
Machine Level
Programming: Procedures

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 3

Instructor: Joanna Klukowska

Slides adapted from
Randal E. Bryant and David R. O’Hallaron (CMU)

Mohamed Zahran (NYU)

Procedures

● Passing control
○ To beginning of procedure code
○ Back to return point

● Passing data
○ Procedure arguments
○ Return value

● Memory management
○ Allocate during procedure execution
○ Deallocate upon return

● Mechanisms all implemented with
machine instructions

● x86-64 implementation of a
procedure uses only those
mechanisms required

2

Stack Structure

3

x86-64 Stack

● Region of memory managed with
stack discipline

● Grows toward lower addresses

● Register %rsp contains lowest stack
address (i.e., the address of “top”
element)

4

x86-64: push

5

pushq Src

● Fetch operand at Src
● Decrement %rsp by 8
● Write operand at address given by

%rsp

x86-64: pop

6

popq Dst

● Read value at address given by %rsp
● Increment %rsp by 8
● Fetch operand at Dst (must be

register)

Passing Control

7

Procedure Control Flow - Code example

8

Procedure Control Flow

● Use stack to support procedure call and return

● Procedure call: call label

○ Push return address on stack

○ Jump to label

● Return address:

○ Address of the next instruction right after call

○ Example from disassembly

● Procedure return: ret

○ Pop address from stack

○ Jump to address

9

Control Flow Example

10

Control Flow Example

11

Control Flow Example

12

Control Flow Example

13

Passing Data

14

Passing arguments and returning values

Procedure arguments:

● Registers
○ First six integer/pointer arguments are placed

in registers: %rdi, %rsi, %rdx%, %rcx,
%r8, %r9

○ Note: you have to remember the order
because that's how the arguments are
mapped

● Stack
○ 7+ arguments (integer and pointer) saved on

the stack
○ (in IA-32 all arguments were saved on the

stack - accessing stack is slower than
accessing the registers)

Return value:

● Register %rax is used to transfer a
return value to the caller. 15

Registers Stack

Example: Passing Data

16

Local Data

17

Stack-Based Languages

● Languages that support recursion
○ e.g., C, Pascal, Java
○ Code must be “Reentrant”

■ Multiple simultaneous instantiations of single procedure
○ Need some place to store state of each instantiation

■ Arguments
■ Local variables
■ Return pointer

● Stack discipline
○ State for given procedure needed for limited time

■ From when called to when return
○ Callee returns before caller does

● Stack allocated in Frames
○ state for single procedure instantiation

18

Example: Function Call Chain

19

Stack Frames

● Contents
○ Return information
○ Local storage (if needed)
○ Temporary space (if needed)

● Management
○ Space allocated when procedure is entered

■ “Set-up” code
■ Includes push by call instruction

○ Deallocated when return
■ “Finish” code
■ Includes pop by ret instruction

20

21

Stack
%rbp

%rsp

22

Stack

yoo

who
%rbp

%rsp

23

Stack
yoo

who

amI%rbp

%rsp

24

Stack
yoo

who

amI

amI

amI
%rbp

%rsp

25

Stack
yoo

who

amI%rbp

%rsp

26

Stack

yoo

who
%rbp

%rsp

27

Stack
yoo

who

amI%rbp

%rsp

28

Stack
%rbp

%rsp

X86-64 Stack Frame

● Current Stack Frame (“Top” to Bottom)
○ “Argument build:”

■ Parameters for function about to call
■ Local variables
■ If can’t keep in registers
■ Saved register context
■ Old frame pointer (optional)

● Caller Stack Frame
○ Return address

■ Pushed by call instruction
○ Arguments for this call

29

Examples

30

What is the C function corresponding to this
assembly function?

31

incr function

32

Calling incr function

33

Calling incr function

34

Calling incr function

35

Calling incr function

36

Calling incr function

37

Register Saving Conventions

● When procedure yoo calls who:
○ yoo is the caller
○ who is the callee

● Can register be used for temporary storage?
● Conventions

○ “Caller Saved” - Caller saves temporary values in its frame before the call
○ “Callee Saved” - Callee saves temporary values in its frame before using (Callee restores

them before returning to caller)

38

Register Saving Convention
● %rax

○ Return value
○ Also caller-saved
○ Can be modified by procedure

● %rdi, ..., %r9
○ Arguments
○ Also caller-saved
○ Can be modified by procedure

● %r10, %r11
○ Caller-saved
○ Can be modified by procedure

● %rbx, %r12, %r13, %r14
○ Callee-saved
○ Callee must save & restore

● %rbp
○ Callee-saved
○ Callee must save & restore
○ May be used as frame pointer
○ Can mix & match

● %rsp
○ Special form of callee save
○ Restored to original value upon exit from

procedure 39

40

41

