Exceptions, Processes
and Signals

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)
Mohamed Zahran (NYU)

Control Flow

W Processors do only one thing:
= From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of
instructions, one at a time
= This sequence is the CPU's control flow (or flow of control)

Physical control flow

<startup>
inst,
. inst
Time .2
inst
3
instn
<shutdown>

Altering the Control Flow

B Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Calland return
React to changes in program state - both triggered by the program itself

W Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
= Instruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

W System needs mechanisms for exceptional control flow

Exceptional Control Flow

Exists at all levels of a computer system

Low level mechanisms
= 1.Exceptions
= Change in control flow in response to a system event
(i.e., change in system state)
= Implemented using combination of hardware and OS software

M Higher level mechanisms
= 2.Process context switch
= Implemented by OS software and hardware timer
= 3.Signals
= Implemented by OS software
= 4.Nonlocal jumps: setjmp() and longjmp()
= Implemented by C runtime library

Exceptions

Exceptions

H An exception is a transfer of control to the OS kernel in response to some

event (i.e., change in processor state)

= Kernel is the memory-resident part of the OS
= Examples of events: Divide by 0, arithmetic overflow, page fault, /O request completes,

typing Ctrl-C
User code Kernel code
Event —>» I_currentl Exception >
I_next Exception processing

by exception handler

One of the following happens:
e Return to I_current
e Return to I_next
e Abort

Exception Tables

Exception
numbers

B Eachtypeofeventhasa
unique exception number k

B k=indexinto exception

Code for
exception handler 0

table
(a.k.a. interrupt vector)

‘ W Handlerkis called each time

4
4
r—

Code for
exception handler 2

N = O

Exception Code for
Table /" exception handler 1

exception k occurs

n-1

A

Code for

exception handler n-1

Asynchronous Exceptions (Interrupts)

B Caused by events external to the processor
= Indicated by setting the processor’s interrupt pin
Handler returns to “next” instruction

B Examples:

= Timerinterrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs

= 1/Ointerrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Synchronous Exceptions

Il Caused by events that occur as a result of executing an instruction:
= Traps
= Intentional
= Examples: system calls (requests for services from the kernel)
= Returns control to “next” instruction

= Faults
= Unintentional but possibly recoverable
= Examples: page faults (recoverable), protection faults (unrecoverable), Floating point
exceptions
= Either re-executes faulting (“current”) instruction or aborts

= Aborts
= Unintentional and unrecoverable
= Examples: illegal instruction, parity error (data error/inconsistency detected), machine
check (hardware issue detected)
= Aborts current program

System Calls

l Each x86-64 system call has a unique ID number (assigned by the
operating system)

Hl Examples:
Number Name Description
0 read Read file
1 write Write file
2 open Open file
3 close Close file
4 stat Get info about file
57 fork Create process
59 execve Execute a program
60 _exit Terminate process
62 kill Send signal to process

System Call Example: Opening File

m Usercalls: open (filename, options)

m Calls__open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: of o5 syscall # Return value in %rax
e5dse: 48 3d 01 fo ff ff cmp $oxfffffffffffffool,%rax

e5dfa: c3 retq
User code Kernel code B Srax contains syscall number
M Otherargumentsin $rdi, $rsi,
ascall l Exception ~ $rdx, 5rl0, $r8, $r9
@ = B Returnvaluein $Srax
‘\l Openfile g Negative value is an error
Returns

corresponding to negative errno

Fault Example: Page Fault

int a[1000];
m User writes to memory location main ()

m That portion (page) of user’s memory {

is currently on disk }

a[500] = 13;

’ 80483b7: <c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10

User code Kernel code
1 Exception: page fault _

‘N Copy page from
Return and disk to memory

re-execute movl

movl

Fault Example: Invalid Memory Reference

m Sends SIGSEGV signal to user process intial1000]}
main ()
m User process exits with “segmentation fault” {

a[5000] = 13;
}

l 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

>

movl

Detect invalid address

'——————> Signal process

Processes

Processes

B A process is an instance of a running program.

= One of the most profound ideas in computer science
= Not the same as “program” or “processor”

i . . Memory
W Process provides each program with two key abstractions:
- Logical control flow Stack
= Each program seems to have exclusive use of the CPU Heap
= Provided by kernel mechanism called context switching Data
Code
«» Private address space

= Each program seems to have exclusive use of main memory. CPU

= Provided by kernel mechanism called virtual memory
egisters

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data L] Data
Code Code Code

CPU CPU CPU
| Registers | | Registers |

W Computer runs many processes simultaneously
= Applications for one or more users

= Web browsers, email clients, editors, compilers, ...
= Background tasks

= Monitoring network & 1/0 devices

Multiprocessing Example

asia@a:

asia@asia: ~/Data/NYU_Te... X | asia@asia: ~ X | asia@asia: ~/Data/NYU_Te... X asia@asia: ~/Data/NYU_ Te... X

top - 20:41:44 up 10 days, 11:33, 5 users, Lload average: 8.66, 0.85, 0.87
Tasks: 326 total, 3 running, 323 sleeping, @ stopped, O zombie

%Cpu(s): 7.7 us, 3.8 sy, ©.1ni, 89.2 id, 0.0 wa, 0.8 hi, 0.1si, 8.0 st
KiB Mem: 16386848 total, 15656876 used, 729472 free, 861248 buffers

KiB Swap: 34815996 total, 48164 used, 34767832 free. 6291524 cached Men

Multiprocessing: The One-Core Reality

Memory
Stack Stack Stack
Heap : Heap Heap
Data : Data ooo Data
Code : Code Code
Saved : Saved Saved
registers | : registers registers

CPU

B Single processor executes multiple processes

concurrently
= Process executions interleaved (multitasking)
Address spaces managed by virtual memory system (later in
course)
Register values for non-executing processes saved in memory

R R
5543 asia 20 0 1636780 357876 39500 S5 31.8 2.2 2B8:20.55 chrome
27392 asia 20 @ 026812 204128 107680 S 21.9 1.2 10:16.53 chrome
1411 root 20 @ 678100 283832 75196 R 15.6 1.7 91:34.89 Xorg
3155 asia 20 ® 622524 192826 94432 § 13.9 1.2 chrome
2414 asia 20 0 2046324 571996 59864 S 12.6 3.5 compiz
3682 asia 20 0 1648580 374544 105060 S 10.0 2.3 chrone
27762 asia 20 © 1406936 505220 B678B8 S 3.6 3% chrome
2330 asia 20 @ 653084 9776 6780 S 2.7 0.1 pulseaudio
2434 asia 20 ® 592468 155152 33232 S 2.3 8.9 skype
5238 asia 20 0 1576188 318424 83220 S 2.3 1.9 chrome
2167 asia 20 @ 382700 39676 5752 5 1.3 0.2 ibus-daemon
5578 asia 20 0 652112 34648 24128 S 1.3 0.2 1:39.11 gnome-terninal
2242 asia 20 0 602420 105168 25008 S 1.0 8.6 31:14.12 unity-panel-ser
28270 asia 20 0 627668 27708 22352 S 1.6 0.2 0:80.22 gnome-screensho
7 root 20 o 0] @R 0.7 0.0 3:01.81 rcu_sched
2196 asia 20 © 489936 41008 20220 S 0.7 0.3 .25 ibus-ui-gtk3
2439 asia 20 @ 413000 19064 15712 S 0.7 0.1 .79 indicator-multi
33 root rt] e] es 8.3 0.8 33 migration/@
96 root 39 19]] 8 s 8.3 0.0 93 khugepaged
2142 asia 20 [} 41068 4272 2172 S 8.3 0.8 .68 dbus-daemon
2171 asia 20 @ 549564 30360 21284 S 0.3 0.2 .65 banfdaemon
2233 asia 20 0 B44188 138004 42948 S 8.3 0.8 .73 hud-service
19798 asia 20 ©® 1283868 45788 38777 ° 7.3 9.3 TI0L.5E ¢ vt
Zas ot 20 0 o .~ JA Running program top on my Ubuntu desktop
27654 asia 20 @ 1737088 255052 6
28097 asia 20 @ 29284 3176 2 = System‘has 326 processes, 3 are running, 323 are sleeping
28393 asia 20 0 1332268 1221680 6F H
1 root 20 o 3390 4068 2 = Identified by Process ID (PID)
2 root 20 @ 0 [17
3 root 20 1]] L]
Iti ing: Th li
.
Multiprocessing: The One-Core Reality
Stack : Stack Stack
Heap : Heap Heap
Data . Data 000 Data
Code : Code Code
Saved : Saved Saved
registers ; registers registers
||
Registers
I Save current registers in memory
19

Multiprocessing: The One-Core Reality

Memory
Stack : Stack : Stack
Heap : Heap : Heap
Data : Data 5 ooo Data
Code : [Code | : Code
Saved . | Saved | : Saved
registers . |registers | : registers

CPU

B Schedule next process for execution

Multiprocessing: The One-Core Reality

M Load saved registers and switch address space (context switch)

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers regi?t[ers registers
CPU

z

Multiprocessing: The Multi-Core Reality

Memory

Stack : Stack Stack

Heap % Heap : Heap

Data = Data © ooo Data

Code ot Code : Code

Saved | :: [Saved | : Saved

registers | : . |registers | : registers
: : Il Multicore processors

: CPU . CPU = Multiple CPUs on single chip
l Registers I e l Registers I : + Share main memory (and some of the caches)
: : : = Each can execute a separate process

= Scheduling of processors onto cores
done by kernel
= (But we still will have more processes running
than there are cores on a machine.)

Concurrent Processes

Each process is a logical control flow.
Two processes run concurrently (are concurrent) if their flows overlap in

time

Otherwise, they are sequential
Examples (running on a single core):

= Concurrent: A&B,A&C
= Sequential:B&C

Time

Process A

Process C

User View of Concurrent Processes

B Control flows for concurrent processes are physically disjoint in time

B However, we can think of concurrent processes as running in parallel with
each other

Process A Process B Process C

Time

Context Switching

Time

Processes are managed by a shared chunk of memory-resident OS code
called the kernel

= Important: the kernel is not a separate process, but rather runs as part of some existing
process.

Control flow passes from one process to another via a context switch

Process A Process B

user code

kernel code } context switch
user code
kernel code } context switch

user code

Process Control

(ways of creating, manipulating and terminating processes)

System Call Error Handling

B On error, Linux system-level functions typically return -1 and set global
variable errno to indicate cause.
B Hard and fast rule:
= You must check the return status of every system-level function
= Only exception is the handful of functions that return void
B Example:
if ((pid = fork()) < 0) {
fprintf (stderr, "fork error: %s\n", strerror(errno));
exit(0) ;
}

Error-reporting functions

B Cansimplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

{
fprintf (stderr, "%s: %s\n", msg, strerror(errno));
exit(0);

if ((pid = fork()) < 0)
unix_error ("fork error");

Error-handling Wrappers

l We simplify the code we present to you even further by using Stevens-style
error-handling wrappers:

pid_t Fork(void)
{
pid_t pid;
if ((pid = fork()) < 0)
unix error ("Fork error");
return pid;
}

Used in the textbook. You can use
those wrappers in your own code

1 = . (assuming you include the book's
pid Fork() ; code and header files) and on the
exams. If you do not use the wrapper,
you must check for errors.

Obtaining Process IDs

B Each process has a unique identifier known as a process id and abbreviated
as PID

W pid_t getpid(void)
= Returns PID of current process

Bl pid_t getppid(void)
= Returns PID of parent process
= The parent process is the process that created the current process.

asia@zeppo: ~/Data/NYU_Teaching/esci201/source_code/old/lecture0s

46:36 up 10 days, 12:28, 1 user, load average: 0.29, 0.36, 0.31
9 total, 1 running, 385 sleeping, © stopped, @ zombie
cpu(s): 1.3 us, 0.65y, 0.0 ni, 97.4id, 0.7wa, 0.0 hi, 0.8 si, 0.8 st
KiB Mem : 16333260 total, 3103736 free, 5064260 used, 8165244 buff/cache
KiB Swap: 16677584 total, 16673184 free, 4760 used. 9665860 avail Mem
I VIRT R
6 719316 1495 9

2131 asia 20 6 1621248 2635 i3l iio
15168 asia 20 0 624464 32468 27004 S 1.0 0.2 .20 gnome-screensho
2269 asia 20 @ 586724 23712 19568 S 0.7 0.1 .42 indicator-multi

7 root 2 0 0.3 0.8 .89 rcu_sched
1144 root 20 © 167684 8832 8080 S 0.3 0.1 thermald
2036 asia 20 @ 722328152132 27049 S 0.3 0.9 uni ty-panel-ser
2114 asia 20 0 396068 12580 109245 0.3 0.1 indicator-appli
2256 asia 20 0 545848 39900 26080 S 0.3 0.2 .74 indicator-cpufr
2270 asia 20 0 1546648 186368 74584 S 0.3 1.1 .18 slack
8668 root 2 o) o 05 0.3 0.0 .09 kworker/5:1
14126 root 20 0) [65 0.3 0.0 .06 kworker/0:0
14493 root 2 o 0 0 65 0.3 0.0 0:00.07 kworker/ul6:2

1 root 20 © 185600 6204 39445 0.0 0.0 0:41.38 systend

2 root 2 0] [65 0.0 8.0 0:00.36 kihreadd

3 root 2 o [0 65 0.0 0.6 0:02.09 ksoftirgd/e

5 root 0 -20) o 65 0.0 0.0 .00 kworker/:0H

8 root 2 0) 0 65 0.0 8.0 6:00.00 rcu bh

29
o . o
Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as being in one of
three states
Hl Running
= Process is either executing, or waiting to be executed and will eventually be scheduled (i.e.,
chosen to execute) by the kernel
Hl Stopped
= Process execution is suspended and will not be scheduled until further notice (next lecture
when we study signals)
Il Terminated
= Process is stopped permanently
31

Terminating Processes

B Process becomes terminated for one of three reasons:
= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= Calling the exit function

B void exit(int status)
= Terminates with an exit status of status
= Convention: normal return status is 0, nonzero on error

= Another way to explicitly set the exit status is to return an integer value from the main routine

B exit(..) functionis called once but never returns

32

Creating Processes

Il Parent process creates a new running child process by
calling fork

B int fork(void)
= Returns 0 to the child process, child's PID to parent process
= Child is almost identical to parent:
Child gets an identical (but separate) copy of the parent's virtual address space (this
includes all the data on the stack and on the heap, and all the instructions) .
Child gets identical copies of the parent’s open file descriptors
Child has a different PID than the parent

B fork(...) functionisinteresting (and often confusing) because
it is called once but returns twice

fork Example

Modeling fork with Process Graphs

W Aprocess graph is a useful tool for capturing the partial ordering of
statements in a concurrent program:
= Each vertex is the execution of a statement
= a->b means a happens before b
= Edges can be labeled with current value of variables
= printfvertices can be labeled with output
= Each graph begins with a vertex with no in-edges

child: x=2 3
Child
printf exit
x== parent: x=0
Parent
main fork printf exit

: = Il Call once, return twice
int main()
{ .
pid t pid; Il Concurrent exc_acutlon _
S oo g = Can'’t predict execution
order of parent and child
pid = Fork();
if (pid == 0) { /* Child */ Il Duplicate but separate address
printf("child : x=%d\n", ++x); space
exit(0); = x has a value of 1 when fork
} returns in parent and child
/* Parent */ . sub§equent changes to x
printe("parent: x=%d\n!, --x); are independent
exit(0) ;
} Ml Shared open files
= stdout is the same in both
linux> ./fork parent and child
parent: x=0
child : x=2
34
Process Graph Example
int main()
{
pid_t pid;
int x = 1;
pid = Fork(); chlldf x=2 . Child
- . : . printf exit
if (pid == 0) { /* Child */
printf ("child : x=%d\n", ++x); x== parent: x=0 Parent
exit (0); main fork printf exit

}

/* Parent */
printf ("parent: x=%d\n", --x);
exit(0) ;

36

Interpreting Process Graphs

m Original graph:

child: x=2
>

printf
x== parent: x=0
main fork printf

m Re-labeled graph:

e

exit

exit

Feasible total ordering:

ne
&
[}

e

fork Example: Two consecutive forks

Bye
e
void fork2 () printf
{ L1 e
printf ("LO\n") ; printf fork printf
fork() ; Bye
printf ("L1\n") ; prfhtf
fork() ;
printf ("Bye\n") ; Lo L Re
} pr;ntf fork pri;tf fork printf

Feasible output:

LO
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
LO

Bye

L1

Bye

L1

Bye

Bye

38

fork Example: Nested forks in parent

void fork4 ()
{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ;
if (fork() !'= 0) {
printf ("L2\n") ;
}
}
printf ("Bye\n") ;

Bxe Bye
printf printf
Lo Ll L2 Bye

pr{htf fork printf fork printf printf

Feasible output:
Lo

L1

Bye

Bye

L2

Bye

Infeasible output:
Lo

Bye

L1

Bye

Bye

L2

fork Example: Nested £orks in children

void fork5()
{
printf ("LO\n") ;
if (fork() == 0) {
printf ("L1\n") ;
if (fork() == 0) {
printf ("L2\n") ;
}
}
printf ("Bye\n") ;

Ll

L2 Bye
. gy
printf printf

Bye

ry
printf
Lo Bye

r—>9—>0
printf fork printf

Feasible output:
Lo

Bye

L1

L2

Bye

Bye

fork printf

Infeasible output:
Lo

Bye

L1

Bye

Bye

L2

Reaping Child Processes

B Idea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead

Il Reaping

Performed by parent on terminated child (using wait or waitpid)

Parent is given exit status information (it is notified that the child process terminated and, by
receiving the exit status, it acknowledges the termination)

Kernel then deletes zombie child process

WM What if parent doesn’t reap?
= If any parent terminates without reaping a child, then the orphaned child will be reaped by init
process (pid == 1)
= So, only need explicit reaping in long-running processes
= e.g., shells and servers
= (although you should be a good citizen and collect your zombies if possible)

Zombie void fork7() {

if (fork() == 0) {

/* Child */
Exa m ple printf ("Terminating Child, PID = %d\n", getpid());

exit(0);
} else {
printf ("Running Parent, PID = %d\n", getpid());
while (1)
; /* Infinite loop */

linux> ./forks 7 &

[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD . .
6585 ttypd e, B kill command terminates a
6639 ttyp9 00:00:03 forks process (we cannot use
6640 ttyp9 00:00:00 forks <defunct> Ctrl+C) when the process

CEe Eppd) O0sE0sey ps runs in a background
linux> kill 6639

ps shows child process as
“defunct” (i.e., a zombie)

[1] Terminated - .
linux> ps <€ M Killing parent allows child to
PID TTY TIME CMD be reaped by init
6585 ttyp9 00:00:00 tcsh o Hasto kill the parent
6642 ttyp9 00:00:00 ps o Cannot kill the zombie process 42

void fork8 ()
{

if (fork() == 0) {
. . /* Child */
Non-terminating prints ("Running Child, PID = td\a",
. etpid £
Child Example e)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid());
exit (0) ;
}
}
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps B Child process still active even

PID TTY TIME CMD

6585 ttyp9 00:00:00 tecsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676 \

linux> ps B Mustkill the child process explicitly,
PID TTY TIME CMD . - .-
6585 ttypo 00:00:00 tesh or else will keep running indefinitely

6678 ttyp9 00:00:00 ps 43

though the parent process has
terminated

wait: Synchronizing with Children

B Parent reaps a child by calling the wait function

B int wait(int *child status)
= suspends current process until one of its children terminates

= return value is the pid of the child process that terminated

» ifchild status != NULL, then the integer it points to will be set to a
value that indicates reason the child terminated and the exit status:
= checked using macros defined inwait.h
- WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED
— see textbook for details

wait: Synchronizing with Children

void fork9() {
int child_status;
if (fork() == @) { HC exit
printf("HC: hello from child\n"); printf sleep
sleep(5);
exit(0); or
} else.{ o o HP Bye
printf("HP: hello from parent\n"); Py 3 °
wait(&child_status); fork printf wait printf
printf("CT: child has terminated\n");
}
printf("Bye\n");
}
Feasible output: Feasible output: Infeasible output: Infeasible output:
HP HC HP HC
HC HP cT Bye
CcT cT Bye cT
Bye Bye HC HP

Another wait Example

M If multiple children completed, will take in arbitrary order
M Canuse macros WIFEXITED and WEXITSTATUS to get information about exit
status

void forklO0() {
pid_t pid[N];
int i, child status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status);
if (WIFEXITED (child_ status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid) ;

execve: Loading and Running Programs

B int execve(char *filename, char *argv[], char *envp[])

W Loadsandrunsin the current process:
= Executable file filename
= Can be object file or script file beginning with # ! interpreter
(e.g., #!/bin/bash)
= ...with argument list argv
= By convention argv [0]==filename
= ...and environment variable list envp
= “name=value” strings (e.g., USER=droh)
= getenv, putenv, printenv

B Overwrites code, data, and stack
= Retains PID, open files and signal context
= (the current process is gone, it is now running different program)

W Called once and never returns
= ...exceptif thereis an error

Structure of Nullterminated Bottom of stack
environment variable strings

the stack when
d new program

Null-terminated
command-line arg strings

Starts § envp[n] == NULL

3 envp[n-1] environ
_(global var)
| envp [0] ¢l
argv[argc] = NULL 1 envp
§ argv[argc-1] (in $rdx)

(ir?];?cZi) ,,,,,,, B argv[0]

- . Stack frame for .
(in $rdi) libc start main Top of stack

Future stack frame for

execve Example

m Executes "/bin/ls -1t /usr/include" in child process
using current environment:

myargv[argc] = NULL

(argc == 3) EEe 2] —> "/usr/include"
myargv([1] > "_1t"
myargv —> myargv (0] —> "/bin/1ls"
envp[n] = NULL
envp [n-1] ——> "PWD=/usr/droh"
environ envp (0] —> "USER=droh"
if ((pid = Fork()) == 0) { /* Child runs program */

if (execve (myargv[0], myargv, environ) < 0) {
printf ("%s: Command not found.\n", myargv[0]);
exit(1);

Summary

Il Exceptions

Events that require nonstandard control
flow

Generated externally (interrupts) or
internally (traps and faults)

Il Processes

= Atany given time, system has multiple

active processes

= Only one can execute at a time on a
single core, though
Each process appears to have total
control of
processor + private memory space

Spawning processes
= Call fork
= One call, two returns

Process completion
= Callexit
= One call, no return

Reaping and waiting for
processes
= Callwait orwaitpid

Loading and running programs
= Call execve (or variant)
= One call, (normally) no return

