Dynamic Memory Allocation

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)
Mohamed Zahran (NYU)

Basic Concepts

Dynamic Memory Allocation

B Programmers use dynamic Application
memory allocators (such as
malloc) to acquire VM at run

time. Heap

= For data structures whose size is
only known at runtime.

Dynamic Memory Allocator

B Dynamic memory allocators User stack

manage an area of process ' ‘

virtual memory known as the
heap. Heap (viamalloc)

— Top of heap
(brk ptr)

Uninitialized data (.bss)

Initialized data (. data)

Program text (. text)

Dynamic Memory Allocation

B Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

B Types of allocators

= Explicit allocator: application allocates and frees space
= E.g., mallocand freein C

= Implicit allocator: application allocates, but does not free space
= E.g. garbage collection in Java, ML, and Lisp

The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:
= Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
» |fsize ==0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

void free (void *p)
= Returns the block pointed at by p to the pool of available memory
= p must come from a previous call tomalloc, calloc orrealloc

Other functions
» calloc: Version of malloc that initializes allocated block to zero.
» realloc: Changes the size of a previously allocated block.
« sbrk: Usedinternally by allocators to grow or shrink the heap

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
P = (int *) malloc(n * sizeof (int));
if (p == NULL) {
perror ("malloc") ;
exit (0) ;
}

/* Initialize allocated block */
for (i=0; i<n; i++)
pli] = i;

/* Return allocated block to the heap */
free(p)

Assumptions Made in This Lecture

B Memoryisword addressed.
B Words are int-sized.

\ v) Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

Allocation Example

malloc (4)

o
=
I

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

Constraints

B Applications

Can issue arbitrary sequence of malloc and free requests
free request mustbetoamalloc’d block

B Allocators

Can't control number or size of allocated blocks
Must respond immediately to malloc requests
= j.e., can’'t reorder or buffer requests
Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
Must align blocks so they satisfy all alignment requirements
= 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
Can manipulate and modify only free memory
Can't move the allocated blocks once they are malloc'd
= j.e., compaction is not allowed

Performance Goal: Throughput

m Given some sequence of malloc and free requests:

* R,R,..R, .., R

n-1
m Goals: maximize throughput and peak memory utilization

* These goals are often conflicting

m Throughput:
= Number of completed requests per unit time

= Example:
« 5,000 malloc calls and 5,000 £ree calls in 10 seconds

- Throughput is 1,000 operations/second

10

Performance Goal: Peak Memory
Utilization

m Given some sequence of malloc and free requests:

" R,R,..R, .., R

LT n-1

m Def: Aggregate payload P,
= malloc (p) results in a block with a payload of p bytes

" After request R, has completed, the aggregate payload P is the sum
of currently allocated payloads

m Def: Current heap size H,
* Assume H, is monotonically nondecreasing
= i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k+1 requests
* U, =(max_, P)/ H,

11

Fragmentation

Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation

12

Internal Fragmentation

B Foragiven block, internal fragmentation occurs if payload is smaller than

block size
Block
A

—
Internal] paviond
fragmentation ’ ayloa

—~
4+

Bl Causedby

= Overhead of maintaining heap data structures

= Padding for alignment purposes
= Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

Bl Dependsonly on the pattern of previous requests

= Thus, easy to measure

Internal
fragmentation

13

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc(4)

P2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc (6) Oops! (what would happen now?)

m Depends on the pattern of future requests

* Thus, difficult to measure

14

Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many might fit?

m How do we reinsert freed block?

15

Knowing How Much to Free

Standard method
= Keep the length of a block in the word preceding the block.

- This word is often called the header field or header

= Requires an extra word for every allocated block

pO

y

pO = malloc (4) 5

Y

block size payload

free (p0)

16

Keeping Track of Free Blocks

Il Method 1: Implicit list using length—links all blocks

Il Method 2: Explicit list among the free blocks using pointers

/\

5| -1 4 6 2

B Method 3: Segregated free list

= Different free lists for different size classes

Il Method 4: Blocks sorted by size

= Can use a balanced binary tree with pointers within each free block, and the length used as a
key

Implicit Free List

Method 1: Implicit List

I Foreach block we need both size and allocation status
= Could store this information in two words: wasteful!

B Standard trick

= |f blocks are aligned, some low-order address bits are always 0
= Instead of storing an always-0 bit, use it as a allocated/free flag
= When reading size word, must mask out this bit

1 word
A
- N
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding

Detailed Implicit Free List Example

of ‘ ‘ 0/ |
heap : . : : . - -

' Double-word Allocated blocks: shaded
aligned Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

*Assume 8-byte (2 word) align boundary. 20

Implicit List: Finding a Free Block

I First fit:
Search list from beginning, choose first free block that Fits

Can take linear time in total number of blocks (allocated and free)
= |n practice it can cause “splinters” at beginning of list

Il NextFfit:
Like first Fit, but search list starting where previous search finished
Should often be Faster than Ffirst fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

Il Bestfit:

Search the list, choose the best free block: fits, with fewest bytes left over
Keeps fragments small—usually improves memory utilization
= Will typically run slower than first Fit

21

Implicit List: Allocating in Free Block

Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want to
split the block

N N T~

4 4

T -

addblock (p, 4)

22

Implicit List: Freeing a Block

Simplest implementation:

= Need only clear the “allocated” flag

= Can lead to “false fragmentation”

ol -

free (p)

malloc (5) OOPS.’

There is enough free space, but the allocator won’t be able to find it
(since it sees a block of 4 and block of 2, not a block of 5).

23

Implicit List: Coalescing

Join (coalesce) with next/previous blocks, if they are free
» Coalescing with next block

4 4 4 2 2

A

free (p) p
4 4 6 2 2

= But how do we coalesce with previous block?

logically
gone

24

Implicit List: Bidirectional Coalescing

Boundary tags [Knuth73]

= Replicate size/allocated word at “bottom” (end) of free blocks

= Allows us to traverse the “list” backwards, but requires extra space

* |Important and general technique!

Header —» Size
Format of
allocated and Payload and
free blocks padding
Boundary tag —p Size

(footer)

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

25

Constant Time Coalescing

Block being |
freed

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Allocated Free Allocated Free

26

Constant Time Coalescing (Case 1)

ml

ml

ml

ml

m2

m2

m2

m2

27

Constant Time Coalescing (Case 2)

ml 1 ml 1

ml 1 ml 1

n 1 n+m2 0
—

n 1

m2 0

m2 0 n+m2 0

What do we do, if the next block is free as well?
e Not possible if we always coalesce.

Constant Time Coalescing (Case 3)

ml

n+m1l

ml

m2

n+m1l

m2

m2

m2

29

Constant Time Coalescing (Case 4)

ml

n+ml+m?2

ml

m2

m2

n+ml+m?2

30

Summary of Key Allocator Policies

B Placement policy:
= First-fit, next-fit, best-fit, etc.
= Trades off lower throughput for less fragmentation
= Interesting observation: segregated free lists (next lecture) approximate a best fit placement
policy without having to search entire free list

B Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

B Coalescing policy:
= Immediate coalescing: coalesce each time free is called
= Deferred coalescing: try to improve performance of free by deferring coalescing until
needed. Examples:
= Coalesce as you scan the free list for malloc
= Coalesce when the amount of external fragmentation reaches some threshold

31

Implicit Lists: Summary

B Implementation: very simple

I Allocate cost:

» linear time worst case

B Free cost:
= constant time worst case
= even with coalescing

B Memory usage:
= will depend on placement policy
= First-fit, next-fit or best-fit

B Notusedin practice for malloc/free because of linear-time allocation
= used in many special purpose applications

B However, the concepts of splitting and boundary tag coalescing are general

to all allocators
32

Explicit Free List

Keeping Track of Free Blocks

Il Method 1: Implicit list using length—links all blocks

Il Method 2: Explicit list among the free blocks using pointers

T

5| 7 4 6 2

B Method 3: Segregated free list

= Different free lists for different size classes

Il Method 4: Blocks sorted by size

= Can use a balanced binary tree with pointers within each free block, and the length used as a
key

Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

Maintain list(s) of free blocks, not all blocks
= The “next” free block could be anywhere

- So we need to store forward/back pointers, not just sizes

= Still need boundary tags for coalescing
= Luckily we track only free blocks, so we can use payload area

35

Explicit Free Lists

m Logically:

A | B >
< o — —

m Physically: blocks can be in any order

/ Forward (next) links

a| 744 al6| /] < 6|4 4|al) 4

C \/
—K Back (prev) links

Allocating From Explicit Free Lists

Before

After

conceptual graphic

(with splitting)

¥

malloc(..)

37

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly freed
block?

m LIFO (last-in-first-out) policy
* |nsert freed block at the beginning of the free list
= Pro: simple and constant time

= Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

* |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO

38

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before
free (p)

Head o)

m Insert the freed block at the root of the list

After

39

Freeing With a LIFO Policy (Case 2)

conceptual graphic

Before free (p)

Head %% o

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

Head o)

40

Freeing With a LIFO Policy (Case 3)

conceptual graphic

Before

Head

\

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

o |l<lo |0
o> o> o

After

o <«

41

Freeing With a LIFO Policy (Case 4)

Before

conceptual graphic

Head

o|l<ro |0
C—i| O ©
o |l<lo |0
C—i| O ©

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

After

T T

42

Explicit List Summary

m Comparison to implicit list:
* Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks in
and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for different
types of objects

43

Keeping Track of Free Blocks

B Method 1: Implicit list using length—Ilinks all blocks

B Method 2: Explicit list among the free blocks using pointers

/\

5| -1 4 6 2

B Method 3: Segregated free list

= Different free lists for different size classes

B Method 4: Blocks sorted by size

= Can use a balanced tree with pointers within each free block, and the length used as a key

Segregated Free List

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1-2 —> —> —» —>
3 —> —> —> —>
4 —> —> —>
5-8 —> —>
9-inf 5

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

Seglist Allocator
m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m>n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
* |f no block is found, try next larger class
= Repeat until block is found

m If noblockis found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class.

47

Seglist Allocator (cont.)

m To free a block:
= Coalesce and place on appropriate list

m Advantages of seglist allocators
= Higher throughput
log time for power-of-two size classes

= Better memory utilization

- First-fit search of segregated free list approximates a best-fit search
of entire heap.

- Extreme case: Giving each block its own size class is equivalent to
best-fit.

48

Garbage Collection

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in many dynamic languages:
= Python, Ruby, Java, Perl, ML, Lisp, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

Garbage Collection

m How does the memory manager know when memory can be

freed?

* |n general we cannot know what is going to be used in the future since it
depends on conditionals

= But we can tell that certain blocks cannot be used if there are no pointers
to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers (cannot do
that in C)

= All pointers point to the start of a block (not true in C)

= Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

51

Classical GC Algorithms

Mark-and-sweep collection (McCarthy, 1960)

= Does not move blocks (unless you also “compact”)

Reference counting (Collins, 1960)
= Does not move blocks (not discussed)

Copying collection (Minsky, 1963)

= Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
- Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

52

Memory Related Bugs

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

54

C Pointer Declarations: Test Yourself!

int *p
int *p[13]
int *(p[13])
int **p

int (*p) [13]
int *£()

int (*£) ()

int (*(*£()) [13]1) ()

int (*(*x[3]) ()) [5]

p is a pointer to int
p is an array[13] of pointer to int
p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

fis a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

55

Dereferencing Bad Pointers

The classic scanf bug

int wval;

scanf ("%d", wval) ;

56

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc(N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)
y[i] += A[i][j]1*=x[3]]:
return y;

Overwriting Memory

Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (int)) ;
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int));

}

58

Overwriting Memory

Off-by-one error

int **p;
p = malloc(N*sizeof (int *));

for (i=0; i<=N; i++) {
pl[i] = malloc (M*sizeof (int));

}

59

Overwriting Memory

Not checking the max string size

char s[8];
int 1i;

gets(s) ;

/* reads “123456789” from stdin */

60

Overwriting Memory

Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (*p && *p !'= wval)
p += sizeof (int);

return p;

61

Overwriting Memory

Referencing a pointer instead of the object it points to

int * heap delete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size—-—;
heapify (binheap, *size, 0);
return (packet) ;

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function returns

int *foo () {
int wval;

return &val;

63

Freeing Blocks Multiple Times

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
<manipulate y>
free (x) ;

64

Referencing Freed Blocks

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc(M*sizeof (int))
for (i=0; i < M; i++)
y[i] = x[i]++;

65

Failing to Free Blocks (Memory Leaks)

Slow, long-term Kkiller!

foo() {
int *x = malloc (N*sizeof (int)) ;

return;

66

Failing to Free Blocks (Memory Leaks)

Freeing only part of a data structure

struct list {
int val;
struct list *next;

};
foo () {

head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

struct list *head = malloc(sizeof (struct list));

67

Dealing With Memory Bugs

Debugger: gdb
* Good for finding bad pointer dereferences
* Hard to detect the other memory bugs

Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
Binary translator: valgrind
* Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Checks each individual reference at runtime
- Bad pointers, overwrites, refs outside of allocated block

glibc malloc contains checking code
* setenv MALLOC_ CHECK 3 (see the manual page formallopt)

68

