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Fractions in Binary
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Fractional binary numbers
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What is 1011.1012?

● we use the same idea that we use when interpreting the decimal numbers, 
except here we multiply by powers of 2, not 10

● the above number is

1 * 23 + 0 * 22 + 1 * 21 + 1 * 20 + 1 * 2-1 + 0 * 2-2 + 1 * 2-3 

= 8 + 2 + 1 + ½ + ⅛ = 11.625

Simple enough? 

DNHI: Try to convert the following numbers to their binary representation 5  1/16 , 2 ⅞ , 
15 ¾ . Now, try 1/10 and and see how that goes.
Convert the following binary numbers to their decimal representations: 0.1101, 
101.010, 10.101. 



Not good enough

That way of representing floating point numbers is simple, but has many 
limitations.

● Only numbers that can be written as the sum of powers of 2 can be 
represented exactly, other numbers have repeating bit representation (this is 
the same problem as trying to represent ⅓ in decimal as 0.3333333....).

○ ⅓    is 0.010101010101 … 
○ ⅕    is  0.01100110011 … 
○ 1/10  is 0.001100110011 …

● Just one possible location for the binary point. This limits how many bits can 
be used for the fractional part and the whole number part. We can either 
represent very large numbers well or very small numbers well, but not both. 

Up until 1985 floating point numbers were computer scientist nightmare because 
everybody was using different standards that dealt with the above problems.  

But do not forget that notation just yet - we will use it as part of the better 
notation. 4



1985: IEEE Standard 754
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IEEE Floating Point

● Established 1985
● Provides uniform standard for floating point arithmetic used by most (if not all) 

of current CPUs
● Standards for rounding, overflow, underflow
● Concerns for numerical accuracy were more important than fast hardware 

implementation ⇒ not very good hardware performance 
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Floating Point Representation

● Numerical Form: 

(-1)s M * 2E

○ Sign bit s determines whether number is negative or positive
○ Significand M  (mantissa) normally a fractional value in range [1.0,2.0).
○ Exponent E weighs value by powers of two

● Encoding
○ the most significant bit  s is the sign bit s
○ exp field encodes E (but is not equal to E)
○ frac field encodes M (but is not equal to M)
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Using Different Number of Bytes

Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)
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Interpreting Values of IEEE 754
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Normalized Values

● Condition: exp  ≠ 000…0 and exp ≠ 111…1

                                                bias

● Exponent is: E  =  exp - (2k-1 - 1),   k is the # of exponent bits
○ Single precision: 2k-1 - 1 = 127, exp = 1…254 ⇒  E = -126…127
○ Double precision : 2k-1 - 1 = 1023, exp = 1…2046 ⇒  E = -1022…1023

           (once we know the number of bits in exp, we can figure out the bias)

● Significand has implied leading 1: M = 1.xxx…x2 
○ xxx…x – bits of frac 
○ Smallest value when all bits are zero: 000…0, M = 1.0
○ Largest value when all bits are one: 111…1, M = 2.0- ε
○ By assuming the leading bit is 1, we get “an extra bit for free” 
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Normalized Values - Example

● Value: floating point number   F = 15213.0 represented using single precision
       152131.0  = 11101101101101.02    

               = 1.11011011011012 * 2
13  (same binary sequence)

● Significand
  M    =  1.11011011011012

  ⇒  frac =   11011011011010000000000
● Exponent

  E     = 13
  Bias   = 127 (for single precision)
  Exp    = 14010 = 100011002

Result:
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value = (-1)s M * 2E

E  =  exp - (2k-1 - 1)



DNHI

Perform similar conversion for the following floating point numbers. Use the single 
precision IEEE representation:

1024

¼

17.75

- 17.75
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Why is this encoding better?

● For single precision
○ The value of exp is in the range  0 <= exp <= 255
○ ⇒ the value of E is in the range  -127 <= E <= 128
○ ⇒ we can represent fairly large numbers when using 2128  and some fairly small numbers 

when using 2-127 

● For double precision 
○ well, you get the point

But we always have the leading one in the value of significand/mantissa, so we 
cannot represent numbers that are reeeeeaaaaly small. 

● We need to talk about what happens when exp is all zeroes or all ones.
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Denormalized Encoding

● Condition: exp = 000…0  (all zeroes) 

● Exponent value: E = 1 - bias (instead of 0 - bias)
● Significand has implied leading 0 (not 1): M = 0.xxx…x2 

○ xxx…x – bits of frac 

Cases:

● exp = 000…0, frac = 000…0 represents zero value
○ Note that we have two distinct values for zero: +0 and -0 (Why?)

● exp = 000…0, frac ≠ 000…0 represent numbers very close to zero
(all denormalized encodings represent reeeeeaaaaly small numbers) 
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Special Values Encoding

● Condition: exp = 111…1

There are only two (well three cases here): 

● Case 1, 2: exp = 111…1, frac = 000…0

○ Represents value ∞ (infinity)

○ Operations that overflow
○ Both positive and negative

○ Eg: 1.0/0.0 = -1.0/-0.0 = +∞, -1.0/0.0 = 1.0/-0.0 = -∞  

● Case 3: exp = 111…1, frac ≠ 000…0
○ Not-a-Number (NaN)
○ Represents case when no numeric value can be determined

○ Eg: sqrt(-1), ∞-∞, ∞*0
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Number Line (not to scale)
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Example
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6-bit IEEE-like encoding
● most significant bit is the sign bit
● 3-bit encoding for exp

⇒ bias 22-1 = 3
● 2-bit encoding for frac
● special values:  011100, 011101, 011110, 011111, 

111100, 111101, 111110, 111111 

● denormalized values: 000000, 000001, 000010, 
000011, 100000, 100001, 100010, 100011

○ smallest negative: 100011
      M = 0.11,  E = 1 - bias = -2, val = -0.11 * 2-2 = -0.187510

○ smallest positive (larger than zero): 000001 
 M = 0.01,  E = 1 - bias = -2, val = 0.01 * 2-2 = 0.062510

● normalized values: all others
○ smallest positive: 000100

      M = 1.00,  E = 1 - bias = -2, val = 1.0 * 2-2 = 0.2510
○ largest positive: 011011 

 M = 1.11,  E = 6 - bias = 3, val = 1.11 * 23 = 14.0010
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All possible 6-bit sequences:

000000 
000001 
000010 
000011 
000100 
000101 
000110 
000111 
001000 
001001 
001010 
001011 
001100 
001101 
001110 
001111 

010000 
010001 
010010 
010011 
010100 
010101 
010110 
010111 
011000 
011001 
011010 
011011 
011100 
011101 
011110 
011111 

100000 
100001 
100010 
100011 
100100 
100101 
100110 
100111 
101000 
101001 
101010 
101011 
101100 
101101 
101110 
101111

110000 
110001 
110010 
110011 
110100 
110101 
110110 
110111 
111000 
111001 
111010 
111011 
111100 
111101 
111110 
111111 

DNHI: Pick 10 different sequences 
from the table above and figure out 
their values in decimal. 



Properties and Rules of IEEE 754
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Special properties of IEEE encoding

● FP Zero Same as Integer Zero: all bits = 0

● Can (Almost) Use Unsigned Integer Comparison
○ Must first compare sign bits
○ Must consider −0 = 0 
○ NaNs problematic

■ will be greater than any other values
■ what should comparison yield?

○ Otherwise proper ordering
■ denorm vs. normalized
■ normalized vs. infinity
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Arithmetic Operations with Rounding

● x +f y = Round(x + y)

● x *f y = Round(x * y)

● Basic idea
○ Compute exact result
○ Make it fit into desired precision
○ Possibly overflow if exponent too large
○ Possibly round to fit into frac
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Different Rounding Modes

Rounding Modes (illustrate with $ rounding)

             $1.40 $1.60 $1.50 $2.50 –$1.50

Towards zero    $1  $1    $1    $2    –$1

Round down (-∞) $1    $1    $1    $2    –$2

Round up (+∞)   $2    $2    $2    $3    –$1

  Towards
Nearest Even    $1    $2    $2    $2    –$2
 (default)
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Same as regular 
rounding when we are 
not at the halfway point. 

Round towards nearest even number 
when the value is at the halfway 
point. 



Round to Even - a closer look

● Default Rounding Mode

● All others are statistically biased
○ Sum of a set of positive numbers will consistently be over- or under- estimated

● Applying to Other Decimal Places
○ When exactly halfway between two possible values

■ Round so that least significant digit is even
○ E.g., round to nearest hundredth

■ 7.8949999 7.89 (Less than halfway - round down)
■ 7.8950001 7.90 (Greater than halfway - round up)
■ 7.8950000 7.90 (Halfway - round up)
■ 7.8850000 7.88 (Half way - round down)
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Rounding Binary Numbers

● Binary Fractional Numbers
○ “Even” when least significant bit is 0
○ “Half way” when bits to right of rounding position = 100…2

● Examples
○ Round to nearest 1/4 (2 bits right of binary point)

Value Binary  Rounded Action Rounded Value

2 3/32 10.000112   10.002 (< ⅛ - down)       2

2 3/16 10.001102   10.012 (> ⅛ - up)       2 ¼ 

2 ⅞ 10.111002   11.002 (  ⅛  - up)       3

2 ⅝ 10.101002   10.102 (  ⅛  - down)       2 ½
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● (–1)s1 M1  2E1   *   (–1)s2 M2  2E2

● Exact Result: (–1)s M  2E
○ Sign s: s1 ^ s2   (this is xor, not exponentiation)
○ Significand M: M1 *  M2
○ Exponent E: E1 + E2

● Fixing
○ If M ≥ 2, shift M right, increment E
○ If E out of range, overflow 
○ Round M to fit frac precision

● Implementation
○ Most expensive is multiplication of significands (but that is done just like for integers)

Multiplication

25



Addition

● (–1)s1 M1  2E1   +   (-1)s2 M2  2E2         assume E1 > E2

● Exact Result: (–1)s M  2E
○ Sign s, significand M: 

■ result of signed align & add
○ Exponent E: E1

● Fixing
○ If M ≥ 2, shift M right, increment E 
○ if M < 1, shift M left k positions, decrement E by k
○ Overflow if E out of range
○ Round M to fit frac precision
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Properties of Floating Point Addition

● Closed under addition? YES
○ But may generate infinity or NaN

● Commutative?                           YES

● Associative? NO
○ Overflow and inexactness of rounding: 

( 3.14 + 1e10 ) - 1e10 = 0,           3.14 + ( 1e10 - 1e10 ) = 3.14

● 0 is additive identity?                 YES

● Every element has additive inverse?            ALMOST
○ Yes, except for infinities & NaNs

● Monotonicity                              ALMOST
○ a ≥ b ⇒ a+c ≥ b+c?

○ Except for infinities & NaNs
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Properties of Floating Point Multiplication

● Closed under multiplication? YES
○ But may generate infinity or NaN

● Multiplication Commutative?                 YES

● Multiplication is Associative? NO
○ Possibility of overflow, inexactness of rounding

Ex: ( 1e20 * 1e20 ) * 1e-20 = inf, 1e20 * ( 1e20*1e-20) =  1e20

● 1 is multiplicative identity?                        YES

● Multiplication distributes over addition? NO
○ Possibility of overflow, inexactness of rounding

         1e20 * ( 1e20 - 1e20 ) = 0.0,  1e20 * 1e20 - 1e20 * 1e20 = NaN

● Monotonicity                                                    ALMOST
○ a ≥ b  & c ≥ 0  ⇒ a * c ≥ b *c?

○ Except for infinities & NaNs
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Floating Point in C
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C Language 

● C Guarantees Two Levels
○ float single precision
○ double double precision

● Conversions/Casting
○ casting between int, float, and double changes bit representation
○ double/float → int

■ Truncates fractional part
■ Like rounding toward zero
■ Not defined when out of range or NaN: Generally sets to TMin

○  int → double
■ Exact conversion, as long as int has ≤ 53 bit word size

○  int → float
■ Will round according to rounding mode
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Puzzles (DNHI)

For each of the following C expressions, either:

● Argue that it is true for all possible argument values
● Explain why if not true

Assume: 

●

● neither d nor f is NaN
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