
Exceptions, Processes
and Signals

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)

Mohamed Zahran (NYU)

Shells
See https://en.wikipedia.org/wiki/Shell_(computing)

2

Linux Process Hierarchy

Login
shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init
[1]

Login
shell

Child

… ……

Note: you can view the
hierarchy using the Linux
pstree command 3

Shell Programs A shell is an application program that
runs programs on behalf of the user.

▪ sh Original Unix shell (Stephen
Bourne, AT&T Bell Labs, 1977)

▪ csh/tcsh BSD Unix C shell
▪ bash “Bourne-Again” Shell

(default Linux shell)

int main()
{
 char cmdline[MAXLINE]; /* command line */

 while (1) {
 /* read */
 printf("> ");
 Fgets(cmdline, MAXLINE, stdin);
 if (feof(stdin))
 exit(0);

 /* evaluate */
 eval(cmdline);
 }
}

Execution is a
sequence of
read/evaluate steps

shellex.c
4

https://en.wikipedia.org/wiki/Shell_(computing)

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv); //return indicator if it was terminated by &
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) { //run a program that corresponds to the command
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitbg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
}

shellex.c
5

Problem: we never reap the jobs
that are run in the background.

Solution: Exceptional control flow
■ The kernel will interrupt

regular processing to alert us
when a background process
completes

■ In Unix, the alert mechanism
is called a signal

Signals

6

Signals

⬛ A signal is a small message that notifies a process that an event of some
type has occurred in the system

▪ Similar to exceptions and interrupts
▪ Sent from the kernel (sometimes at the request of another process) to a process
▪ Signal type is identified by small integer ID’s (1-30)
▪ Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

7

Signal Concepts: Sending a Signal

⬛ Kernel sends (delivers) a signal to a destination process by updating
some state in the context of the destination process

⬛ Kernel sends a signal for one of the following reasons:
▪ Kernel has detected a system event such as divide-by-zero (SIGFPE) or the termination of a

child process (SIGCHLD)
▪ Another process has invoked the kill system call to explicitly request the kernel to send a

signal to the destination process

8

This is not the same as the kill
signal. It is a system call used
for sending signals (any signals,
not just the SIGKILL).

Signal Concepts: Receiving a Signal

⬛ A destination process receives a signal when it is forced by the kernel to
react in some way to the delivery of the signal

⬛ Some possible ways to react:
▪ Ignore the signal (do nothing)
▪ Terminate the process (with optional core dump)
▪ Catch the signal by executing a user-level function called signal handler

9

Signal Concepts:
Pending and Blocked Signals

⬛ A signal is pending if sent but not yet received
▪ There can be at most one pending signal of any particular type
▪ Important: Signals are not queued

▪ If a process has a pending signal of type k, then subsequent signals of type k that are sent
to that process are discarded

⬛ A process can block the receipt of certain signals
▪ Blocked signals can be delivered, but will not be received until the signal is unblocked

⬛ A pending signal is received at most once

⬛ Kernel maintains pending and blocked bit vectors in the context of each
process

▪ pending: represents the set of pending signals
▪ Kernel sets bit k in pending when a signal of type k is delivered
▪ Kernel clears bit k in pending when a signal of type k is received

▪ blocked: represents the set of blocked signals
▪ Can be set and cleared by using the sigprocmask function
▪ Also referred to as the signal mask.

10

Sending Signals: Process Groups

⬛ Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process (see
text for details) 11

Sending Signals with
/bin/kill (or just kill) Program

⬛ kill program sends arbitrary signal to
a process or process group

⬛ Examples
▪ kill –9 24818

Send SIGKILL to process 24818

▪ kill –9 –24817
Send SIGKILL to every process in
process group 24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

12

Sending Signals with kill System Call

void fork12()
{
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 /* Child: Infinite Loop */
 while(1)
 ;
 }

 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }

 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

forks.c
13

Receiving Signals

⬛ Suppose kernel is returning from an exception handler and is ready to pass
control to process p

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

14

Receiving Signals

⬛ Suppose kernel is returning from an exception handler and is ready to
pass control to process p

⬛ Kernel computes pnb = pending & ~blocked
▪ The set of pending nonblocked signals for process p

⬛ If (pnb == 0)
▪ Pass control to next instruction in the logical flow for p

⬛ Else
▪ Choose least nonzero bit k in pnb and force process p to receive signal k
▪ The receipt of the signal triggers some action by p
▪ Repeat for all nonzero k in pnb
▪ Pass control to next instruction in logical flow for p

15

Default Actions

⬛ Each signal type has a predefined default action, which is one of:

▪ The process terminates

▪ The process stops until restarted by a SIGCONT signal

▪ The process ignores the signal

16

Installing Signal Handlers

⬛ The signal function modifies the default action associated with the receipt of
signal signum:

handler_t *signal(int signum, handler_t *handler)

⬛ Different values for handler:

▪ SIG_IGN : ignore signals of type signum

▪ SIG_DFL : revert to the default action on receipt of signals of type signum

▪ Otherwise, handler is the address of a user-level signal handler
▪ Called when process receives signal of type signum
▪ Referred to as “installing” the handler
▪ Executing handler is called “catching” or “handling” the signal
▪ When the handler executes its return statement, control passes back to instruction in the

control flow of the process that was interrupted by receipt of the signal

17

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{
 printf("So you think you can stop the bomb with ctrl-c, do you?\n");
 sleep(2);
 printf("Well...");
 fflush(stdout);
 sleep(1);
 printf("OK. :-)\n");
 exit(0);
}

int main()
{
 /* Install the SIGINT handler */
 if (signal(SIGINT, sigint_handler) == SIG_ERR)
 unix_error("signal error");

 /* Wait for the receipt of a signal */
 pause();

 return 0;
} sigint.c

18

Nested Signal Handlers

⬛ Handlers can be interrupted by other handlers

19

Blocking and Unblocking Signals
⬛ Implicit blocking mechanism

▪ Kernel blocks any pending signals of type currently being handled.
▪ E.g., A SIGINT handler can’t be interrupted by another SIGINT (because only one signal of a

given type is allowed)

⬛ Explicit blocking and unblocking mechanism
▪ sigprocmask function

⬛ Supporting functions
▪ sigemptyset – Create empty set
▪ sigfillset – Add every signal number to set
▪ sigaddset – Add signal number to set
▪ sigdelset – Delete signal number from set

20

 sigset_t mask, prev_mask;

 Sigemptyset(&mask); //create empty blocking mask
 Sigaddset(&mask, SIGINT); //add SIGINT to the mask

 /* Block SIGINT and save previous blocked set */
 Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */
 Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

Safe Signal Handling

■ Handlers are tricky because they are concurrent with main program and
share the same global data structures.
▪ Shared data structures can become corrupted.
▪ Misusing by assuming that signals are queued.

■ Read about signals on your Linux system:

 man 7 signal

■ Some functions do not work well with signals (like printf)

■ Signal handling is not portable between systems

■ Newer version of signal handlers is sigaction (see the book for more
details)

21

⬛ Pending signals are not
queued
▪ For each signal type, one bit

indicates whether or not
signal is pending…

▪ …thus at most one pending
signal of any particular type.

⬛ You can’t use signals to
count events, such as
children terminating.

int ccount = 0;
void child_handler(int sig) {
 int olderrno = errno;
 pid_t pid;
 if ((pid = wait(NULL)) < 0)
 Sio_error("wait error");
 ccount--;
 Sio_puts("Handler reaped child ");
 Sio_putl((long)pid);
 Sio_puts(" \n");
 sleep(1);
 errno = olderrno;
}

void fork14() {
 pid_t pid[N];
 int i;
 ccount = N;
 Signal(SIGCHLD, child_handler);

 for (i = 0; i < N; i++) {
 if ((pid[i] = Fork()) == 0) {
 Sleep(1);
 exit(0); /* Child exits */
 }
 }
 while (ccount > 0) /* Parent spins */
 ;
}

> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

In-Correct Signal
Handling

22

Correct Signal Handling

⬛ Must wait for all terminated child processes
▪ Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{
 int olderrno = errno;
 pid_t pid;
 while ((pid = wait(NULL)) > 0) {
 ccount--;
 Sio_puts("Handler reaped child ");
 Sio_putl((long)pid);
 Sio_puts(" \n");
 }
 if (errno != ECHILD)
 Sio_error("wait error");
 errno = olderrno;
} > ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250

23

