Virtual Memory

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)
Mohamed Zahran (NYU)

Virtualization

Virtualization of a resource: presenting a user with a different view of that
resource

m intercept all accesses to the resource

m possibly reinterpret/wrap/... such accesses

m and pass them along to the resource

Examples:
= A wrapper function
m Virtual machine (just like the course machine)
m Access to hard drives (we/programs specify logical block number, not
specific platter, cylinder, track number on the disk)
m Virtual memory (using virtual as opposed to physical addresses)

Virtual Address Space

A System Using Physical Addressing

Main memory

0:

1:

Physical address 2:
(PA)

CPU

Data word

Used in “simple” systems like embedded microcontrollers in devices like cars,
elevators, and digital picture frames
Applications need to know which ranges of addresses belong to them.

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical 2:
(vA) (PA) 3:
CPU m 4:
4100 5:
6:
Memory 7:
Management 8:
Unit « o
Data word

Used in all modern servers, laptops, and smart-phones

One of the great ideas in computer science

(This is a big picture view; ignores caches, and other hardware elements that
are design to reduce the time access to the main memory.)

Address Spaces

M Linear address space:
Ordered set of contiguous non-negative integer addresses:
{0,1,2,3...}

B Virtual address space:
Set of N = 2" virtual addresses
0,1,2,3,....N-1}

B Physical address space:
Set of M = 2™ physical addresses
{0,1,2,3,...,M-1} M=zN
M - determined by amount of

memory on the system,
N - same for all processes

Why Virtual Memory (VM)?

Hl Uses main memory efficiently
= Use DRAM as a cache for parts of a virtual address space

[l Simplifies memory management
= Each process gets the same uniform linear address space

Il Isolates address spaces
= One process can't interfere with another’s memory
= User program cannot access privileged kernel information and code

VM as a cache for disk

VM as a Tool for Caching

Il Conceptually, virtual memory is an array of N contiguous bytes stored on
disk.

M The contents of the array on disk are cached in physical memory (DRAM
cache)

= These cache blocks are called pages (size is P = 2P bytes)

Virtual memory
0

Physical memory

VP 0 | Unallocated
VP 1 | Cached \ Empty PPO

Uncached PP1
Unallocated Empty
Cached

Uncached >—< Empty
Cached PP 2™P.1

VP 2P-1 | Uncached b

N-1

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

DRAM Cache Organization

B DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM

B Consequences
= Large page (block) size: typically 4 KB, sometimes 4 MB
= Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from cache memories
Highly sophisticated, expensive replacement algorithms
= Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through (defer writing to the disk as long as possible)

Page Table

B Apage tableis an array of page table entries (PTEs) that maps virtual pages
to physical pages.

= Per-process kernel data structure in DRAM

Physical page (DRAM)
number or o
Valid disk address o5 PP O
PTEO| O null o
L = VP4 PP3
1 -«
0 e
1 CiS
0 null < Virtual memory
0 - S~o (disk)
Prerla o]
Memory 'e;:de"‘ RN I
" (ORAM) h
(DRAM) Sso vP3

Page Hit

m Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

Virtual address Physical page (DRAM)
number or o
Valid disk address PRl PPO
PTEO| O null VP 7
z — VP4 PP 3
1 —
] e
1 ClS
0 null 1 Virtual memory
0 . RN (disk)
Pre7a CAEN
Memory resident \\ \\
9 S N O W
(DRAM) .
S
1

Page Fault

m Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address x: : PPO
PTEO| 0 null / vz
1 o«
VP4 PP3
1 «—
0 e
1 CtS
0 null P Virtual memory
0 - Y (disk)
PTE7LL — < RATSY VP1
Memory re;:dent .. \\ w3
page table Sl
(DRAM) A vp3

VP4
VP 6
VP 7 13

’
7
’
I I

Handling Page Fault

M Page miss causes page fault (an exception)

Physical memory

Handling Page Fault

B Page miss causes page fault (an exception)
W Page fault handler selects a victim to be evicted (here VP 4)

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address z: : PP O
PTEO| O null P7
: i 4 PP3
1 «—
] Q
1 CalS
0 null 1 Virtual memory
0 . RN (disk)
PTE7LL < s N RISY VP 1
Memory re;:dent ~. \\ VP2
page table AN
(DRAM) Sl VP3

VP4
VP 6
VP7 15

’
’
’
I I

Physical page
Virtual address number or (DRA1M)
Valid disk address x: B PPO
PTEO t;) null / =
VP4 PP3
1 —
0 o
1 CalS
0 null > Virtual memory
0 - Y (disk)
PTE7L CabiNm
Memoryresident ™. s,
oA
(DRAM) . VP3
"
Handling Page Fault
B Page miss causes page fault (an exception)
M Page fault handler selects a victim to be evicted (here VP 4)
Physical memory
Physical page (DRAM)
Virtual address number or
Valid disk address x:; PPO
pTEO[0 null o
1 = Ves | pp3
1 —
1 —
0 [S
0 null ~. Virtual memory
0 o S (disk)
e
Memoryresident . ">~
page table Sso S
(DRAM) . oo wes]

Handling Page Fault

Il Page miss causes page fault (an exception)
M Page fault handler selects a victim to be evicted (here VP 4)
W Offendinginstruction is restarted: page hit!

Physical page
Virtual address number or (DRAM)
Valid disk address x: : PP O
PTEO[0 null / w2
1 «—
VvP3 PP3
1 o«
1 —
0 (3
0 null " ~o Virtual memory
0 ° N (disk)
FrETL]
Memoryresident ™~ _ ™.
page table Sao s
(DRAM) Sl s

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

Allocating Pages

m Allocating a new page (VP 5) of virtual memory.

Physical page (DRAM)
number or VPl
Valid disk address VP2
PTEO (: null VP 7
VP3
1 —
1 —
0 3
0 RN Virtual memory
0 o L~ R (disk)
< ~
pre7 [T, s
Memory resident ~
page table
(DRAM)
L wa]

Works Because of Locality

W Virtual memory seems terribly inefficient, but it works because of locality.

B Atany pointintime, programs tend to access a set of active virtual pages

called the working set
= Programs with better temporal locality will have smaller working sets

W If (working set size < main memory size)
= Good performance for one process after compulsory (cold) misses

W If (SUM(working set sizes) > main memory size)
= Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

VM for memory management

VM as a Tool for Memory Management

M Each process has its own virtual address space
= It can view memory as a simple linear array (each process/programmer has the virtual view

of memory, not the real one)

= Mapping function scatters addresses through physical memory

Virtual 0

Address VP1
Space for VP2
Process 1:

vl 1

Virtual 0

Address VP1
Space for VP2
Process 2: eee

Address
translation

0

Physical
Address
PP2 Space

(DRAM)

(e.g., read-only

PP 6 library code)

PP 8

VM as a Tool for Memory Management

M Simplifying memory allocation

= Each virtual page can be mapped to any physical page

= Avirtual page can be stored in different physical pages at different times

M Sharing code and data among processes
= Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

0 Address
i translation
VP2
vl 1
0
VP 1
VP2

0

PP2

PP6

PP8

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

22

Simplifying Linking and Loading

Linking

= Each program has similar virtual address

space

= Code, data, and heap always start at the

same addresses.

Loading

= execve allocates virtual pages for .text and
.data sections & creates PTEs marked as

invalid

= The .text and .data sections are copied,
page by page, on demand by the virtual

memory system

Kernel virtual memory

User stack
(created at runtime)

]
!

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

0x400000

Unused

0

Memory
invisible to
user code

~——S%rsp
(stack
pointer)

< brk

Loaded
from

the
executable
file

VM for memory protection

VM as a Tool for Memory Protection

m Extend PTEs with permission bits
m MMU checks these bits on each access

Physical
Processi: SUP READ WRITE EXEC Address Address Space
VP 0: No Yes No Yes PP 6
VP 1: No Yes Yes Yes PP4
VP2 | Yes | Yes | Yes | No PP2 EER2
o PP4
L]
L]
PP6
Process j: SUP READ WRITE EXEC Address Y]
VPO:| No Yes No Yes PP9 PP 9O
VP1:| Yes Yes Yes Yes PP 6
VP2:| No Yes Yes Yes PP 11 PP 11

Address translation (not really)

26

VM Address Translation

Il Virtual Address Space
= v={0,1,...,N-1}
W Physical Address Space
« P={0,1,...,M-1}
W Address Translation
+ MAP: Vo P U {2}
= Forvirtual address a:
= MAP(a) = a' if data at virtual address a is at physical address a’ in P
= MAP(a) =2 if data at virtual address a is not in physical memory

For details of this see the textbook and slides that are posted at the end of
this presentation. We will not cover the details of the address translation.

Address translation

Address Translation With a Page Table

Virtual address

n-1 p p-1 [
Page table
base register 4{ Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table
Valid Physical page (PPN)
Physical page table
address for the current
process
Valid bit = 0:
Page not in memory Valid bit = 1
(page fault)
m-1 p p-1 [

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Address Translation: Page Hit

2]

Address Translation: Page Fault

CPU Chip

CPU

(~ -]

Exception

MMU

*{ Page fault handler ‘

U

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

PTEA Victim page
PTE Cache/ o
e Memory

New page

CPU Chip -
VA PTE
CPU MMU (5] Cache/
PA Memory
Data
1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory
5) Cache/memory sends data word to processor
30
Integrating VM and Cache
PTE
CPU Chip l pery PTE
hit
PTEA preal PTEA
miss|
CPU VA MMU Memory
PA PA PA
PA Data
’7hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

32

Speeding up Translation with a TLB

Il Page table entries (PTEs) are cached in L1 like any other memory word

= PTEs may be evicted by other data references
= PTE hit still requires a small L1 delay
[l Solution: Translation Lookaside Buffer (TLB)
= Small set-associative hardware cache in MMU
= Maps virtual page numbers to physical page numbers

= Contains complete page table entries for small number of pages

Accessing the TLB

m MMU uses the VPN portion of the virtual address to access the

TLB:
T=2'sets
VPN
TLBT matches tag
of line within set P'1 pt pH-1 p p-1 0
{ TLBtag (TLBT) [TLB index (TLBI) [VPO]

seco [0 i o] [0 e Lo
|
et [l e] [0 B e 3]~
.

TLBI selects the set

seet1 |1] B [ere | |1 B Coe_]|

34

TLB Hit

CPU Chip

CPU

TLB

o PTE
VPN e

MMU

Data

(=]

A TLB hit eliminates a memory access

Cache/
Memory

TLB Miss

CPU Chip
TLB o
o PTE
VPN
VA PTEA
CPU MMU Cache/
PA Memory

Data

¢

A TLB miss incurs an additional memory access (the PTE)

Fortunately, TLB misses are rare. Why?
36

Multi-Level Page Tables

W Suppose:
= 4KB (2'?) page size, 48-bit address space, 8-byte PTE

Il Problem:

= Would need a 512 GB page table!

l Common solution: Multi-level page table Table

. 248% 212 % 93 = 2% pyteg

Il Example: 2-level page table

= Level 1 table: each PTE points to a page table (always memory r
= Level 2 table: each PTE points to a page

(paged in and out like any other data)

Level 1

Level 2

Tables

7] _—

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
vo |)
PTEO — [o
VP 1023
PTE1 VP 1024 >
PTE 2 (null) PTE 1023
PTE 3 (null)
VP 2047 J
PTE 4 (null) PTEO SN
PTE 5 (null)
PTE 6 (null) PTERGES
PTE 7 (null) Gap
PTE8
1023 null
(1K - 9) PTEs)
null PTEs goas
PTE 1023 unallocate
d
215

32 bit addresses, 4KB pages, 4-byte PTEs

2K allocated VM pages
for code and data

1023 unallocated pages

1 allocated VM page
for the stack

> 6K unallocated VM pages

38

Translating with a k-level Page Table

Page table
base register

(PT

BR)

VIRTUAL ADDRESS
n-1 p-1 0
[VPN 1 VPN 2 VPN k VPO
Level 1 Level 2 Level k

page table page table page table

}
m-1 p-1 0
PPN PPO_ |

PHYSICAL ADDRESS

