
Memory Hierarchy

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from 
Randal E. Bryant and David R. O’Hallaron (CMU)

Mohamed Zahran (NYU)



Storage: Memory and Disk 
(and other I/O Devices)

2



⬛ Key features
▪ RAM is traditionally packaged as a chip.

▪ Basic storage unit is normally a cell (one bit per cell).

▪ Multiple RAM chips form a memory.

⬛ RAM comes in two varieties:
▪ SRAM (Static RAM)

▪ DRAM (Dynamic RAM)

Trans. Access Needs Needs
per bit  time refresh? EDC? Cost Applications

SRAM 4 or 6   1X    No         Maybe 100x Cache memories

DRAM 1   10X    Yes   Yes  1X Main memories,
frame buffers

3



⬛ DRAM and SRAM are volatile memories
▪ Lose information if powered off.

⬛ Nonvolatile memories retain value even if powered off
▪ Read-only memory (ROM): programmed during production

▪ Programmable ROM (PROM): can be programmed once

▪ Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)

▪ Electrically eraseable PROM (EEPROM): electronic erase capability

▪ Flash memory: (EEPROMs) with partial (block-level) erase capability

▪ Wears out after about 100,000 erasings

⬛ Uses for Nonvolatile Memories
▪ Firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics 

accelerators, security subsystems,…)

▪ Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, 
laptops,…)

▪ Disk caches

4



⬛ A bus is a collection of parallel wires that carry address, data, and control 
signals.

⬛ Buses are typically shared by multiple devices.

Main
memory

I/O 
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

5



⬛ A bus is a collection of parallel wires that carry address, data, and control 
signals.

⬛ Buses are typically shared by multiple devices.

Main
memory

I/O 
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

6

Load operation: movq A, %rax

Store operation: movq %rax, A



Main
memory

I/O 
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus Expansion slots for
other devices such
as network adapters.



Slow Storage         Fast Processors
Locality to the rescue

8



The gap widens between DRAM, disk, and CPU speeds. 



⬛ The key to bridging this CPU-Memory gap is a fundamental property of 
computer programs known as locality

⬛ Principle of Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

⬛ Temporal locality:  
▪ Recently referenced items are likely 

to be referenced again in the near future

⬛ Spatial locality:  
▪ Items with nearby addresses tend 

to be referenced close together in time

10



Does this function have good locality with 
respect to array a?

int sum_array_rows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}

11

Does this function have good locality with 
respect to array a?

⬛ Being able to look at code and get a qualitative sense of its locality is a key skill for a 
professional programmer.

int sum_array_cols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}

✔                                                    ❌



⬛ Data references
▪ Reference array elements in succession 

(stride-1 reference pattern).

▪ Reference variable sum each iteration.

⬛ Instruction references
▪ Reference instructions in sequence.

▪ Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

12



➢ DNHI: Can you permute the loops so that the function scans the 3-d array a 
with a stride-1 reference pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{
    int i, j, k, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            for (k = 0; k < N; k++)
                sum += a[k][i][j];
    return sum;
}

13



Memory Hierarchy 
(otherwise locality does not help)

14



● Some fundamental and enduring properties of hardware and software:
▪ Fast storage technologies cost more per byte, have less capacity, and require more power 

(heat!). 

▪ The gap between CPU and main memory speed is widening.

▪ Well-written programs tend to exhibit good locality.

● These fundamental properties complement each other beautifully.

● They suggest an approach for organizing memory and storage systems known 
as a memory hierarchy.

15



Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM) L3 cache holds cache lines

 retrieved from main memory.

L6:

Main memory holds 
disk blocks retrieved 
from local disks.

16



● Cache: A smaller, faster storage device that acts as a staging area for a 
subset of the data in a larger, slower device.

● Fundamental idea of a memory hierarchy:

▪ For each k, the faster, smaller device at level k serves as a cache for 
the larger, slower device at level k+1.

● Why do memory hierarchies work?
▪ Because of locality, programs tend to access the data at level k more often than they access the 

data at level k+1. 

▪ Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.

● Big Idea:  The memory hierarchy creates a large pool of storage that costs as 
much as the cheap storage near the bottom, but that serves data to programs 
at the rate of the fast storage near the top.

17



18



19



•

•

20



⬛ Cold (compulsory) miss
▪ Cold misses occur because the cache is empty.

⬛ Conflict miss
▪ Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of the block 

positions at level k.

▪ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

▪ Conflict misses occur when the level k cache is large enough, but multiple data objects all map 
to the same level k block.

▪ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

⬛ Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than the cache.

21


