors which can be
learnt with a low noise level (Figure 3).

4.1.1 Robustness to the choice of schedule

Our method is very robust to the choice of the parameters of the schedule, ν0, ∆ν and K. Figure 4
shows the performance of ScheDA for different values of those parameters. For 1000 and 2000
hidden units for all schedules ScheDA performed better than the best DA, as long as the initial
level of noise ν0 was not lower than the level of noise yielding the best DA. For 5000 hidden units,

3Note that tuning this parameter could only help ScheDAs and would not affect the baselines.
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DA (0.1) ScheDA (0.7→0.6→0.5→0.4→0.3→0.2→0.1)

Figure 3: Samples of filters (rows of the matrix W) learnt from CIFAR-10 with a low fixed noise
level (left) and filters learnt with an initially high level of noise and post-trained with a schedule
of lower levels of noise (right). These two sets of filters are visually very different. There are
fewer edge detector filters among these learnt only with a low level of noise and those that are edge
detectors are more local.
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∆ν = 0.1, K = 50
∆ν = 0.1, K = 100
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∆ν = 0.05, K = 100
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Figure 4: Comparison of different schedules for ScheDA. For each size of hidden layer, the vertical
line indicates the optimal level of noise for a DA, i.e., the level of noise which allowed to train
representation yielding the lowest error on the validation set, while the horizontal line indicates the
test error obtained with this representation.

ScheDA also performed better than DA, except for the model trained with ν0 = 0.7. These results
suggest than ScheDA’s performance is superior to DA as long as the initial level of noise is not too
large and not below the optimal level of noise for DA.

We also examined whether it is necessary for the schedule to be decreasing. To investigate this, we
trained a network using ScheDA (0.1→0.15→0.2→0.25→0.3), which used an increasing schedule
of noise. This network had 2000 hidden units and it started with the best DA (over the learning rate
and the number of training epochs) among those trained with ν = 0.1 (achieving the test error of
45.34%), the number of epochs the model was trained at each level of noise K was set to 100. The
final test error was 44.63%, clearly worse than a DA trained with ν = 0.3 (achieving the test error
of 41.95%). This result provides some evidence that the initial noise levels puts the optimisation
procedure in a basin of attraction of a local minimum that can be favourable, as we observe for
ScheDA when starting training with higher noise levels, or detrimental, as we see here.

4.1.2 Concatenating sets of features learnt with different noise levels

To explain the results above, we examine whether features learnt with different noise levels contain
different information about the data. To explore this, we trained two sets of representations with
2000 hidden units independently with a standard DA. DAs in the first set were initialised with a
randomly drawn set of parameters θ1 and DAs in the second set were initialised with a different ran-
domly drawn set of parameters θ2. Each set contained representations learnt with ν = 0.1, ν = 0.2,
..., ν = 0.7. Then we gathered all 49 possible pairs of representations between the two sets and con-
catenated representations within each pair, creating representations with 4000 features. The errors
yielded by classifiers using these representations can be found in Figure 5. The important obser-
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DA (0.1) DA (0.2) DA (0.3) DA (0.4) DA (0.5) DA (0.6) DA (0.7)
ScheDA 374 550 444 299 169 92 72

DA* (0.1) 1247 465 167 54 21 12 7
DA* (0.7) 25 30 72 165 308 587 813

Table 2: Comparison of features of ScheDA and DA. The first row shows how many ScheDA
(0.7→0.6→...→0.1) features, out of 2000 in total, were closest to a feature learnt by DA (0.1),
..., DA (0.7). It demonstrates that ScheDA combines information that would be learnt from DAs at
varying noise levels. The second and third row are baselines for comparison (see text for details).

vation here is that, even though concatenating two representations learnt with the same ν but with
different initialisations results in a better representation (cf. Figure 1), concatenating representations
with different ν’s yields even lower errors.
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Figure 5: Test errors yielded by represen-
tations constructed by concatenating rep-
resentations learnt with various levels of
noise. This allows representations that are
otherwise weak separately to achieve low
test errors, e.g. for ν = 0.1 and ν = 0.5
(cf. Figure 1).

This is another piece of evidence strengthening our hy-
pothesis that having both local and global features in
the representation learnt with ScheDA helps classifi-
cation. Note, however, that even though concatenating
representations learnt with different ν helps, ScheDA
is clearly a better model, when using only 2000 hidden
units, it yields the error of 40.1% and 36.77% when us-
ing 5000 hidden units (cf. Table 1).

4.1.3 Comparing sets of features

Having confirmed that using both features learnt with
different levels of noise indeed helps classification, we
experimentally verify the hypothesis that the final rep-
resentation trained with ScheDA (0.7→0.6→...→0.1)
contains both features similar to those learnt with low
levels of noise (local features) and high levels of noise
(global features).

Intuitively, two features are similar if they are active
for the same set of inputs. We define the activation
vector ai for feature i as the vector containing the activation of the feature over all the data points.
More formally, if wi is the weight vector for feature i, bi is the bias for feature i and xn is a data
item, the activation vector is ai = [ai1, . . . , aiN ], where ain = sigmoid(wixn + bi). Here N is the
total number of data items, the total number of features is I .

We compute the activation vector for all features from eight different autoencoders: DA (0.1), DA
(0.2), ..., DA (0.7) and ScheDA (0.7→0.6→...→0.1). We denote the resulting activation vectors a0.1

i ,
..., a0.7

i and aSi , respectively. Now for each feature in ScheDA (0.7→0.6→...→0.1) we can find the
closest feature among those learnt with DA (0.1), DA (0.2), ..., DA (0.7). To do this, we compute
cosine similarities cos(aSi ,a

0.1
j ), cos(aSi ,a

0.2
j ), ..., cos(aSi ,a

0.7
j ) for all pairs (i, j). Finally, we

compute C0.1, the number of ScheDA features that are closest to a feature from DA (0.1) as C0.1 =∑I
i=1 1[maxjcos(aSi ,a

0.1
j ) > {maxjcos(aSi ,a

0.2
j ),maxjcos(aSi ,a

0.3
j ), ...,maxjcos(aSi ,a

0.7
j )}]

and similarly for C0.2, C0.3, ..., C0.7. To see how much ScheDA differs in that respect from the
standard DA trained only at the final level of noise for ScheDA, we also performed the same pro-
cedure as described above, but comparing to features learnt by DA* (0.1), which is the same as
DA (0.1) but starting from a different random initialisation. We found that ScheDA contains more
features similar to those learnt with higher noise levels than DA* (0.1) (see Table 2). This confirms
our expectation that the ScheDA representation retains a large number of more global features from
the earlier noise levels. We also put the same numbers for DA* (0.7) for comparison.

5 Composite denoising autoencoder

The observation that more diverse representations leads to a better discriminative performance can be
exploited more explicitly than in ScheDA. Instead of training all of the hidden units with a sequence
of noise levels, we can partition the hidden units, training each subset of units with a different noise
level. This can be done by defining the hidden representation and the reconstruction to be
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y = [f (x̃ν1W1 + b1) , . . . , f (x̃νS
WS + bS)] and

z = g
(∑S

s=1 f (x̃νs
Ws + bs) WT

s + b′
)

,
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Figure 6: Test errors for a composite
denoising autoencoder using two levels
of noise, ν = 0.2 and ν = 0.4, and with
2000 hidden units divided equally be-
tween the two levels of noise. Dashed
lines indicate the epochs when optimi-
sation switched between updating dif-
ferent sets of parameters.

where x̃νs
denotes an input x corrupted with the level of

noise νs. We call this a composite DA. Our preliminary
experiments show that, even when using only two noise
levels, it outperforms a standard DA and performs on par
with ScheDA. Successful learning of the parameters is
more complicated though. We found that standard SGD
(updating all parameters at each epoch) performs much
worse than a version of the SDG alternating between up-
dating parameters associated with the two levels of noise.
See Figure 6.

6 Discussion

We have introduced a simple, yet powerful extension of an important and commonly used model for
learning representations and justified its superior performance by its ability to learn a more diverse
set of features than the standard denoising autoencoder. Instead of learning a denoising autoencoder
with just a single level of noise, we exploit the fact that various levels of noise yield different features,
which are more global for large values of ν. Starting the training with a high level of noise enables
the algorithm to learn these global features first, which are partially retained when the level of noise
is lower and the model is learning more local dependencies.

Erhan et al. [2010] investigated why unsupervised pretraining helps learning a deep neural network
and found that the set of functions learnt by pretrained sigmoid neural networks is very different from
the ones that are learnt without unsupervised pretraining. In fact, we have investigated a related ques-
tion, why does unsupervised pretraining help unsupervised pretraining? Or, more precisely, since
we are not doing any supervised fine-tuning, why does unsupervised pretraining help unsupervised
training? One of their conclusions was that, when using their architecture, unsupervised pretaining
puts the optimisation procedure in a basin of attraction of a local minimum that would not otherwise
be found. This is very similar to what we observe in our experiments. We often find that a DA
trained with a given level of noise ν can have a lower reconstruction error than ScheDA trained with
the final level of noise ν, yet ScheDA is performing better in terms of classification error. The filters
at the minima for DA and ScheDA also look very different (cf. Figure 3).

This way of training a denosing auto-encoder is related to walkback training [Bengio et al., 2013] in
the sense that at the initial stages of training both methods attempt to correctly reconstruct corrupted
examples that lie further from the data manifold. It is different though as we do not require the loss
to be interpretable as log-likelihood and we do not perform any sampling from the denoising autoen-
coder. Additionally, Chandra and Sharma [2014] independently tried an idea similar to ScheDA, but
they were unable to show consistent improvement over the results of Vincent et al. [2010].

There is a number of ways this work can be extended. Primarily, ScheDA can be stacked, which
would likely improve our results. More generally, our results suggest that large improvements can
be achieved by combining diverse representations, which we aim to exploit in composite denoising
autoencoders.

Finally, we would like to point out that the main observation we make, namely, that it is beneficial
for the feature learning algorithm to learn more global features first and then to proceed to learning
more local ones, is very general and it is likely that scheduling is applicable to other approaches
to feature learning. Indeed, in the case of dropout [Hinton et al., 2014], Rennie et al. [2014] have,
independently from our work, explored the use of a schedule to decrease the dropout rate.
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Appendix

Sampling the level of noise

As an alternative to a schedule, which sequentially changes the level of noise, we tried to sample
a different ν for each mini-batch. We tried two variants of this idea: sampling ν uniformly from a
continuous interval [0.1, 0.7], and sampling ν from a discrete distribution over the values in the set
{0.1, 0.2, . . . , 0.7}. Replicating the setup described in Section 4.1 for a DA with 2000 hidden units,
the first method obtained test error of 44.85% and the second one obtained the test error 46.83%.
Thus, both have performed much worse than DA (0.3). The result of this experiment provides
evidence that training a denoising autoencoder with a sequence of noise levels is important for the
success of our method.

Sentiment classification

We also evaluate our idea on a data set of product reviews from Amazon [Blitzer et al., 2007],
adapting the experimental setting used with the CIFAR-10 data set. The version of the data set we
are using contains reviews of products from six domains4 corresponding to high-level categories
on Amazon.com. The goal is to classify whether a review is positive or negative based on the
review text. For computational reasons, we keep only 3000 most popular words in the entire data
set, transforming each example into a binary vector indicating presence or absence of a word. We
divide the data set into a training set of 10000 labelled examples and 35000 unlabelled examples, a
validation set of 10000 labelled examples and a test set of 10000 labelled examples, each of them
consisting equal fractions of positive and negative labelled examples. The six domains are mixed
among training, validation and test examples. We set the number of hidden units to 2000.

The baseline, logistic regression trained with raw data obtains the test error of 14.79%, while the
best DA (0.6) yields 13.61% and the best ScheDA (0.7→0.6) yields 13.41% error. The relative error
reduction is smaller than on the image data, which is not surprising since the raw features are here a
much stronger baseline and the improvement obtained by the standard DA is relatively smaller too.
Smaller relative error reduction can be explained by the fact that the DA performance varies less
with the level of noise for this data set. While the test error for the best set of features learnt by DA
(0.6) was 13.61%, the worst, DA (0.1), yielded the error of 13.9%. This result suggests a simple
diagnostic for whether ScheDA is likely to be effective, namely, to check whether the DA validation
error is sensitive to the noise level.

4books, dvd, electronics, kitchen & housewares, music, video
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