
Dynamic Memory Allocation

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)

Mohamed Zahran (NYU)

Basic Concepts

2

⬛ Programmers use dynamic
memory allocators (such as
malloc) to acquire VM at run
time.

▪ For data structures whose size is
only known at runtime.

⬛ Dynamic memory allocators
manage an area of process
virtual memory known as the
heap. malloc

.text

.data

bss

brk

3

⬛ Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

⬛ Types of allocators

▪ Explicit allocator: application allocates and frees space
▪ E.g., malloc and free in C

▪ Implicit allocator: application allocates, but does not free space
▪ E.g. garbage collection in Java, ML, and Lisp

4

malloc

#include <stdlib.h>

void *malloc(size_t size)
▪ Successful:

▪ Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

▪ If size == 0, returns NULL
▪ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
▪ Returns the block pointed at by p to the pool of available memory
▪ p must come from a previous call to malloc, calloc or realloc

Other functions
▪ calloc: Version of malloc that initializes allocated block to zero.

▪ realloc: Changes the size of a previously allocated block.

▪ sbrk: Used internally by allocators to grow or shrink the heap

5

malloc
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
 int i, *p;

 /* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {
 perror("malloc");
 exit(0);
 }

 /* Initialize allocated block */
 for (i=0; i<n; i++)

p[i] = i;

 /* Return allocated block to the heap */
 free(p);
}

6

⬛ Memory is word addressed.
⬛ Words are int-sized.

7

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

8

⬛ Applications
▪ Can issue arbitrary sequence of malloc and free requests
▪ free request must be to a malloc’d block

⬛ Allocators
▪ Can’t control number or size of allocated blocks
▪ Must respond immediately to malloc requests

▪ i.e., can’t reorder or buffer requests
▪ Must allocate blocks from free memory

▪ i.e., can only place allocated blocks in free memory
▪ Must align blocks so they satisfy all alignment requirements

▪ 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
▪ Can manipulate and modify only free memory
▪ Can’t move the allocated blocks once they are malloc’d

▪ i.e., compaction is not allowed

9

⬛ malloc free
▪

⬛

▪

⬛

▪
▪

▪ malloc free

▪

10

⬛ malloc free
▪

⬛

▪ malloc(p) p
▪

⬛
▪

▪ sbrk

⬛
▪

11

▪
▪

12

⬛ For a given block, internal fragmentation occurs if payload is smaller than
block size

⬛ Caused by
▪ Overhead of maintaining heap data structures
▪ Padding for alignment purposes
▪ Explicit policy decisions

(e.g., to return a big block to satisfy a small request)
▪

⬛ Depends only on the pattern of previous requests
▪ Thus, easy to measure

13

⬛

⬛

▪

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

14

⬛

⬛

⬛

⬛

⬛
15

▪
▪

▪

p0 = malloc(4)

p0

free(p0)

16

⬛ Method 1: Implicit list using length—links all blocks

⬛ Method 2: Explicit list among the free blocks using pointers

⬛ Method 3: Segregated free list
▪ Different free lists for different size classes

⬛ Method 4: Blocks sorted by size
▪ Can use a balanced binary tree with pointers within each free block, and the length used as a

key

5

5

17

Implicit Free List

18

⬛ For each block we need both size and allocation status
▪ Could store this information in two words: wasteful!
▪

⬛ Standard trick
▪ If blocks are aligned, some low-order address bits are always 0
▪ Instead of storing an always-0 bit, use it as a allocated/free flag
▪ When reading size word, must mask out this bit

19

20*Assume 8-byte (2 word) align boundary.

⬛ First fit:
▪ Search list from beginning, choose first free block that fits
▪ Can take linear time in total number of blocks (allocated and free)
▪ In practice it can cause “splinters” at beginning of list

⬛ Next fit:
▪ Like first fit, but search list starting where previous search finished
▪ Should often be faster than first fit: avoids re-scanning unhelpful blocks
▪ Some research suggests that fragmentation is worse

⬛ Best fit:
▪ Search the list, choose the best free block: fits, with fewest bytes left over
▪ Keeps fragments small—usually improves memory utilization
▪ Will typically run slower than first fit

21

▪

addblock(p, 4)

22

▪

▪

free(p) p

malloc(5)

There is enough free space, but the allocator won’t be able to find it
(since it sees a block of 4 and block of 2, not a block of 5).

23

▪

▪

free(p) p

24

▪
▪
▪

25

26

27

28

What do we do, if the next block is free as well?
● Not possible if we always coalesce.

29

30

⬛ Placement policy:
▪ First-fit, next-fit, best-fit, etc.
▪ Trades off lower throughput for less fragmentation
▪ Interesting observation: segregated free lists (next lecture) approximate a best fit placement

policy without having to search entire free list

⬛ Splitting policy:
▪ When do we go ahead and split free blocks?
▪ How much internal fragmentation are we willing to tolerate?

⬛ Coalescing policy:
▪ Immediate coalescing: coalesce each time free is called
▪ Deferred coalescing: try to improve performance of free by deferring coalescing until

needed. Examples:
▪ Coalesce as you scan the free list for malloc
▪ Coalesce when the amount of external fragmentation reaches some threshold

31

⬛ Implementation: very simple

⬛ Allocate cost:
▪ linear time worst case

⬛ Free cost:
▪ constant time worst case
▪ even with coalescing

⬛ Memory usage:
▪ will depend on placement policy
▪ First-fit, next-fit or best-fit

⬛ Not used in practice for malloc/free because of linear-time allocation
▪ used in many special purpose applications

⬛ However, the concepts of splitting and boundary tag coalescing are general
to all allocators

32

Explicit Free List

33

⬛ Method 1: Implicit list using length—links all blocks

⬛ Method 2: Explicit list among the free blocks using pointers

⬛ Method 3: Segregated free list
▪ Different free lists for different size classes

⬛ Method 4: Blocks sorted by size
▪ Can use a balanced binary tree with pointers within each free block, and the length used as a

key

5

5

34

▪
▪

▪
▪

35

⬛

⬛

36

= malloc(…)
37

⬛

⬛

▪
▪
▪

⬛

▪

▪
▪

38

⬛

free()

39

⬛

free()

40

⬛

free()

41

⬛

free()

42

⬛

▪
▪

▪

▪
▪

⬛

▪

43

⬛ Method 1: Implicit list using length—links all blocks

⬛ Method 2: Explicit list among the free blocks using pointers

⬛ Method 3: Segregated free list
▪ Different free lists for different size classes

⬛ Method 4: Blocks sorted by size
▪ Can use a balanced tree with pointers within each free block, and the length used as a key

5

5

44

Segregated Free List

45

⬛

⬛

⬛

46

⬛

⬛
▪
▪

▪

▪
▪

⬛
▪ sbrk()
▪
▪

47

⬛

▪

⬛

▪
▪

▪
▪

▪

48

Garbage Collection

49

⬛

⬛

▪

⬛

▪

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

50

⬛

▪

▪

⬛
▪

▪
▪

int

51

⬛

▪
⬛

▪
⬛

▪
⬛

▪
▪

▪

⬛

52

Memory Related Bugs

53

⬛

⬛

⬛

⬛

⬛

⬛

⬛

54

int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

55

scanf

int val;

...

scanf("%d", val);

56

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 y[i] += A[i][j]*x[j];
 return y;
}

57

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

58

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(int));
}

59

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

60

int *search(int *p, int val) {

 while (*p && *p != val)
 p += sizeof(int);

 return p;
}

61

int * heap_delete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 heapify(binheap, *size, 0);
 return(packet);
}

62

int *foo () {
 int val;

 return &val;
}

63

x = malloc(N*sizeof(int));
 <manipulate x>
free(x);

y = malloc(M*sizeof(int));
 <manipulate y>
free(x);

64

x = malloc(N*sizeof(int));
 <manipulate x>
free(x);
 ...
y = malloc(M*sizeof(int));
for (i=0; i < M; i++)
 y[i] = x[i]++;

65

foo() {
 int *x = malloc(N*sizeof(int));
 ...
 return;
}

66

struct list {
 int val;
 struct list *next;
};

foo() {
 struct list *head = malloc(sizeof(struct list));
 head->val = 0;
 head->next = NULL;
 <create and manipulate the rest of the list>
 ...
 free(head);
 return;
}

67

⬛ gdb
▪
▪

⬛

▪
▪

⬛ valgrind
▪
▪
▪

▪

⬛

▪ setenv MALLOC_CHECK_ 3 (see the manual page for mallopt)

68

