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Procedures

● Passing control
○ To beginning of procedure code
○ Back to return point

● Passing data
○ Procedure arguments
○ Return value

● Memory management
○ Allocate during procedure execution
○ Deallocate upon return

● Mechanisms all implemented with 
machine instructions

● x86-64 implementation of a 
procedure uses only those 
mechanisms required
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Stack Structure
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x86-64 Stack

● Region of memory managed with 
stack discipline

● Grows toward lower addresses

● Register %rsp contains lowest  stack 
address (i.e., the address of “top” 
element) 
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x86-64: push
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pushq Src

● Fetch operand at Src
● Decrement %rsp by 8
● Write operand at address given by 

%rsp



x86-64: pop
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popq Dst

● Read value at address given by %rsp
● Increment %rsp by 8
● Fetch operand at Dst (must be 

register)



Passing Control
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Procedure Control Flow - Code example
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Procedure Control Flow

● Use stack to support procedure call and return

● Procedure call: call label

○ Push return address on stack

○ Jump to label

● Return address:

○ Address of the next instruction right after call

○ Example from disassembly

● Procedure return: ret

○ Pop address from stack

○ Jump to address
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Control Flow Example
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Control Flow Example
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Control Flow Example
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Control Flow Example
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Passing Data
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Passing arguments and returning values

Procedure arguments:

● Registers
○ First six integer/pointer arguments are placed 

in registers: %rdi, %rsi, %rdx%, %rcx, 
%r8, %r9

○ Note: you have to remember the order 
because that's how the arguments are 
mapped

● Stack 
○ 7+ arguments (integer and pointer) saved on 

the stack
○ (in IA-32 all arguments were saved on the 

stack - accessing stack is slower than 
accessing the registers)

Return value:

● Register %rax is used to transfer a 
return value to the caller. 15

Registers       Stack 



Example: Passing Data
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Local Data
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Stack-Based Languages

● Languages that support recursion
○ e.g., C, Pascal, Java
○ Code must be “Reentrant”

■ Multiple simultaneous instantiations of single procedure
○ Need some place to store state of each instantiation

■ Arguments
■ Local variables
■ Return pointer

● Stack discipline
○ State for given procedure needed for limited time

■ From when called to when return
○ Callee returns before caller does

● Stack allocated in Frames
○ state for single procedure instantiation
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Example: Function Call Chain

19



Stack Frames

● Contents
○ Return information
○ Local storage (if needed)
○ Temporary space (if needed)

● Management
○ Space allocated when procedure is entered

■ “Set-up” code
■ Includes push by call instruction

○ Deallocated when return
■ “Finish” code
■ Includes pop by ret instruction
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Stack
%rbp 

%rsp 
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Stack

yoo
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Stack
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X86-64 Stack Frame

● Current Stack Frame (“Top” to Bottom)
○ “Argument build:”

■ Parameters for function about to call
■ Local variables
■ If can’t keep in registers
■ Saved register context
■ Old frame pointer (optional)

● Caller Stack Frame
○ Return address

■ Pushed by call instruction
○ Arguments for this call
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Examples
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What is the C function corresponding to this 
assembly function? 
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incr function
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Calling incr function
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Calling incr function
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Calling incr function
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Calling incr function
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Calling incr function
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Register Saving Conventions

● When procedure yoo calls who:
○ yoo is the caller
○ who is the callee

● Can register be used for temporary storage?
● Conventions

○ “Caller Saved” - Caller saves temporary values in its frame before the call
○ “Callee Saved”  - Callee saves temporary values in its frame before using (Callee restores 

them before returning to caller)
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Register Saving Convention
● %rax

○ Return value
○ Also caller-saved
○ Can be modified by procedure

● %rdi, ..., %r9
○ Arguments
○ Also caller-saved
○ Can be modified by procedure

● %r10, %r11
○ Caller-saved
○ Can be modified by procedure

● %rbx, %r12, %r13, %r14
○ Callee-saved
○ Callee must save & restore

● %rbp
○ Callee-saved
○ Callee must save & restore
○ May be used as frame pointer
○ Can mix & match

● %rsp
○ Special form of callee save
○ Restored to original value upon exit from 

procedure 39
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