
Machine Level 
Programming: Basics

Computer Systems Organization (Spring 2017)
CSCI-UA 201, Section 2

Instructor: Joanna Klukowska

Slides adapted from 
Randal E. Bryant and David R. O’Hallaron (CMU)

Mohamed Zahran (NYU)

Why do we look at machine code?

● understanding how the high-level programming language instructions are 
executed on a processor

● understanding how optimizing high-level program affects instructions 
executed in practice 

● understanding security flaws of programs

● understanding things that are not handled at the high-level programming 
language 

We will be working with the machine code for x86-64 processors. 

2

A Bit of History

3

Intel x86 Processors

4

● Totally dominate laptop/desktop/server market

● Evolutionary design
○ Backwards compatible up until 8086, introduced in 1978
○ Added more features as time goes on

● Complex instruction set computer (CISC)
○ Many different instructions with many different formats

■ But, only small subset encountered with Linux programs
○ Hard to match performance of Reduced Instruction Set Computers (RISC)
○ But, Intel has done just that!

■ In terms of speed.  Less so for low power.

We will just scratch the surface of the available instructions. 



Intel x86 Evolution

Name  Date   Transistors                MHz

● 8086 1978    29K 5-10
○ First 16-bit processor.  Basis for IBM PC & DOS
○ 1MB address space

● 386 1985 275K 16-33
○ First 32 bit processor, referred to as IA32
○ Capable of running Unix
○ 32-bit Linux/gcc uses no instructions introduced in later models

● Pentium 4F 2004 125M        2800-3800    
○ First 64-bit processor, referred to as x86-64

● Core i7 2008 731M 2667-3333

5

Notice that the speed
is not increasing as 
much any more.

The hertz (symbol Hz) is the unit of 
frequency in the International System of 
Units (SI) and is defined as one cycle 
per second. Ex: 
106 Hz = 1 MHz = 106 cycles/repetitions 
per second 

Schematic of an Intel Processor

6

64-bit History

● 2001: Intel Attempts Radical Shift from IA32 to IA64
○ Totally different architecture (Itanium)

○ Executes IA32 code only as legacy

○ Performance disappointing

● 2003: AMD Steps in with Evolutionary Solution
○ x86-64 (now called “AMD64”)

● Intel Felt Obligated to Focus on IA64
○ Hard to admit mistake or that AMD is better

● 2004: Intel Announces EM64T extension to IA32
○ Extended Memory 64-bit Technology

○ Almost identical to x86-64!

● All but low-end x86 processors support x86-64
○ But, lots of code still runs in 32-bit mode

7

C, assembly, machine code

8

https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Cycle_per_second
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Cycle_per_second
https://en.wikipedia.org/wiki/Cycle_per_second
https://en.wikipedia.org/wiki/Cycle_per_second


Definitions

● Architecture: (also ISA: instruction set architecture) The parts of a 

processor design that one needs to understand or write assembly/machine 

code. 
○ Examples:  instruction set specification, registers.

○ Target of the compiler 

● Microarchitecture: Implementation of the architecture.
○ Examples: cache sizes and core frequency.

● Code Forms:
○ Machine Code: The byte-level programs that a processor executes

○ Assembly Code: A text representation of machine code

● Example ISAs: 
○ Intel: x86, IA32, Itanium, x86-64

○ ARM: Used in almost all mobile devices, Raspberry Pi

9

Assembly/Machine Code View of a Computer

Programmer-Visible State

● PC: Program counter / instruction pointer
○ Address of next instruction
○ Called %rip (x86-64)

● Register file
○ Heavily used program data

● Condition codes
○ Store status information about most recent 

arithmetic or logical operation
○ Used for conditional branching

10

● Memory
○ Byte addressable array
○ Code and user data
○ Stack to support procedures

Turning C into Object Code

● Code in files  p1.c p2.c
● Compile with command:  gcc –Og p1.c p2.c -o p

○ Use basic optimizations (-Og) [New to recent versions of GCC]
○ Put resulting binary in file p

11

compiler: gcc - S

assembler

linker

text

binary

Compiling into Assembly

Assembly code generated using 

   gcc -Og -S sum.c 

output written to sum.s file. 

12

Note1: the assembly code will be different for 
different versions of gcc and different compiler 
settings. The generated code should be 
equivalent in terms of what it does, though.

Note2: for now we ignore all instructions in the 
.s file that start with a dot - they are not really 
part of the assembly. 

long plus(long x, long y) {
    return x + y;
}

void sumstore(long x, long y, long *dest)
{
    long t = plus(x, y);
    *dest = t;
}

sumstore:
pushq %rbx
movq  %rdx, %rbx
call plus
movq%rax, (%rbx)
popq %rbx
ret



Assembly Characteristics: Data Types

● “Integer” data of 1, 2, 4, or 8 bytes

○ Data values  (it does not matter if it is signed or not at the level of assembly)

○ Addresses (untyped pointers)

● Floating point data of 4, 8, or 10 bytes

○ we will not really go into floating point numbers at the level of assembly

● Code: Byte sequences encoding series of instructions

● No aggregate types such as arrays or structures, just contiguously allocated 

bytes in memory

13

Assembly Operations

● Perform arithmetic function on register or memory data

● Transfer data between memory and register
○ Load data from memory into register

○ Store register data into memory

● Transfer control
○ Unconditional jumps to/from procedures

○ Conditional branches

Very limited in what can be done in one instruction - does only one thing: 

move data, single simple arithmetic operation, memory dereference. 

14

Object Code

● Linker
○ Resolves references between files

○ Combines with static run-time libraries

■ E.g., code for malloc, printf

○ Some libraries are dynamically linked

■ Linking occurs when program begins 

execution 15

0000000000000005 <sumstore>:
   5: 53                   push   %rbx
   6: 48 89 d3             mov    %rdx,%rbx
   9: e8 00 00 00 00       callq  e <sumstore+0x9>
   e: 48 89 03             mov    %rax,(%rbx)
  11: 5b                   pop    %rbx
  12: c3                   retq  

Total of 14 bytes. 
Each instruction 
can use a different 
number of bytes. 
Stats at location 
0x4005a2. 

● Assembler
○ Translates .s into .o

○ Binary encoding of each instruction

○ Nearly-complete image of executable code

○ Missing linkages between code in different 

files

gcc -Og -c sum.c
objdump -d sum.o Machine Instructions - Example 

● C Code
○ Store value t where designated by dest

● Assembly
○ Move 8-byte value to memory

■ Quad words in x86-64 parlance
○ Operands:

t:       register %rax
dest:     register %rbx
*dest:   memory M[%rbx]

● Object Code
○ 3-byte instruction
○ Stored at address 0x40059e

16



Disassembling Object Code

Disassembler:            objdump –d sum

○ Useful tool for examining object code
○ Analyzes bit pattern of series of instructions
○ Produces approximate rendition of assembly code
○ Can be run on either a.out (complete executable) or .o file

17

 00000000004005a2 <sumstore>:
  4005a2: 53                   push   %rbx
  4005a3: 48 89 d3             mov    %rdx,%rbx
  4005a6: e8 f2 ff ff ff       callq  40059d <plus>
  4005ab: 48 89 03             mov    %rax,(%rbx)
  4005ae: 5b                   pop    %rbx
  4005af: c3                   retq 

sumstore:
pushq %rbx
movq  %rdx, %rbx
call plus
movq%rax, (%rbx)
popq %rbx
ret

Alternate Disassembly

Within gdb Debugger
  gdb sum

● disassemble sumstore
Disassemble procedure

● x/14xb sumstore

Examine the 14 bytes 
starting at sumstore

18

Dump of assembler code for function sumstore:
   0x00000000004005a2 <+0>: push   %rbx
   0x00000000004005a3 <+1>: mov    %rdx,%rbx
   0x00000000004005a6 <+4>: callq  0x40059d <plus>
   0x00000000004005ab <+9>: mov    %rax,(%rbx)
   0x00000000004005ae <+12>: pop    %rbx
   0x00000000004005af <+13>: retq   
End of assembler dump.

0x4005a2 <sumstore>:    0x53  0x48  0x89  0xd3  0xe8  0xf2  0xff  0xff
0x4005aa <sumstore+8>:  0xff  0x48  0x89  0x03  0x5b  0xc3

What Can be Disassembled?

● Anything that can be interpreted as executable code

● Disassembler examines bytes and reconstructs assembly source

BUT:

The end user license agreement for some software 

forbids reverse engineering of code. 

19

Assembly Basics: Registers, Operands, 
Move

20



x86-64 Integer Registers

Can reference low-order 4 bytes (also low-order 1 & 2 bytes), see p. 180 in the book
21

IA32 Registers  (History) Origin
(mostly obsolete)

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

22

Moving Data

● Moving Data

movq Source, Dest

● Operand Types
○ Immediate: Constant integer data

■ Example: $0x400, $-533
■ Like C constant, but prefixed with ‘$’
■ Encoded with 1, 2, or 4 bytes

○ Register: One of 16 integer registers
■ Example: %rax, %r13
■ But %rsp reserved for special use
■ Others have special uses for particular instructions

○ Memory: 8 consecutive bytes of memory at address given 
by register

■ Simplest example: (%rax)
■ Various other “address modes”

23

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

24



Simple Memory Addressing Modes

● Normal        (R)        Mem[Reg[R]]
○ Register R specifies memory address
○ Pointer dereferencing in C

movq (%rcx),%rax

● Displacement    D(R)     Mem[Reg[R]+D]
○ Register R specifies start of memory region
○ Constant displacement D specifies offset

movq 8(%rbp),%rdx

Note: the normal mode is a special case of displacement mode in which D = 0

25

Mem - think of as a memory array: 
Mem[address] means value stores at 
the particular memory address.

Reg - think of as a register array: 
Reg[reg_name] means value stored at 
the particular register

Simple Addressing Modes - swap() Examples

void swap  (long *xp, long *yp) 
{
  long t0 = *xp;
  long t1 = *yp;
  *xp = t1;
  *yp = t0;
}

26

swap:
   movq    (%rdi), %rax
   movq    (%rsi), %rdx
   movq    %rdx, (%rdi)
   movq    %rax, (%rsi)
   ret

gcc -S -Og swap.c

swap.c swap.s

Understanding swap()

27

swap:
   movq    (%rdi), %rax
   movq    (%rsi), %rdx
   movq    %rdx, (%rdi)
   movq    %rax, (%rsi)
   ret

void swap  (long *xp, long *yp) 
{
  long t0 = *xp;
  long t1 = *yp;
  *xp = t1;
  *yp = t0;
}

Register Value
%rdi   xp
%rsi   yp
%rax   t0
%rdx   t1

Understanding swap()

28

swap:
   movq    (%rdi), %rax    # t0 = *xp
   movq    (%rsi), %rdx    # t1 = *yp
   movq    %rdx, (%rdi)    # *xp = t1
   movq    %rax, (%rsi)    # *yp = t0
   ret



Understanding swap()

29

swap:
   movq    (%rdi), %rax    # t0 = *xp
   movq    (%rsi), %rdx    # t1 = *yp
   movq    %rdx, (%rdi)    # *xp = t1
   movq    %rax, (%rsi)    # *yp = t0
   ret

Understanding swap()

30

swap:
   movq    (%rdi), %rax    # t0 = *xp
   movq    (%rsi), %rdx    # t1 = *yp
   movq    %rdx, (%rdi)    # *xp = t1
   movq    %rax, (%rsi)    # *yp = t0
   ret

Understanding swap()

31

swap:
   movq    (%rdi), %rax    # t0 = *xp
   movq    (%rsi), %rdx    # t1 = *yp
   movq    %rdx, (%rdi)    # *xp = t1
   movq    %rax, (%rsi)    # *yp = t0
   ret

Understanding swap()

32

swap:
   movq    (%rdi), %rax    # t0 = *xp
   movq    (%rsi), %rdx    # t1 = *yp
   movq    %rdx, (%rdi)    # *xp = t1
   movq    %rax, (%rsi)    # *yp = t0
   ret



Simple Memory Addressing Modes

● Normal        (R)        Mem[Reg[R]]
○ Register R specifies memory address
○ Pointer dereferencing in C

movq (%rcx),%rax

● Displacement    D(R)     Mem[Reg[R]+D]
○ Register R specifies start of memory region
○ Constant displacement D specifies offset

movq 8(%rbp),%rdx

Note: the normal mode is a special case of displacement mode in which D = 0

33

Mem - think of as a memory array: 
Mem[address] means value stores at 
the particular memory address.

Reg - think of as a register array: 
Reg[reg_name] means value stored at 
the particular register

Complete Memory Addressing Modes

● Most General Form

D(Rb,Ri,S)        Mem[Reg[Rb]+S*Reg[Ri]+ D]

D: Constant “displacement” 1, 2, or 4 bytes
Rb: Base register: Any of 16 integer registers
Ri: Index register: Any, except for %rsp
S: Scale: 1, 2, 4, or 8 (why these numbers?)

● Special Cases
(Rb,Ri)    Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri)    Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S)    Mem[Reg[Rb]+S*Reg[Ri]]

34

Address Computation Examples

35

Logical and Arithmetic Operations

36



Address Computation Instruction

● leaq Src, Dst
○ load effective address
○ Src is address mode expression
○ Set Dst to address denoted by expression

● Uses
○ Computing addresses without a memory reference (for array or structure offsets) 

■ E.g., translation of p = &x[i];
○ Computing arithmetic expressions of the form x + k*y

■ k = 1, 2, 4, or 8

● Example

37

file: leaq_example.c

long m12 (long x) {
return x*12;

}

leaq(%rdi,%rdi,2), %rax   
# t = x+x*2

salq$2, %rax                    
# return t<<2

create object code using
gcc -Og -S leaq_example.c  

Arithmetic Operations 

● Two Operand Instructions:

Format       Computation

addq Src,Dest Dest = Dest + Src
subq Src,Dest Dest = Dest - Src
imulq Src,Dest Dest = Dest * Src
salq Src,Dest Dest = Dest << Src   � also called shlq
sarq Src,Dest Dest = Dest >> Src   � arithmetic
shrq Src,Dest Dest = Dest >> Src   � logical
xorq Src,Dest Dest = Dest ^ Src
andq Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src

● Watch out for argument order!
● No distinction between signed and unsigned int (why?)
● See page 192 in the book 38

Arithmetic Operations 

● One Operand Instructions:

Format       Computation

incq Dest Dest = Dest + 1
decq Dest Dest = Dest - 1
negq Dest Dest = -Dest
notq Dest Dest = ~Dest

● Watch out for argument order!
● No distinction between signed and unsigned int (why?)
● See page 192 in the book 

39

Example: arithmetic expression

long arith (long x, long y, long z)
{
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}

40

arith: 
leaq(%rdi,%rsi), %rax
addq %rdx, %rax
leaq(%rsi,%rsi,2), %rcx
salq $4, %rcx
leaq 4(%rdi,%rcx), %rcx
imulq %rcx, %rax
ret



Example: arithmetic expression

long arith (long x, long y, long z)
{
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}

41

arith: 
leaq(%rdi,%rsi), %rax    #t1
addq %rdx, %rax          #t2
leaq(%rsi,%rsi,2), %rcx   
salq  $4, %rcx           #t4
leaq 4(%rdi,%rcx), %rcx  #t5
imulq %rcx, %rax         #rval
ret


