
Memory Hierarchy

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)

Mohamed Zahran (NYU)

Cache Memory Organization and Access

2

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

General Cache Concept

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Cache Memories

⬛ Cache memories are small, fast SRAM-based memories managed
automatically in hardware

▪ Hold frequently accessed blocks of main memory

⬛ CPU looks first for data in cache

⬛ Typical system structure:

Main
memor

y
I/O

bridgeBus interface

AL
U

Register file
CPU chip

System bus Memory bus

Cache
memory

5

General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit 6

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

•Locate set
•Check if any line in set
has matching tag

•Yes + line valid: hit
•Locate data starting
at offset

7

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: one line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

8

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

9

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced

10

Example: Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [0000

2
],

1 [0001
2
],

7 [0111
2
],

8 [1000
2
],

0 [0000
2
]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0

Set 1

Set 2

Set 3
11

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

12

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

13

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), … 14

Example: 2-Way Set Associative Cache
Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [0000

2
],

1 [0001
2
],

7 [0111
2
],

8 [1000
2
],

0 [0000
2
]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
15

What about writes?

⬛ Multiple copies of data exist:
▪ L1, L2, L3, Main Memory, Disk

⬛ What to do on a write-hit?
▪ Write-through (write immediately to memory)

▪ Write-back (defer write to memory until replacement of line)

▪ Need a dirty bit (line different from memory or not)

⬛ What to do on a write-miss?
▪ Write-allocate (load into cache, update line in cache)

▪ Good if more writes to the location follow

▪ No-write-allocate (writes straight to memory, does not load into cache)

⬛ Typical
▪ Write-through + No-write-allocate

▪ Write-back + Write-allocate
16

Intel Core i7 Cache Hierarchy Example

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

17

Cache Performance Metrics

⬛ Miss Rate
▪ Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate

▪ Typical numbers (in percentages):
▪ 3-10% for L1
▪ can be very small (e.g., < 1%) for L2, depending on size, etc.

⬛ Hit Time
▪ Time to deliver a line in the cache to the processor

▪ includes time to determine whether the line is in the cache

▪ Typical numbers:
▪ 4 clock cycle for L1
▪ 10 clock cycles for L2

⬛ Miss Penalty
▪ Additional time required because of a miss

▪ typically 50-200 cycles for main memory

18

Ouch!

Let’s think about those numbers

⬛ Huge difference between a hit and a miss
▪ Could be 100x, if just L1 and main memory

⬛ Would you believe 99% hits is twice as good as 97%?
▪ Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

▪ Average access time:

 97% hits: 0.97*1 cycle + 0.03 * 100 cycles ≈ 1 cycle + 3 cycles = 4 cycles

 99% hits: 0.99*1 cycle + 0.01 * 100 cycles ≈ 1 cycle + 1 cycle = 2 cycles

⬛ This is why “miss rate” is used instead of “hit rate”

19

Writing Cache Friendly Code

⬛ Make the common case go fast

▪ Focus on the inner loops of the core functions

⬛ Minimize the misses in the inner loops

▪ Repeated references to variables are good (temporal locality) because
there is a good chance that they are stored in registers.

▪ Stride-1 reference patterns are good (spatial locality) because
subsequent references to elements in the same block will be able to hit the
cache (one cache miss followed by many cache hits).

20

Rearranging Loops
to Improve Spatial Locality

21

Matrix Multiplication Example

⬛ Description:
▪ Multiply N x N matrices

▪ Matrix elements are doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source element

▪ N values summed per destination

▪ but may be able to hold in register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Variable sum
held in register

22

Miss Rate Analysis for Matrix Multiply

⬛ Assume:
▪ Block size = 32B (big enough for four doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

⬛ Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
23

Layout of C Arrays in Memory (review)

⬛ C arrays allocated in row-major order
▪ each row in contiguous memory locations

⬛ Stepping through columns in one row:

 for (i = 0; i < N; i++)

 sum += a[0][i];

▪ accesses successive elements

▪ if block size (B) > sizeof(aij) bytes, exploit spatial locality

▪ miss rate = sizeof(aij) / B

⬛ Stepping through rows in one column:
 for (i = 0; i < n; i++)

 sum += a[i][0];

▪ accesses distant elements

▪ no spatial locality!

▪ miss rate = 1 (i.e. 100%)

24

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

We can reorganize the loops in several different ways.
Which organization gives the best cache performance?

25

Matrix Multiplication
ijk (& jik)

kij (& ikj)

jki (& kji)

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

26

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

?

Measuring Cache Misses
 valgrind with cachegrind - cache simulator

 D1mr D1mw function
--
2,977,062,519 0 ijk
4,004,000,016 0 jki
1,253,500,008 0 jik
 750,750,003 0 kji
 252,004,004 12 ikj
 252,004,004 12 kij

27

 D1mr D1mw function
--3
,133,750,020 0 ijk
5,005,000,020 0 jki
5,005,000,020 0 kji
2,820,375,018 0 jik
 189,003,003 9 ikj
 189,003,003 9 kij

L1 cache = 1024B
4 way associative
32 B cache line

L1 cache = 1024B
16 way associative
32 B cache line

Core i7 Matrix Multiply Performance

ijk / jik

jki / kji

kij / ikj

28

Learn about your machine's cache

⬛ lshw command - list hardware information
▪ sudo lshw -C memory

⬛ lscpu command - display information about the CPU
architecture

▪ lscpu

⬛ dmidecode command -
▪ sudo dmidecode -t cache

Note: some of these may not work well in a virtual machine
environment.

Cache Summary

⬛ Cache memories can have significant performance impact

⬛ You can write your programs to exploit this!
▪ Focus on the inner loops, where bulk of computations and memory

accesses occur.

▪ Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

▪ Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

