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Shells
See https://en.wikipedia.org/wiki/Shell_(computing) 
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Note: you can view the 
hierarchy using the Linux 
pstree command 3

Shell Programs A shell is an application program that 
runs programs on behalf of the user.

▪ sh    Original Unix shell (Stephen 
Bourne, AT&T Bell Labs, 1977)

▪ csh/tcsh BSD Unix C shell
▪ bash “Bourne-Again” Shell 

(default Linux shell)

int main()
{
    char cmdline[MAXLINE]; /* command line */

    while (1) {
        /* read */
        printf("> ");
        Fgets(cmdline, MAXLINE, stdin);
        if (feof(stdin))
            exit(0);

        /* evaluate */
        eval(cmdline);
    }
}

Execution is a 
sequence of 
read/evaluate steps

shellex.c
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https://en.wikipedia.org/wiki/Shell_(computing)


Simple Shell eval Function
void eval(char *cmdline)
{
    char *argv[MAXARGS]; /* Argument list execve() */
    char buf[MAXLINE];   /* Holds modified command line */
    int bg;              /* Should the job run in bg or fg? */
    pid_t pid;           /* Process id */

    strcpy(buf, cmdline);
    bg = parseline(buf, argv);  //return indicator if it was terminated by & 
    if (argv[0] == NULL)
        return;   /* Ignore empty lines */

    if (!builtin_command(argv)) {  //run a program that corresponds to the command
        if ((pid = Fork()) == 0) {   /* Child runs user job */
            if (execve(argv[0], argv, environ) < 0) {
                printf("%s: Command not found.\n", argv[0]);
                exit(0);
            }
        }

        /* Parent waits for foreground job to terminate */
if (!bg) {

            int status;
            if (waitpid(pid, &status, 0) < 0)
                unix_error("waitbg: waitpid error");
        }
        else
            printf("%d %s", pid, cmdline);
    }
    return;
}

shellex.c
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Problem: we never reap the jobs 
that are run in the background. 

Solution: Exceptional control flow
■ The kernel will interrupt 

regular processing to alert us 
when a background process 
completes

■ In Unix, the alert mechanism 
is called a signal

Signals
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Signals

⬛ A signal is a small message that notifies a process that an event of some 
type has occurred in the system

▪ Similar to exceptions and interrupts
▪ Sent from the kernel (sometimes at the request of another process) to a process
▪ Signal type is identified by small integer ID’s (1-30)
▪ Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c 

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated
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Signal Concepts: Sending a Signal

⬛ Kernel sends (delivers) a signal to a destination process by updating 
some state in the context of the destination process

⬛ Kernel sends a signal for one of the following reasons:
▪ Kernel has detected a system event such as divide-by-zero (SIGFPE) or the termination of a 

child process (SIGCHLD)
▪ Another process has invoked the kill system call to explicitly request the kernel to send a 

signal to the destination process
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This is not the same as the kill 
signal. It is a system call used 
for sending signals (any signals, 
not just the SIGKILL). 



Signal Concepts: Receiving a Signal

⬛ A destination process receives a signal when it is forced by the kernel to 
react in some way to the delivery of the signal

⬛ Some possible ways to react:
▪ Ignore the signal (do nothing)
▪ Terminate the process (with optional core dump)
▪ Catch the signal by executing a user-level function called signal handler
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Signal Concepts: 
Pending and Blocked Signals

⬛ A signal is pending if sent but not yet received
▪ There can be at most one pending signal of any particular type
▪ Important: Signals are not queued

▪ If a process has a pending signal of type k, then subsequent signals of type k that are sent 
to that process are discarded

⬛ A process can block the receipt of certain signals
▪ Blocked signals can be delivered, but will not be received until the signal is unblocked

⬛ A pending signal is received at most once

⬛ Kernel maintains pending and blocked bit vectors in the context of each 
process

▪ pending: represents the set of pending signals
▪ Kernel sets bit k in pending when a signal of type k is delivered
▪ Kernel clears bit k in pending when a signal of type k is received 

▪ blocked: represents the set of blocked signals
▪ Can be set and cleared by using the sigprocmask function
▪ Also referred to as the signal mask.
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Sending Signals: Process Groups

⬛ Every process belongs to exactly one process group
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text for details) 11

Sending Signals with 
/bin/kill (or just kill) Program

⬛ kill program sends arbitrary signal to 
a process or process group

⬛ Examples
▪ kill –9 24818

Send SIGKILL to process 24818

▪ kill –9 –24817
Send SIGKILL to every process in 
process group 24817

linux> ./forks 16 
Child1: pid=24818 pgrp=24817 
Child2: pid=24819 pgrp=24817 
 
linux> ps 
  PID TTY          TIME CMD 
24788 pts/2    00:00:00 tcsh 
24818 pts/2    00:00:02 forks 
24819 pts/2    00:00:02 forks 
24820 pts/2    00:00:00 ps 
linux> /bin/kill -9 -24817 
linux> ps  
  PID TTY          TIME CMD 
24788 pts/2    00:00:00 tcsh 
24823 pts/2    00:00:00 ps 
linux> 
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Sending Signals with kill System Call

void fork12()
{
    pid_t pid[N];
    int i;
    int child_status;

    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0) {
            /* Child: Infinite Loop */
            while(1)
                ;
        }
    
    for (i = 0; i < N; i++) {
        printf("Killing process %d\n", pid[i]);
        kill(pid[i], SIGINT);
    }

    for (i = 0; i < N; i++) {
        pid_t wpid = wait(&child_status);
        if (WIFEXITED(child_status))
            printf("Child %d terminated with exit status %d\n",
                   wpid, WEXITSTATUS(child_status));
        else
            printf("Child %d terminated abnormally\n", wpid);
    }
}

forks.c
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Receiving Signals

⬛ Suppose kernel is returning from an exception handler and is ready to pass 
control to process p
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Receiving Signals

⬛ Suppose kernel is returning from an exception handler and is ready to 
pass control to process p

⬛ Kernel computes pnb = pending & ~blocked
▪ The set of pending nonblocked signals for process p 

⬛ If  (pnb == 0) 
▪ Pass control to next instruction in the logical flow for p

⬛ Else
▪ Choose least nonzero bit k in pnb and force process p to receive signal k
▪ The receipt of the signal triggers some action by p
▪ Repeat for all nonzero k in pnb
▪ Pass control to next instruction in logical flow for p
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Default Actions

⬛ Each signal type has a predefined default action, which is one of:

▪ The process terminates

▪ The process stops until restarted by a SIGCONT signal

▪ The process ignores the signal
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Installing Signal Handlers

⬛ The signal function modifies the default action associated with the receipt of 
signal signum:

handler_t *signal(int signum, handler_t *handler)

⬛ Different values for handler:

▪ SIG_IGN : ignore signals of type signum

▪ SIG_DFL : revert to the default action on receipt of signals of type signum

▪ Otherwise, handler is the address of a user-level signal handler
▪ Called when process receives signal of type signum
▪ Referred to as “installing” the handler
▪ Executing handler is called “catching” or “handling” the signal
▪ When the handler executes its return statement, control passes back to instruction in the 

control flow of the process that was interrupted by receipt of the signal
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Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{
    printf("So you think you can stop the bomb with ctrl-c, do you?\n");
    sleep(2);
    printf("Well...");
    fflush(stdout);
    sleep(1);
    printf("OK. :-)\n");
    exit(0);
}

int main()
{
    /* Install the SIGINT handler */
    if (signal(SIGINT, sigint_handler) == SIG_ERR)
        unix_error("signal error");

    /* Wait for the receipt of a signal */
    pause();

    return 0;
} sigint.c
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Nested Signal Handlers

⬛ Handlers can be interrupted by other handlers
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Blocking and Unblocking Signals
⬛ Implicit blocking mechanism

▪ Kernel blocks any pending signals of type currently being handled. 
▪ E.g., A SIGINT handler can’t be interrupted by another SIGINT (because only one signal of a 

given type is allowed)

⬛ Explicit blocking and unblocking mechanism
▪ sigprocmask  function

⬛ Supporting functions
▪ sigemptyset – Create empty set
▪ sigfillset – Add every signal number to set
▪ sigaddset – Add signal number to set
▪ sigdelset – Delete signal number from set
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    sigset_t mask, prev_mask;

    Sigemptyset(&mask); //create empty blocking mask
    Sigaddset(&mask, SIGINT); //add SIGINT to the mask 

    /* Block SIGINT and save previous blocked set */
    Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

        /* Code region that will not be interrupted by SIGINT */

    /* Restore previous blocked set, unblocking SIGINT */
    Sigprocmask(SIG_SETMASK, &prev_mask, NULL);



Safe Signal Handling

■ Handlers are tricky because they are concurrent with main program and 
share the same global data structures.
▪ Shared data structures can become corrupted.
▪ Misusing by assuming that signals are queued. 

■ Read about signals on your Linux system:

 man 7 signal

■ Some functions do not work well with signals  (like printf)

■ Signal handling is not portable between systems

■ Newer version of signal handlers is sigaction (see the book for more 
details) 
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⬛ Pending signals are not 
queued
▪ For each signal type, one bit 

indicates whether or not 
signal is pending…

▪ …thus at most one pending 
signal of any particular type. 

⬛  You can’t use signals to 
count events, such as 
children terminating.

int ccount = 0;
void child_handler(int sig) {
    int olderrno = errno;
    pid_t pid;
    if ((pid = wait(NULL)) < 0)
        Sio_error("wait error");
    ccount--;
    Sio_puts("Handler reaped child ");
    Sio_putl((long)pid);
    Sio_puts(" \n");
    sleep(1);
    errno = olderrno;
}

void fork14() {
    pid_t pid[N];
    int i;
    ccount = N;
    Signal(SIGCHLD, child_handler);

    for (i = 0; i < N; i++) {
        if ((pid[i] = Fork()) == 0) {
            Sleep(1);
            exit(0);  /* Child exits */
        }
    }
    while (ccount > 0) /* Parent spins */
        ;
}

> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

In-Correct Signal 
Handling
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Correct Signal Handling

⬛ Must wait for all terminated child processes
▪ Put  wait in a loop to reap all terminated children

void child_handler2(int sig)
{
    int olderrno = errno;
    pid_t pid;
    while ((pid = wait(NULL)) > 0) {
        ccount--;
        Sio_puts("Handler reaped child ");
        Sio_putl((long)pid);
        Sio_puts(" \n");
    }
    if (errno != ECHILD)
        Sio_error("wait error");
    errno = olderrno;
} > ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
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