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Virtualization

2

Virtualization of a resource: presenting a user with a different view of that 
resource
■ intercept all accesses to the resource
■ possibly reinterpret/wrap/... such accesses 
■ and pass them along to the resource 

Examples:
■ A wrapper function
■ Virtual machine (just like the course machine)
■ Access to hard drives (we/programs specify logical block number, not 

specific platter, cylinder, track number on the disk)
■ Virtual memory (using virtual as opposed to physical addresses) 



Virtual Address Space
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⬛ Used in “simple” systems like embedded microcontrollers in devices like cars, 
elevators, and digital picture frames

⬛ Applications need to know which ranges of addresses belong to them. 
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⬛ Used in all modern servers, laptops, and smart-phones
⬛ One of the great ideas in computer science
⬛ (This is a big picture view; ignores caches, and other hardware elements that 

are design to reduce the time access to the main memory.) 
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⬛ Linear address space: 
Ordered set of contiguous non-negative integer addresses:

{0, 1, 2, 3 … }

⬛ Virtual address space: 
Set of N = 2n virtual addresses

{0, 1, 2, 3, …, N-1}

⬛ Physical address space: 
Set of M = 2m physical addresses

{0, 1, 2, 3, …, M-1}
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M ≠ N 
M - determined by amount of 
      memory on the system,
N - same for all processes



⬛ Uses main memory efficiently
▪ Use DRAM as a cache for parts of a virtual address space

⬛ Simplifies memory management
▪ Each process gets the same uniform linear address space

⬛ Isolates address spaces
▪ One process can’t interfere with another’s memory
▪ User program cannot access privileged kernel information and code
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VM as a cache for disk
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⬛ Conceptually, virtual memory is an array of N contiguous bytes stored on 
disk. 

⬛ The contents of the array on disk are cached in physical memory (DRAM 
cache)

▪ These cache blocks are called pages (size is P = 2p bytes)
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⬛ DRAM cache organization driven by the enormous miss penalty
▪ DRAM is about 10x slower than SRAM
▪ Disk is about 10,000x slower than DRAM

⬛ Consequences
▪ Large page (block) size: typically 4 KB, sometimes 4 MB
▪ Fully associative 

▪ Any VP can be placed in any PP
▪ Requires a “large” mapping function – different from cache memories

▪ Highly sophisticated, expensive replacement algorithms
▪ Too complicated and open-ended to be implemented in hardware

▪ Write-back rather than write-through (defer writing to the disk as long as possible)
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⬛ A page table is an array of page table entries (PTEs) that maps virtual pages 
to physical pages. 

▪ Per-process kernel data structure in DRAM
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⬛
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⬛
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⬛ Page miss causes page fault (an exception)
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⬛ Page miss causes page fault (an exception)
⬛ Page fault handler selects a victim to be evicted (here VP 4)
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⬛ Page miss causes page fault (an exception)
⬛ Page fault handler selects a victim to be evicted (here VP 4)
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⬛ Page miss causes page fault (an exception)
⬛ Page fault handler selects a victim to be evicted (here VP 4)
⬛ Offending instruction is restarted: page hit!
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⬛
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⬛ Virtual memory seems terribly inefficient, but it works because of locality. 

⬛ At any point in time, programs tend to access a set of active virtual pages 
called the working set

▪ Programs with better temporal locality will have smaller working sets

⬛ If (working set size < main memory size) 
▪ Good performance for one process after compulsory (cold) misses

⬛ If ( SUM(working set sizes) > main memory size ) 
▪ Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously
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VM for memory management
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⬛ Each process has its own virtual address space
▪ It can view memory as a simple linear array (each process/programmer has the virtual view 

of memory, not the real one) 
▪ Mapping function scatters addresses through physical memory
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⬛ Simplifying memory allocation
▪ Each virtual page can be mapped to any physical page
▪ A virtual page can be stored in different physical pages at different times

⬛ Sharing code and data among processes
▪ Map virtual pages to the same physical page (here: PP 6)
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⬛ Linking 
▪ Each program has similar virtual address 

space
▪ Code, data, and heap always start at the 

same addresses.

⬛ Loading 
▪ execve allocates virtual pages for .text and 

.data sections & creates PTEs marked as 
invalid

▪ The .text and .data sections are copied, 
page by page, on demand by the virtual 
memory system

malloc

%rsp

brk

0x400000

data bss

.init text .rodata
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VM for memory protection
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⬛

⬛
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Address translation (not really)
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⬛ Virtual Address Space
▪ V = {0, 1, …, N–1}

⬛ Physical Address Space
▪ P = {0, 1, …, M–1}

⬛ Address Translation
▪ MAP:  V →  P  U  {∅}
▪ For virtual address a:

▪ MAP(a)  =  a’  if data at virtual address a is at physical address a’ in P
▪ MAP(a)  = ∅ if data at virtual address a is not in physical memory
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For details of this see the textbook and slides that are posted at the end of 
this presentation. We will not cover the details of the address translation. 



Address translation
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1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory
5) Cache/memory sends data word to processor
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1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction
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⬛ Page table entries (PTEs) are cached in L1 like any other memory word
▪ PTEs may be evicted by other data references
▪ PTE hit still requires a small L1 delay

⬛ Solution: Translation Lookaside Buffer (TLB)
▪ Small set-associative hardware cache in MMU
▪ Maps virtual page numbers to  physical page numbers
▪ Contains complete page table entries for small number of pages
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⬛

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+t-1p+t

…
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⬛ Suppose:
▪ 4KB (212) page size, 48-bit address space, 8-byte PTE 

⬛ Problem:
▪ Would need a 512 GB page table!

▪ 248 * 2-12  * 23 = 239 bytes

⬛ Common solution: Multi-level page table
⬛ Example: 2-level page table

▪ Level 1 table: each PTE points to a page table (always memory resident)
▪ Level 2 table: each PTE points to a page 

(paged in and out like any other data)
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VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

Level 1
page table

Level 2
page table

Level k
page table
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