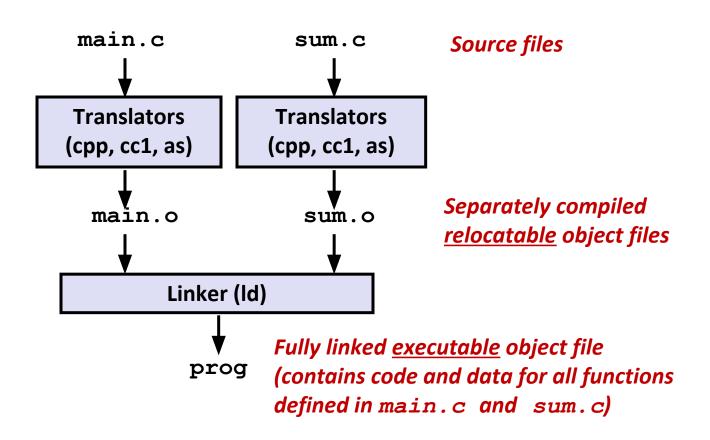
Linking

Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from Randal E. Bryant and David R. O'Hallaron (CMU) Mohamed Zahran (NYU)

Example C Program


```
int sum(int *a, int n);
int array[2] = {1, 2};
int main()
{
   int val = sum(array, 2);
   return val;
}
```

```
int sum(int *a, int n)
{
   int i, s = 0;

   for (i = 0; i < n; i++) {
       s += a[i];
   }
   return s;
}</pre>
```

Static Linking

- Programs are translated and linked using a compiler driver:
 - linux> gcc -Og -o prog main.c sum.c
 - linux> ./prog

Why Linkers?

Reason 1: Modularity

- Program can be written as a collection of smaller source files, rather than one monolithic mass.
- Can build libraries of common functions (more on this later)
 - e.g., Math library, standard C library

Reason 2: **Efficiency**

- Time: Separate compilation
 - Change one source file, compile, and then relink.
 - No need to recompile other source files.
- Space: Libraries
 - Common functions can be aggregated into a single file...
 - Yet executable files and running memory images contain only code for the functions they actually use.

What Do Linkers Do?

Step 1: Symbol resolution

• Programs define and reference symbols (global variables and functions):

```
void swap() {...} /* define symbol swap */
swap(); /* reference symbol swap */
int *xp = &x; /* define symbol xp, reference x */
```

- Symbol definitions are stored in object file (by assembler) in symbol table.
 - Symbol table is an array of structs
 - Each entry includes name, size, and location of symbol.
- During symbol resolution step, the linker associates each symbol reference with exactly one symbol definition.

What Do Linkers Do? (cont)

Step 2: **Relocation**

- Merges separate code and data sections into single sections
- Relocates symbols from their relative locations in the .o files to their final absolute memory locations in the executable.
- Updates all references to these symbols to reflect their new positions.

Let's look at these two steps in more detail....

Three Kinds of Object Files (Modules)

Relocatable object file (.o file)

- Contains code and data in a form that can be combined with other relocatable object files to form executable object file.
 - Each .o file is produced from exactly one source (.c) file

Executable object file (a.out file)

Contains code and data in a form that can be copied directly into memory and then executed.

Shared object file (.so file)

- Special type of relocatable object file that can be loaded into memory and linked dynamically, at either load time or run-time.
- Called Dynamic Link Libraries (DLLs) by Windows

Executable and Linkable Format (ELF)

- Standard binary format for object files
- One unified format for
 - Relocatable object files (.o),
 - Executable object files (a.out)
 - Shared object files (.so)
- Generic name: ELF binaries
- Use readelf to access some information about the object files

ELF Object File Format

- Elf header
 - Word size, byte ordering, file type (.o, exec, .so), machine type, etc.
- Segment header table
 - Page size, virtual addresses memory segments (sections), segment sizes.
- .text section
 - Code
- .rodata section
 - Read only data: jump tables, ...
- . data section
 - Initialized global variables
- .bss section
 - Uninitialized global variables
 - "Block Started by Symbol"
 - "Better Save Space"
 - Has section header but occupies no space

ELF header
Segment header table (required for executables)
. text section
.rodata section
. data section
.bss section
.symtab section
.rel.txt section
.rel.data section
.debug section
Section header table

ELF Object File Format (cont.)

- . symtab section
 - Symbol table
 - Procedure and static variable names
 - Section names and locations
 - .rel.text section
 - Relocation info for .text section
 - Addresses of instructions that will need to be modified in the executable
 - Instructions for modifying.
- rel.data section
 - Relocation info for .data section
 - Addresses of pointer data that will need to be modified in the merged executable
- . **debug** section
 - Info for symbolic debugging (gcc -g)
- Section header table
 - Offsets and sizes of each section

ELF header
Segment header table (required for executables)
. text section
.rodata section
. data section
.bss section
.symtab section
.rel.txt section
.rel.data section
. debug section
Section header table

Linker Symbols

Global symbols

- Symbols defined by module m that can be referenced by other modules.
- E.g.: non-static C functions and non-static global variables.

External symbols

Global symbols that are referenced by module m but defined by some other module.

Local symbols

- Symbols that are defined and referenced exclusively by module m.
- E.g.: C functions and global variables defined with the static attribute.
- Local linker symbols are not local program variables

Step 1: Symbol Resolution

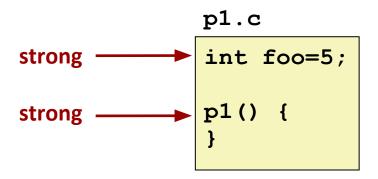
```
Referencing
                             a global...
              ...that's defined
              here
int sum(int /a, int n);
                                       int sum(int *a, int n)
                                       {
                                            int i, s = 0;
int array[2] = {1, 2};
                                            for (i = 0); i < n; i++) {
int main()
                                                s += a[i];
     iht val = sum(array, 2);
     return val;
                                            return s;
}
                           main.c
                                                                    sum.c
Defining
a global
                         Referencing
                                                          Linker knows
                          a global...
         Linker knows
                                                        nothing of i or s
        nothing of val
                             ...that's defined
```

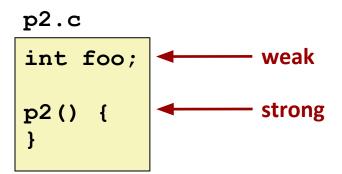
horo

Local Symbols

- Local non-static C variables vs. local static C variables
 - local non-static C variables: stored on the stack
 - local static C variables: stored in either .bss, or .data

```
int f()
{
    static int x = 0;
    return x;
}


int g()
{
    static int x = 1;
    return x;
}
```


Compiler allocates space in .data for each definition of x

Creates local symbols in the symbol table with unique names, e.g., $x \cdot 1$ and $x \cdot 2$.

How Linker Resolves Duplicate Symbol Definitions

- Program symbols are either strong or weak
 - **Strong**: procedures and initialized globals
 - Weak: uninitialized globals

Linker's Symbol Rules

- Rule 1: Multiple strong symbols are not allowed
 - Each item can be defined only once
 - Otherwise: Linker error
- Rule 2: Given a strong symbol and multiple weak symbols, choose the strong symbol
 - References to the weak symbol resolve to the strong symbol
- Rule 3: If there are multiple weak symbols, pick an arbitrary one
 - Can override this with gcc -fno-common

Linker Puzzles

```
int x;
p1() {}
```

Link time error: two strong symbols (p1)

```
int x;
p1() {}
```

References to **x** will refer to the same uninitialized int. Is this what you really want?

```
int x;
int y;
p1() {}
```

Writes to **x** in **p2** might overwrite **y**! Evil!

```
int x=7;
int y=5;
p1() {}
```

Writes to **x** in **p2** will overwrite **y**! Nasty!

References to **x** will refer to the same initialized variable.

Nightmare scenario: two identical weak structs, compiled by different compilers with different alignment rules.

```
p2.c
```

Output:

```
p2: x= 238123739, y = 5
main: x = 3.140000
p2: x= 1374389535, y = 1074339512
```

p1.c

```
#include <stdio.h>
double x;

void p2 ( );
int main () {
    p2();
    x = 3.14;
    printf ("main: x = %f \n", x ) ;
    p2();
    return 0;
}
```

- Compile p1 using gcc -c p1.c
- Compile p2 using gcc -c p2.c
- Combine the two object codes into an executable file using

```
gcc p1.o p2.o -o p
```

You will see a warning from the linker:

```
/usr/bin/ld: Warning: alignment 4 of symbol `x' in p2.o is smaller than 8 in p1.o
/usr/bin/ld: Warning: size of symbol `x' changed from 8 in p1.o to 4 in p2.o
```

Global Variables

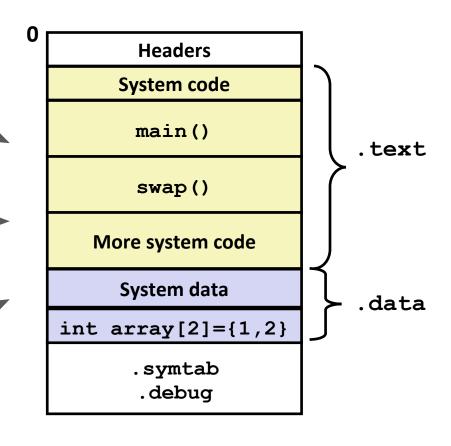
- Avoid if you can!
- Otherwise
 - Use static if you can
 - Initialize if you define a global variable
 - Use extern if you reference an external global variable

Step 2: Relocation

Relocatable Object Files

System code .text .data

main.o


main() .text .data

int array[2]={1,2} .data

sum.o

sum() .text

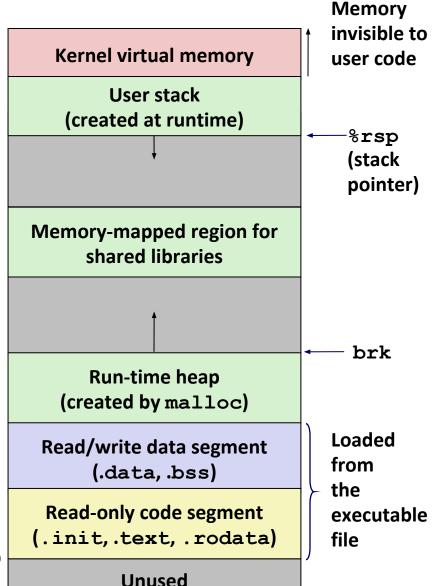
Executable Object File

Relocation Entries

```
int array[2] = {1, 2};
int main()
{
   int val = sum(array, 2);
   return val;
}
```

```
0000000000000000 <main>:
  0: 48 83 ec 08
                           sub $0x8,%rsp
  4: be 02 00 00 00
                           mov $0x2,%esi
  9: bf 00 00 00 00
                                 mov
                    a: R X86 64 32 array
                                              # Relocation entry
      e8 00 00 00 00
  e:
                           callq 13 < main + 0x13 > \# sum()
                    f: R X86 64 PC32 sum-0x4 # Relocation entry
 13: 48 83 c4 08
                                 $0x8,%rsp
                           add
 17:
      c3
                           retq
```

Relocated .text section


```
00000000004004d0 <main>:
 4004d0:
                48 83 ec 08
                                  sub
                                         $0x8,%rsp
               be 02 00 00 00
 4004d4:
                                         $0x2,%esi
                                  mov
 4004d9:
               bf 18 10 60 00
                                         $0x601018,%edi
                                                        # %edi = &array
                                  mov
 4004de:
               e8 05 00 00 00
                                         4004e8 <sum>
                                                         # sum()
                                  callq
 4004e3:
               48 83 c4 08
                                  add
                                         $0x8,%rsp
 4004e7:
                c3
                                  retq
00000000004004e8 <sum>:
 4004e8:
               b8 00 00 00 00
                                               $0x0,%eax
                                        mov
 4004ed:
               ba 00 00 00 00
                                               $0x0, %edx
                                        mov
                                               4004fd < sum + 0x15 >
 4004f2:
               eb 09
                                        qmr
 4004f4:
               48 63 ca
                                        movslq %edx, %rcx
 4004f7:
               03 04 8f
                                        add
                                              (%rdi,%rcx,4),%eax
 4004fa:
               83 c2 01
                                        add
                                               $0x1,%edx
 4004fd:
                39 f2
                                               %esi,%edx
                                        cmp
 4004ff:
                7c f3
                                               4004f4 < sum + 0xc >
                                        il
  400501:
                f3 c3
                                        repz retq
```

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 + 0x5

Loading Executable Object Files

Executable Object File

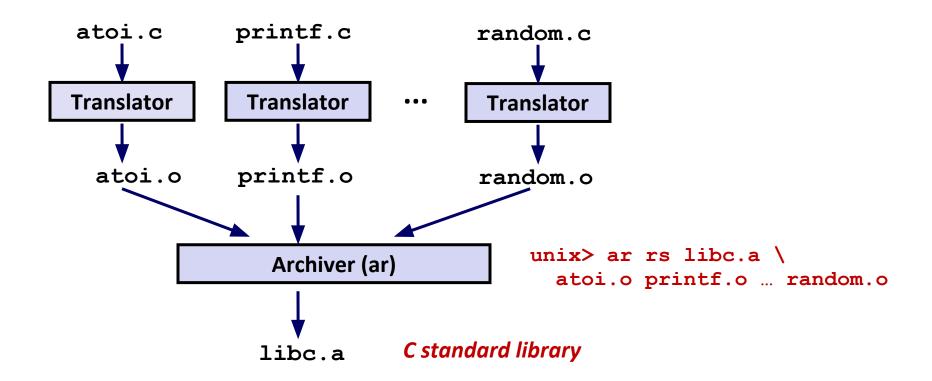
ELF header Program header table (required for executables) .init section .text section .rodata section .data section .bss section .symtab .debug .line .strtab Section header table (required for relocatables)

22

0x400000

Λ

Packaging Commonly Used Functions


- How to package functions commonly used by programmers?
 - Math, I/O, memory management, string manipulation, etc.
- Awkward, given the linker framework so far:
 - Option 1: Put all functions into a single source file
 - Programmers link big object file into their programs
 - Space and time inefficient
 - Option 2: Put each function in a separate source file
 - Programmers explicitly link appropriate binaries into their programs
 - More efficient, but burdensome on the programmer

Old-fashioned Solution: Static Libraries

Static libraries (.a archive files)

- Concatenate related relocatable object files into a single file with an index (called an archive).
- Enhance linker so that it tries to resolve unresolved external references by looking for the symbols in one or more archives.
- If an archive member file resolves reference, link it into the executable.

Creating Static Libraries

- Archiver allows incremental updates
- Recompile function that changes and replace .o file in archive.

Commonly Used Libraries

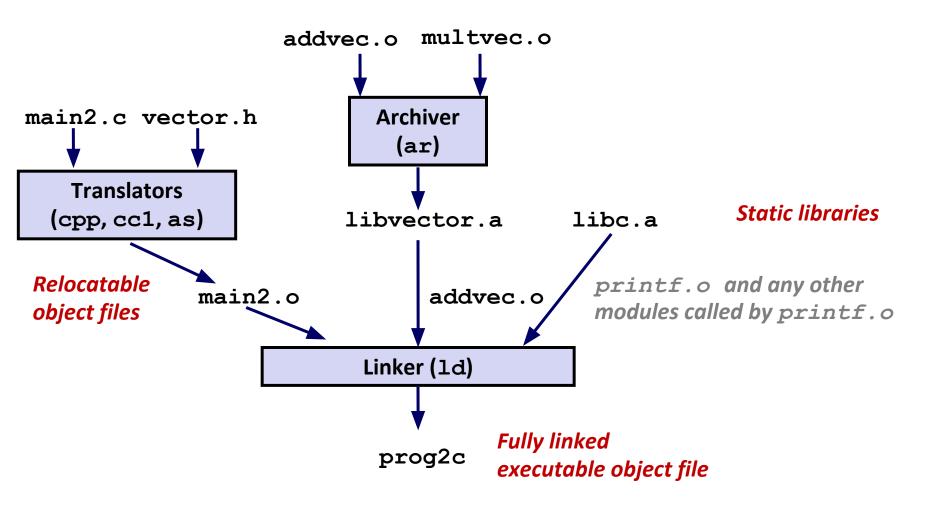
libc.a (the C standard library)

- 4.6 MB archive of 1496 object files.
- I/O, memory allocation, signal handling, string handling, data and time, random numbers, integer math

libm.a (the C math library)

- 2 MB archive of 444 object files.
- floating point math (sin, cos, tan, log, exp, sqrt, ...)

```
% ar -t libc.a | sort
...
fork.o
...
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
...
```


```
% ar -t libm.a | sort
...
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinf.o
e_asinf.o
...
```

Linking with Static Libraries

```
#include <stdio.h>
#include "vector.h"
int x[2] = \{1, 2\};
int y[2] = \{3, 4\};
int z[2];
int main()
    addvec(x, y, z, 2);
    printf("z = [%d %d] \n",
           z[0], z[1]);
    return 0;
                    main2.c
```

libvector.a

Linking with Static Libraries

Using Static Libraries

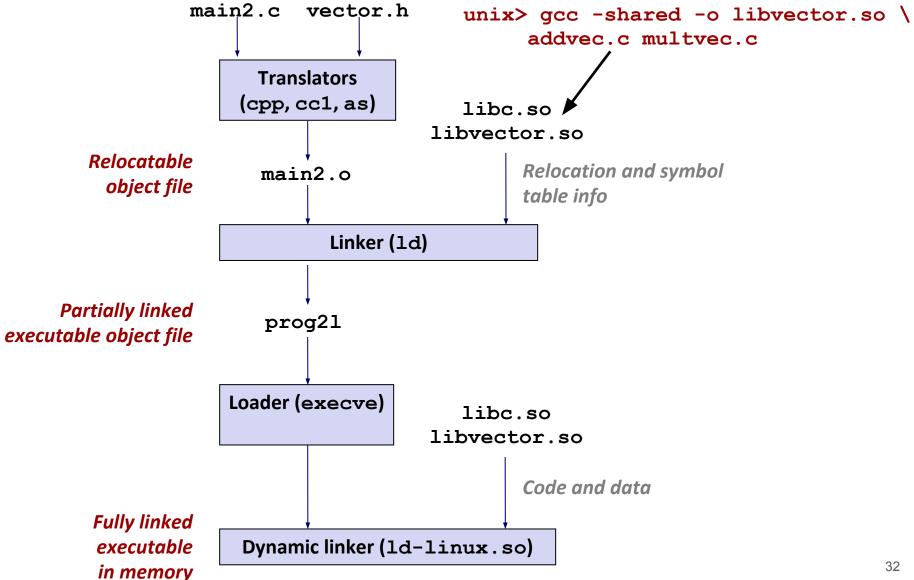
Linker's algorithm for resolving external references:

- Scan .o files and .a files in the command line order.
- During the scan, keep a list of the current unresolved references.
- As each new .o or .a file, obj, is encountered, try to resolve each unresolved reference in the list against the symbols defined in obj.
- If any entries in the unresolved list at end of scan, then error.

Problem:

- Command line order matters!
- Moral: put libraries at the end of the command line.

```
unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'
```


Modern Solution: Shared Libraries

- Static libraries have the following disadvantages:
 - Duplication in the stored executables (every function needs libc)
 - Duplication in the running executables
 - Minor bug fixes of system libraries require each application to explicitly relink
- Modern solution: Shared Libraries
 - Object files that contain code and data that are loaded and linked into an application dynamically, at either load-time or run-time
 - Also called: dynamic link libraries, DLLs, .so files

Shared Libraries (cont.)

- Dynamic linking can occur when executable is first loaded and run (load-time linking).
 - Common case for Linux, handled automatically by the dynamic linker (ld-linux.so).
 - Standard C library (libc.so) usually dynamically linked.
- Dynamic linking can also occur after program has begun (run-time linking).
 - In Linux, this is done by calls to the dlopen() interface.
 - Distributing software.
 - High-performance web servers.
 - Runtime library interpositioning.
- Shared library routines can be shared by multiple processes.
 - More on this when we learn about virtual memory

Dynamic Linking at Load-time

Linking Summary

- Linking is a technique that allows programs to be constructed from multiple object files.
- Linking can happen at different times in a program's lifetime:
 - Compile time (when a program is compiled)
 - Load time (when a program is loaded into memory)
 - Run time (while a program is executing)
- Understanding linking can help you avoid nasty errors and make you a better programmer.